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Solucién de problemas I !

Algebra IT Curso 2015-16

1. Proyecciones en el producto escalar estandar

Ejercicio 7.7.1 (a) Dada la ecuacion x +y — z = 0, dar una base ortonormal del subespacio
U de R3 que define.

Solucién: Damos valores a x e y para obtener una base (arbitraria, no ortogonal) de U. Asf sa-

camaos:
1 0
U= <U}1 = 0 , Wo = 1 >
1 1

Podemos entonces usar Gram—Schmidt para dar una base ortonormal. Primero obtenemos una
base ortogonal. El primer vector es w; y el segundo:

_ (wa, wy) 0 11 —1/2
Wo = Wy — 7211}1 = 1 - = 0 = 1
] 1) 2\1 1/2
Y ahora normalizamos ambos vectores:
w1 1 (1)
nfm = — = ——
AR Vo
s 1 _11/ 2 1 _21
Vg = oo = —F/— = —
|2 32\ 172 Ve \

La base ortonormal buscada es {v1,vs}.

O

Ejercicio 7.7.1 (b) Dar la imagen del vector X = (1,1,1) por la proyeccién ortogonal a U.

Solucidén: La forma més sencilla de hacerlo (si no nos pidieran luego hacer el proyector), es
simplemente:

2 1 1 -1 1 2
Py(X) = <X:’l/'1>U1+<X702>U2=\/§U1+\/7v2= 0 1+3 2 == 2
3 1 3\ 1 3\ 4

puesto que {v1,v2} es base ortonormal. Una comprobacién que se puede hacer es que efectiva-
mente el vector que hemos obtenido pertenece a U, puesto que cumple su ecuacién. (Il

11Los ejercicios resueltos son una seleccién mas o menos representativa de los propuestos en las notas de Lucia
Contreras. Soluciones por David Alfaya y Alvaro del Pino
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Ejercicio 7.7.1 (c) Calcular la forma general del proyector ortogonal a U, usando la base
ortonormal.

Solucion: La expresion que utilizamos en el apartado anterior sirve para obtener el proyector.
Si Y = (y1,¥2,93) es un vector cualquiera de R3, tenemos:

1 -1
1 1
Py(Y) = v (Y, v1)+0a (Y, 03) = (v10] +vov3 )Y = B 0 ](1,0,1)+ 8 2 (-,2,)| Y =
1 1
1 1 01 1 1 -2 -1 1 2 -1 1
3 0 0 0 |+ 5 —2 4 2 Y = 3 -1 1 1Y
1 0 1 -1 2 1 1 1 2

Esta tltima matriz da Py. Se puede comprobar a 0jo que tiene rango 2 y que todas las columnas
verifican la ecuacién de U. Adicionalmente, se puede ver que, al aplicarla a X, obtenemos el
vector que calculamos en el apartado anterior.

O

Ejercicio 7.7.1 (c’) Dar una base ortonormal de U+ y usarla para calcular le proyector orto-
gonal a U.

Solucion: Puesto que estamos usando el producto escalar estandar de R3, el vector que genera
U+t es precisamente el vector de los coeficientes de la ecuacién de U:

1
[]L = <w3 = 1 >
-1

y ahora simplemente tenemos que normalizarlo:

ws 1

Vyg = —4 = ——
’ lws| V3 1
{vs} es la base ortonormal de U+.

Tenemos en general que Y = Py (Y) + Py (Y), de forma que:

Py(Y)=Y - Py (Y)=Y — (Y,v3)vs = (I — w303 )Y =

1 0 0 1 1 1 -1 1 2 -1 1
01 0 - = 1 1 -1 == —1 2 1
00 1) 3\ -1 -1 1 S\ 1 1 2
que coincide con la matriz de arriba. En general, este método requiere menos céalculos. O

Ejercicio 7.8.1 Calcular la distancia del vector X al plano U.

