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Solución de problemas I 1

Álgebra II Curso 2015-16

1. Proyecciones en el producto escalar estándar

Ejercicio 7.7.1 (a) Dada la ecuación x+ y − z = 0, dar una base ortonormal del subespacio
U de R3 que define.

Solución: Damos valores a x e y para obtener una base (arbitraria, no ortogonal) de U . Aśı sa-
camos:

U =

〈
w1 =

 1
0
1

 , w2 =

 0
1
1

〉
Podemos entonces usar Gram–Schmidt para dar una base ortonormal. Primero obtenemos una
base ortogonal. El primer vector es w1 y el segundo:

w̃2 = w2 −
〈w2, w1〉
|w1|2

w1 =

 0
1
1

− 1

2

 1
0
1

 =

 −1/2
1

1/2

 .

Y ahora normalizamos ambos vectores:

v1 =
w1

|w1|
=

1√
2

 1
0
1



v2 =
w̃2

|w̃2|
=

1√
3/2

 −1/2
1

1/2

 =
1√
6

 −1
2
1


La base ortonormal buscada es {v1, v2}.

�

Ejercicio 7.7.1 (b) Dar la imagen del vector X = (1, 1, 1) por la proyección ortogonal a U .

Solución: La forma más sencilla de hacerlo (si no nos pidieran luego hacer el proyector), es
simplemente:

PU (X) = 〈X, v1〉v1 + 〈X, v2〉v2 =
√

2v1 +

√
2

3
v2 =

 1
0
1

+
1

3

 −1
2
1

 =
1

3

 2
2
4


puesto que {v1, v2} es base ortonormal. Una comprobación que se puede hacer es que efectiva-
mente el vector que hemos obtenido pertenece a U , puesto que cumple su ecuación. �

1Los ejercicios resueltos son una selección más o menos representativa de los propuestos en las notas de Lućıa
Contreras. Soluciones por David Alfaya y Álvaro del Pino



Universidad Autónoma de Madrid Álgebra II. F́ısicas. Curso 2015–16

Ejercicio 7.7.1 (c) Calcular la forma general del proyector ortogonal a U , usando la base
ortonormal.

Solución: La expresión que utilizamos en el apartado anterior sirve para obtener el proyector.
Si Y = (y1, y2, y3) es un vector cualquiera de R3, tenemos:

PU (Y ) = v1〈Y, v1〉+v2〈Y, v2〉 = (v1v
T
1 +v2v

T
2 )Y =

1

2

 1
0
1

 (1, 0, 1) +
1

6

 −1
2
1

 (−1, 2, 1)

Y =

1

2

 1 0 1
0 0 0
1 0 1

+
1

6

 1 −2 −1
−2 4 2
−1 2 1

Y =
1

3

 2 −1 1
−1 2 1

1 1 2

Y

Ésta última matriz da PU . Se puede comprobar a ojo que tiene rango 2 y que todas las columnas
verifican la ecuación de U . Adicionalmente, se puede ver que, al aplicarla a X, obtenemos el
vector que calculamos en el apartado anterior.

�

Ejercicio 7.7.1 (c’) Dar una base ortonormal de U⊥ y usarla para calcular le proyector orto-
gonal a U .

Solución: Puesto que estamos usando el producto escalar estándar de R3, el vector que genera
U⊥ es precisamente el vector de los coeficientes de la ecuación de U :

U⊥ =

〈
w3 =

 1
1
−1

〉

y ahora simplemente tenemos que normalizarlo:

v3 =
w3

|w3|
=

1√
3

 1
1
−1

 .

{v3} es la base ortonormal de U⊥.

Tenemos en general que Y = PU (Y ) + PU⊥(Y ), de forma que:

PU (Y ) = Y − PU⊥(Y ) = Y − 〈Y, v3〉v3 = (I − v3vT3 )Y = 1 0 0
0 1 0
0 0 1

− 1

3

 1 1 −1
1 1 −1
−1 −1 1

 =
1

3

 2 −1 1
−1 2 1

1 1 2


que coincide con la matriz de arriba. En general, este método requiere menos cálculos. �

Ejercicio 7.8.1 Calcular la distancia del vector X al plano U .

Solución: Según calculamos arriba

PU (X) =
1

3

 2
2
4


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esto implica que la proyeción al ortogonal es:

PU⊥(X) = X − PU (X) =

 1
1
1

− 1

3

 2
2
4

 =
1

3

 1
1
−1


que efectivamente es proporcional a v3. La distancia al plano es la norma de PU⊥(X):

d(X,U) = |PU⊥(X)| = 1√
3

�

2. Diagonalización de endomorfismos

Ejercicio 8.1.1 (c) Comprobar que la siguiente matriz diagonaliza:

A =

(
5 −2
6 −2

)
y dar la matriz diagonalizada y la matriz de cambio de base. Es la matriz invertible? Si aśı fuera,
calcula su inversa usando la matriz diagonalizada.