Solucion: Segun calculamos arriba

ol
o
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esto implica que la proyecién al ortogonal es:

1 L[ 2 !
P(X)=X-PyX)=| 1 |-o|2|=5| 1
1 4 -1

que efectivamente es proporcional a v3. La distancia al plano es la norma de Py (X):

d(X,U) = [Py (X)] =

Sl

2. Diagonalizacion de endomorfismos

Ejercicio 8.1.1 (c) Comprobar que la siguiente matriz diagonaliza:

5 —2
(6 2)
y dar la matriz diagonalizada y la matriz de cambio de base. Es la matriz invertible? Si ast fuera,

calcula su inversa usando la matriz diagonalizada.

Solucion: Empezamos calculando las raices del polinomio caracteristico:

5—A -2

A== 6 —2—X\

‘:()\—5)(2—1—)\)—1—12:)\2—3)\—1—2:()\—1)()\—2)

Habiendo obtenido dos autovalores distintos y reales, concluimos que la matriz diagonaliza
(real). Puesto que ambos autovalores son no cero, concluimos que la matriz es inversible.

La matriz diagonalizada no es otra que:
~ 10
Para obtener el autovector v; correspondiente al autovalor 1, lo buscamos en ker(A — I):

4 -2
A_I:<6 —3)

de forma que tenemos la ecuacién 2z = y; tomamos v; = (1,2). Podemos aplicar Av; para
comprobar que efectivamente nos da v;.

De manera andloga, buscamos en ker(A — 27) al autovector vy del autovalor 2:

3 =2
o (32

Una eleccién posible es vo = (2, 3). Igualmente, vemos que Avy = 2vs.

La matriz de cambio de base C, i.e. la matriz que verifica A = CAC™!, tiene por columnas
{’Ul s ’UQ}Z
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la matriz inversa, que da el cambio de la base estdndar a la base {v1, v2}, se puede calcular:

(3 =2
o=-(5 )

Finalmente, podemos calcular su inversa observando que:

A—lz(cﬁc—l)—lzcﬁ—lc*:(% ;)(é 1/2)(2 _f):

1 1 -3 2\ _ (-1 1

2 3/2 2 -1 ) \ -3 5/2
en este caso no es particularmente util, siendo una matriz 2 x 2. Se puede multiplicar con A
para ver que efectivamente es la inversa. O

Ejercicio 8.1.2 Calcular la enésima potencia de la matriz dada en el apartado anterior.

Solucion: Teniendo la expresion ~
A=CAC™!

n __ in —1 _ 1 2 1 0 -3 2 _
ar=eie=(5 5 ) (o o ) (2 3)-

1 2n+1 -3 2 B 2n+2 -3 92— 2n+1
2 3.2" 2 -1/ 3(2”“—2) 4—-3-2"

Observad que el célculo de la inversa en el apartado anterior es un caso particular con n = —1.

es inmediato que:

O

Ejercicio 8.3.1 (a) Decide para qué valores de a y b es el siguiente endomorfismo diagonali-
zable:

-1
A= 0
0

o = O

b
0
a

Solucion: Calculamos y factorizamos el polinomio caracteristico:

—1-2A 0 b
|A— M| = 01— 0|=-A+1A-1(\-a)
0 0 a—A

Esto implica que los autovalores son {+1, —1, a}. En particular, si a # 41, la matriz diagonaliza
por tener tres autovalores diferentes.

Sia = 41, la matriz A podria todavia diagonalizar. Tendriamos entonces un autovalor de multi-
plicidad 1 y otro de multiplicidad algebraica 2, y tendriamos que comprobar si la multiplicidad
geométrica de este iltimo es 2 también.

Hagamos el caso a = 1. Entonces:

s

Il
O O =
O = O
= O o
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Y calculamos la dimension de la imagen de A — I:
-2 0 b
A-1T= 0 0 0
0 0 0

Independientemente de b, la imagen tiene dimensién 1. Esto implica que la dimensién de ker(A—
I) es 2, de forma que la multiplicidad geométrica del autovalor 1 es 2. Concluimos que la matriz
diagonaliza.

En el caso a = —1, tenemos:
-1 0 b
A= 0 1 0

0 0 —
calculamos A + I:

0 0 o
A+I=10 2 0
0 0 O

Si b = 0, entonces dim(ker(A 4+ I)) = 2, y la matriz diagonaliza. En cambio, si b # 0, las dos
ultimas columnas son linealmente independientes, asi que dim(ker(A 4 I)) = 1. Puesto que la
multiplicidad geométrica del autovalor —1 seria 1 y la algebraica 2, la matriz no diagonaliza.
]

3. Formas de Jordan

3.1. Forma de Jordan Real de matrices 3 x 3

Ejercicio 10.3.1 (a) Hallar la forma de Jordan real de la siguiente matriz:
1 0 1
A= -1 0 1
-1 -2 3

Solucion: Comenzamos calculando los autovalores de A. Para ello calculamos las raices del
polinomio caracteristico

Fi=F;—F;

1I-x 0 1 I 11—\ 0 1
0=|A-X|=| -1 -\ 1 = 0 2—X A—2
-1 -2 3-2) -1 -2 3-2)
1-XA 0 P 1-X2 0 1 = |
= (2-)) 0o 1 -1 = (2-)) 01 -1 :(2—,\)‘ __1 1_A‘
-1 -2 3-2) -1 0 1-2)

=2-NAN=2)1+2)

Resolviendo la ecuacion de segundo grado obtenemos tres autovalores distintos, uno real A\ = 2
y dos complejos conjugados Adg = 1 +iy A3 = 1—i = 1 4+ (—1)i. Al tener tres autovalores
distintos la matriz es diagonalizable en los complejos, pero como tiene autovalores no reales, no
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es diagonalizable en los reales. En lugar de su diagonalizacién, obtenemos la correspondiente
forma de Jordan

2 0 0
J={ 0 1 1
0 -1 1

Para obtener la base de vectores reales en la que A se expresa con la forma anterior primero
necesitamos calcular los autoespacios complejos de A, es decir, Ker(A — 21), Ker(A — (1 +4)1I)
y Ker(A — (1 —4)I). En primer lugar, Ker(A — 2I) estd dado por la ecuacién

-1 0 1 T
OZ(A—2I)’U1: -1 -2 1 Y1
-1 -2 1 z1

La primera ecuacién resulta 21 = z; y sustituyendo en la segunda (o tercera) obtenemos y; = 0,

con lo que
1 = 21
Ker(A —2I) =
eI‘( ) { y1=0}

La dimensién del espacio es 1, con lo que basta encontrar un vector v, que satisfaga la ecuacién,
por ejemplo, v1 = (1,0,1). Para Ao = 1414, el autoespacio complejo Ker(A — (1+14)I) esta dado
por la ecuacion

0=A—-QQ+d)Dvy=| -1 —1-i 1 Y
-1 -2 2—4 22

La primera ecuacidn resulta zy = izs. Sustituyendo en la segunda obtenemos

1—1
= - T
1+ 1

Yo 2 = 1iTg = 29

Por lo tanto, las ecuaciones del autoespacio complejo son

Ker(A— (1+4)I) = 2 :sz }
Y2 = 22
La dimensién del espacio es 1, con lo que basta encontrar un vector complejo vy que satisfaga la
ecuacion, por ejemplo, vo = (1,4,4). Como la matriz A es real, los vectores de Ker(A — (1414)1)
y Ker(A — (1—4)I) son conjugados. Entonces sabemos que conjugando vs = v = (1, —i, —i) es
un vector que genera el autoespacio Ker(A — (1—4)I) sin necesidad de repetir el cdlculo anterior
para As.

Finalmente, para obtener la base de Jordan basta separar el autovector complejo v2 en su parte
real y su parte imaginaria

vy = (1,i,7) = (1,0,0) +i(0,1,1) = u + iw

Nuestra base de Jordan estd dada, entonces, por el primer autovector v; junto con u y w,
B = {v,u,w} = {(1,0,1),(1,0,0),(0,1,1)}. La relacién entre la matriz A y su forma de
Jordan real J viene dada por el cambio de base de la base canénica a B.