Solución: Empezamos calculando las ráıces del polinomio caracteŕıstico:

|A− λI| =
∣∣∣∣ 5− λ −2

6 −2− λ

∣∣∣∣ = (λ− 5)(2 + λ) + 12 = λ2 − 3λ+ 2 = (λ− 1)(λ− 2)

Habiendo obtenido dos autovalores distintos y reales, concluimos que la matriz diagonaliza
(real). Puesto que ambos autovalores son no cero, concluimos que la matriz es inversible.

La matriz diagonalizada no es otra que:

Ã =

(
1 0
0 2

)

Para obtener el autovector v1 correspondiente al autovalor 1, lo buscamos en ker(A− I):

A− I =

(
4 −2
6 −3

)
de forma que tenemos la ecuación 2x = y; tomamos v1 = (1, 2). Podemos aplicar Av1 para
comprobar que efectivamente nos da v1.

De manera análoga, buscamos en ker(A− 2I) al autovector v2 del autovalor 2:

A− 2I =

(
3 −2
6 −4

)
.

Una elección posible es v2 = (2, 3). Igualmente, vemos que Av2 = 2v2.

La matriz de cambio de base C, i.e. la matriz que verifica A = CÃC−1, tiene por columnas
{v1, v2}:

C =

(
1 2
2 3

)
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la matriz inversa, que da el cambio de la base estándar a la base {v1, v2}, se puede calcular:

C−1 = −
(

3 −2
−2 1

)

Finalmente, podemos calcular su inversa observando que:

A−1 = (CÃC−1)−1 = CÃ−1C−1 =

(
1 2
2 3

)(
1 0
0 1/2

)(
−3 2

2 −1

)
=

(
1 1
2 3/2

)(
−3 2

2 −1

)
=

(
−1 1
−3 5/2

)
en este caso no es particularmente útil, siendo una matriz 2 × 2. Se puede multiplicar con A
para ver que efectivamente es la inversa. �

Ejercicio 8.1.2 Calcular la enésima potencia de la matriz dada en el apartado anterior.

Solución: Teniendo la expresión
A = CÃC−1

es inmediato que:

An = CÃnC−1 =

(
1 2
2 3

)(
1 0
0 2n

)(
−3 2

2 −1

)
=

(
1 2n+1

2 3 · 2n
)(

−3 2
2 −1

)
=

(
2n+2 − 3 2− 2n+1

3(2n+1 − 2) 4− 3 · 2n
)

Observad que el cálculo de la inversa en el apartado anterior es un caso particular con n = −1.

�

Ejercicio 8.3.1 (a) Decide para qué valores de a y b es el siguiente endomorfismo diagonali-
zable:

A =

 −1 0 b
0 1 0
0 0 a

 .

Solución: Calculamos y factorizamos el polinomio caracteŕıstico:

|A− λI| =

∣∣∣∣∣∣
−1− λ 0 b

0 1− λ 0
0 0 a− λ

∣∣∣∣∣∣ = −(λ+ 1)(λ− 1)(λ− a)

Esto implica que los autovalores son {+1,−1, a}. En particular, si a 6= ±1, la matriz diagonaliza
por tener tres autovalores diferentes.

Si a = ±1, la matriz A podŕıa todav́ıa diagonalizar. Tendŕıamos entonces un autovalor de multi-
plicidad 1 y otro de multiplicidad algebraica 2, y tendŕıamos que comprobar si la multiplicidad
geométrica de este último es 2 también.

Hagamos el caso a = 1. Entonces:

A =

 −1 0 b
0 1 0
0 0 1


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Y calculamos la dimensión de la imagen de A− I:

A− I =

 −2 0 b
0 0 0
0 0 0


Independientemente de b, la imagen tiene dimensión 1. Esto implica que la dimensión de ker(A−
I) es 2, de forma que la multiplicidad geométrica del autovalor 1 es 2. Concluimos que la matriz
diagonaliza.

En el caso a = −1, tenemos:

A =

 −1 0 b
0 1 0
0 0 −1


calculamos A+ I:

A+ I =

 0 0 b
0 2 0
0 0 0

 .

Si b = 0, entonces dim(ker(A + I)) = 2, y la matriz diagonaliza. En cambio, si b 6= 0, las dos
últimas columnas son linealmente independientes, aśı que dim(ker(A + I)) = 1. Puesto que la
multiplicidad geométrica del autovalor −1 seŕıa 1 y la algebraica 2, la matriz no diagonaliza.
�

3. Formas de Jordan

3.1. Forma de Jordan Real de matrices 3× 3

Ejercicio 10.3.1 (a) Hallar la forma de Jordan real de la siguiente matriz:

A =

 1 0 1
−1 0 1
−1 −2 3


Solución: Comenzamos calculando los autovalores de A. Para ello calculamos las ráıces del
polinomio caracteŕıstico

0 = |A− λI| =

∣∣∣∣∣∣
1− λ 0 1
−1 −λ 1
−1 −2 3− λ

∣∣∣∣∣∣
F ′

2=F2−F3

↓
=

∣∣∣∣∣∣
1− λ 0 1

0 2− λ λ− 2
−1 −2 3− λ

∣∣∣∣∣∣
= (2−λ)

∣∣∣∣∣∣
1− λ 0 1

0 1 −1
−1 −2 3− λ

∣∣∣∣∣