-1

2 0 0 1 1 0 1 0 1 1 1 0
J=1 0 1 1 ])=1001 -1 0 1 0 0 1
0 -1 1 1 01 -1 -2 3 1 0 1
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3.2. Forma de Jordan 2x2

Ejercicio 10.2.1 (a) Comprobar que la siguiente matriz no es diagonalizable y hallar su forma
de Jordan y una base de Jordan.
0 1
()

Solucion: Calculamos los autovalores de A. Para obtenerlos, buscamos las raices del polinomio

caracteristico
—A 1

O:|A—)\I|:’ 1oy

’:)\2—2)\—1—1:()\—1)2

Observamos que existe un tnico autovalor A = 1 con multiplicidad algebraica 2. Buscamos el
correspondiente autoespacio Ker(A — I), que estd dado por las ecuaciones

-aem=(31)(;)

Luego Ker(A — I) estd dado por la ecuacién x = y. Tenemos que dimKer(A — ) =1 < 2, con
lo que la matriz A no es diagonalizable. Como la multiplicidad geométrica es 1, existe un tinico
bloque de Jordan de orden 2, luego la forma de Jordan de A es

1 1
(0 1)
Para encontrar una base de Jordan es suficiente con buscar un vector va € R? tal que (A—1I)vy #
0 y completar la base tomando v; = (A — I)vs. Por ejemplo, como la primera columna de la
matriz (A — I) es distinta de cero, podemos tomar, vo = (1,0) y v1 = (A — I = (—1,-1).
Entonces la base de Jordan es B = {vy,v2} = {(—1,-1),(1,0)}. La formad de Jordan y la
matriz A estdn relacionadas por la férmula de cambio de base

()= ()

3.3. Forma de Jordan 3x3

Ejercicio 10.4.1 (a) Comprobar que la siguiente matriz no es diagonalizable y hallar su forma
de Jordan y una base de Jordan.

N
I
= O N
—_ =
OO =

Solucion: Comenzamos calculando sus autovalores. Para ello, obtenemos las raices del polinomio
caracteristico

2-x -1 1 [Ty 0 1-2A L
0=|A-\|= 0 1-Xx 0 = 0 1-2X\ 0| =(1-))? ] _A'
~1 R —1 1 =
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Por lo tanto obtenemos un tinico autovalor A = 1 con multiplicidad algebraica 3. A continuacién
calculamos el autoespacio correspondiente, es decir, Ker(A — I), que por definicion estd dado
por la ecuacion

1 -1 1 T
0=(A-Iv= 0 0 0 Y
-1 1 -1 z

Claramente, el espacio estd definido por la primera de las ecuaciones, y = = + 2, con lo que
dimKer(A — I) = 2 y obtenemos que la multiplicidad geométrica del autovalor 1 es 2. Como
2 < 3, A no es diagonalizable. A tiene un unico autovalor con multiplicidad algebraica 3 y
multiplicidad geométrica 2, con lo que la forma de Jordan de A tiene que tener dos bloques
correspondientes al autovalor 1. Necesariamente uno debe ser de orden 1 y el otro de orden 2,
luego

110 0
J=10]1 1
0/0 1

Para obtener una base de Jordan basta tomar w € R3 tal que (A — I)w # 0. Como la primera
columna de (A — I) es distinta de 0, basta tomar w = (1,0,0). Entonces vy = (A — Hw =
(1,0,—1) es un autovalor para el autovector 1. Para completar la base es suficiente con buscar
otro vector v; € Ker(A — I) que no sea proporcional a vy. Por ejemplo, podemos tomar vy =
(1,1,0).

Entonces, una base de Jordan es B = {vy, v, w} = {(1,1,0),(1,0,—1),(1,0,0)}. O

Ejercicio 10.5.1 (a) Comprobar que la siguiente matriz no es diagonalizable y hallar su forma
de Jordan y una base de Jordan.

-1 -1 -2
A= 1 2 1
1 0 2

Solucion: Comenzamos calculando el polinomio caracteristico y obteniendo sus raices

C}=C1—Cs

—1-A -1 -2 1 1—A -1 -2
0=|A-)\|= 1 2-A 1 = 0 2—2X 1
1 0 2—2AX A—1 0 2—2AX
I Y 1 -1 =2
=(1-\)| 0 2-2\ 1 = (1-N)]0 2=X 1 |=0-NA\=2\+1)=(1-))
-1 0 2—2AX 0 -1 =X
Por lo tanto, la matriz A tiene un unico autovalor A = 1 con multiplicidad algebraica 3.

Buscamos el correspondiente autoespacio Ker(A — I'), dado por las ecuaciones

-2 -1 =2 x
0=(A-Dv= 1 1 1 Y
1 0 1 z
La ultima ecuacion es equivalente a * = —z. Sustituyendo en la segunda obtenemos y = 0,
luego
Ker(A—-1)= { :Ey::BZ
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dimKer(A — I) = 1 < 3, con lo que A no es diagonalizable. Como la multiplicidad geométrica
es 1, su forma de Jordan tiene un dnico bloque, que entonces debe ser de orden 3, luego

1 10
J=10 11
0 01

Para obtener una base de Jordan en este caso necesitamos encontrar un vector vs € R3 tal
que (A—-1T )2113 = 0. Después tomamos como los otros dos elementos de la base los vectores
vo = (A—Tvs y v; = (A—IT)vy = (A — I)?v3. Para ello, un método consiste en calcular la
matriz (A — I)? y buscar una colmuna no nula

11 1
A-I?*=| 0 0 0
-1 -1 -1

Como la primera columna es no nula, tomando v = (1,0,0) obtenemos los vectores
vo=(A—Tvz =(-2,1,1)
vy =(A—Ive = (1,0,-1)

Por lo tanto, la base estd dada por B = {v1,v2,v3} = {(1,0,-1),(-2,1,1),(1,0,0)}. O

Ejercicio 10.6.1 (a) Comprobar que la siguiente matriz no es diagonalizable y hallar su forma
de Jordan y una base de Jordan.

[enll RN
N = W

Solucion: Como la matriz es triangular, sabemos que los autovalores son los elementos de la
diagonal (ejercicio 8.1.5 de las notas), con lo que tendriamos el autovalor A\; = 1 con mul-
tiplicidad algebraica 1 y el autovalor A = 2 con multiplicidad algebraica 2. Calculemos los
correspondientes autoespacios Ker(A — I) y Ker(A — 27).

Las ecuaciones de Ker(A — I) son

-1 3 T
1 1 Y
0 1 z

0=(A-Iv=

o O O

La ultima ecuacién es equivalente a z = 0 y sustituyendo en cualquiera de las otras obtenemos
y =0, con lo que

y=0

z=0

Podemos obtener una base de este espacio tomando simplemente cualquier vector no nulo que
satisfaga la ecuacién, por ejemplo, v; = (1,0,0). Por otro lado, las ecuaciones de Ker(A — 27)
son

Ker(A—1)= {

-1 -1 3 x
0=(A-2Iv= 0 01 Y
0 00 z
La segunda ecuacion es equivalente a z = 0 y sustituyendo en la primera obtenemos x = —y,

luego

Ker(A —2I) = { xz:;oy
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Como dimKer(A —27) = 1 < 2, la matriz A no es diagonalizable. Veamos cuél es la estructura
de su forma de Jordan.

1. La multiplicidad geométrica de Ay = 1 es 1, que es igual que su multiplicidad algebraica.
Por lo tanto, tiene un bloque de Jordan de orden 1 para el autovalor \; = 1.

2. La multiplicidad geométrica de Ay = 2 es 1 y su multiplicidad algebraica es 2, luego tiene
un bloque de Jordan de orden 2 para el autovalor Ay = 2

Por lo tanto, la forma de Jordan resulta
110 0
J=10]2 1
010 2
Para obtener la base de Jordan, en primer lugar buscamos un vector no nulo v; € Ker(A4 — I).
A partir de las ecuaciones del espacio encontramos, por ejemplo v; = (1,0,0). Para completar

la base de Jordan necesitamos encontrar un vector vz que esté en Ker(A — 27)? pero no en
Ker(A — 2I). Las ecuaciones de Ker(A — I)? son

1 1 —4 T
0=(A-2N%*=| 0 0 0 y
00 0 z

con lo que Ker(A — 21)? esta dado por la ecuacién z + y — 4z = 0. Basta encontrar un vector
v3 que cumpla esta ecuacién pero no alguna de las que definen Ker(A — 2I), por ejemplo, basta
encontrar un vector vz que satisfaga x +y — 4z = 0 con z # 0. Claramente podemos tomar
v3 = (4,0, 1). Finalmente, completamos la base tomando v, = (A — 2I)vg = (—1,1,0). Entonces
la base de Jordan es B = {v1,v2,v3} = ((1,0,0),(—1,1,0), (4,0,1)}. La relacién entre la matriz
A y la forma de Jordan se obtiene mediante el cambio de base entre la base canénica y la de
Jordan

-1

110 0 1 -1 4 1 -1 3 1 -1 4
J=10(2 1 |=1]0 1 0 0 2 1 0 1 0
010 2 0 0 1 0 0 2 0 0 1

4. Espacio euclideo general

Ejercicio 7.9.1 Comprobar que es un producto escalar en R? el dado por la expresion

f(x,y) = (w1 + 22)(y1 + y2) + (21 + 23)(y1 + y3) + (T2 + 3)(y2 + y3)

Utilizando el producto escalar anterior

a) Calcular una base ortonormal del subespacio U = {xz1 = 0}.
b) Hallar la matriz en la base candnica de la proyeccion ortogonal en el plano U.
¢) Hallar la matriz en la base candnica de la simetria ortogonal respecto al plano U

Sy(v) = Py(v) — Py (v)
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Solucion: Para ver que f es un producto escalar debemos comprobar que es simétrico,bilineal,
y definido positivo.

» Simétrico:

f(x,y) = (z1 +22)(y1 +y2) + (w1 +23) (Y1 +y3) + (w2 + 23)(y2 + y3)
= (y1 +y2) (@1 + 22) + (y1 + y3) (21 + 23) + (Y2 + y3)(z2 + 23) = f(y, 7)

= Bilineal: Como f es simétrico, para ver que es bilineal inicamente es necesario comprobar
que es lineal en la primera (o segunda) variable, es decir, que f(ax + by, 2) = af(z,2) +

bf(y, 2).
flax + by, z) = (az1 + bys + awa + bya)(21 + 22) + (aw1 + by1 + azz + bys)(21 + 23)
+ (az2 + by2 + axs + bys) (22 + 23)
=a((z1 + x2)(21 + 22) + (@1 + x3) (21 + 23) + (22 + 23) (22 + 23)]
+0[(y1 +y2)(21 + 22) + (y1 +y3)(21 + 23) + (y2 + y3) (22 + 23)] = af(x,2) + bf (y, 2)

= Definido positivo: Como el cuadrado de un nimero real es siempre mayor o igual que
cero tenemos que

flz,x) = (x1 + 22)* + (1 + 23)° + (22 + 23)2 >0

Si f(z,x) = 0, entonces como cada uno de los sumandos anteriores es mayor o igual que
0, los tres deben ser 0 y, por lo tanto

1 + T2 =0 1 1 0 T1
T + x3 =0 = 1 0 1 To =0
r9 + x3 =0 0 1 1 x3

Como el rango de la matriz anterior es 3, la tinica solucién es x = 0.

Una vez hemos comprobado que f define un produto escalar, resolvamos los otros apartados.

a) Para calcular una base ortonormal del subespacio utilizamos el metodo de Gram-Schmidt.
Comenzamos por obtener una base cualquiera de U = {z; = 0}. Por ejemplo, {e1,es} =
{(0,1,0),(0,0,1)}. Tomamos

0 0
e, U 1
v2 =2 Punlea) =2 - JM“ - AN Rk
) 0 1

{u1,u2} es una base ortogonal de U. Para obtener una base ortonormal normalizamos los
vectores de la base anterior

U1 1
V1 = = —_

flu,ur)  VO+1)24+(0+02+(1+0)02 \ V2

o = O

u2 1 1

BT e Voo orrr e\ ) T

La base ortonormal buscada es {vy,v2}. Podemos ver que f(v1,v2) = 0.
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b) Solucién 1: Proyeccion usando una base ortonormal de U

Una forma cémoda de proceder es trabajar con la matriz F' correspondiente a f. En la
entrada a;; tiene el coeficiente del monomio z;y; en f:

a1 aiz ais 2 1 1
F = 21 Q22 433 = 1 2 1
azy as2 ass 1 1 2
Efectivamente, se puede ver que
Y1
f(z,y) :xTFZJZ (w1, 2, 23)F | v2
Y3

Ahora, procedemos igual que hicimos en el capitulo de proyectores para el producto esca-
lar estdndar. Lo Unico que tenemos que recordar es que cualquier célculo que hagamos de
productos escalares o normas se hace con F'. Entonces:

Py(X) = f(X,v1)v1 + f(X,v2)v2 = v10] FX + 0903 FX = (v10] + vov] )FX =

1 0 1 0 2 11

5 1 (0,1,0)—1—6 -1 1(0,-1,2) 1 21 |X=
0 2 1 1 2

1 0 0 O 1 0 0 0 2 11

-1 0 1 0 |+ 5 0 1 -2 1 21 |X=
0 0 O 0 -2 4 11 2

1 0 0 0 2 11 1 0 0 O

-1 0 4 =2 1 2 1 =3 1 3 0 |X
0 -2 4 1 1 2 1 0 3

y podemos comprobar que efectivamente esta matriz tiene rango 2 y sus columnas verifican

la ecuacion de U.
Solucion 2: Proyeccion usando una base ortogonal sin calcular F

Si {u1,us} es una base ortogonal (no necesariamente ortonormal) de U, podemos calcular

la proyecciéon tomando
f(X,w) f(X, ug)
Uy +
flur, uy) f(uz,uz)

Tomando la base {u1,u2} = {(0,1,0),(0,—1/2,1)} calculada en el apartado anterior tenemos
que

Py(X) = 2

((‘T Y,z )7(071a0)) f((xayaz)a(ovil/zl)) _
Prtev2) =506 10y, 0,1.0) 0T RO, 120,012 0)
(x4+y) - 1+(x+2)-0+(y+2)-1 (z+y) (—3)+(@+2)-1+y+2) 3 1
> (0.1.0)+ ; ? (o,2,1>
00 0 x
T+2y+z T 1 T T
= 0.0+ (5 +2) (0,2,1):(0,3+y,3+2): }g (1) (1) v

Por lo tanto, la matriz de Py en la base canodnica es

000
Py=|1/3 1 0
1/3 0 1
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Solucion 3: Proyeccion usando la proyeccion al ortogonal

Dada la base (no necesariamente ortogonal) {e1,e2} de U, tenemos que
b= {z e Rf(z,u) =0, Vu € U} = {x € R?|f(z,e1) = f(x,e2) = 0}
Por lo tanto, sustituyendo en la expresién de f, las ecuaciones de U+ son

{ 0= f((m,y7z), (07
0= f((x,y,z), (07

Luego U~ tiene dimensién 1 y para dar una base ortogonal basta obtener cualquier vector
no nulo v que satisfaga las ecuaciones anteriores. Por ejemplo, v = (3, —1,—1). Como R?® =
U @ U* tenemos que para todo X € R3, X = Py(X) + Py (X), con lo que Py(X) =
X — Pyi(X). De esta forma, tenemos que

) =(@+y) 1+ (x+2)- 0+ (y+2)-1=2+2y+=z _{ Y=z
1 =

1
0,1) = (@+y) 0+ (e+2) 1+ (y+2)- l=a+y+2z | =3y

PU(Jf,y,Z):(.’E,y,2>—PUJ_(l‘,y7Z) ($ Y,z P<U>(a?,y,z)
(

= (z 2) — f(iE Y,z )v( 7_1’_1)) 1
R (T VG i)
(z+y)-2+(@+2)-2+@y+2)-(-2)

_ _ -1,-1
(:c,y,z) 22 + 22 T (_2)2 (Sa ) )
. . . 0 0 O T
:('T7y?z)_§(3?_1a_l):(Oa§+y7§+z) = 1/3 10 Yy
1/3 0 1 z
¢) De forma andloga al apartado anterior, tenemos que P = I — Py. Por lo tanto,
0 0 O 1 00 -1 0 0
Sv=Py—Py.=Py—(I-Py)=2Py—I=2| 1/3 1 0 |- 0 1 0 |]=|2/3 10
1/3 0 1 0 0 1 2/3 0 1



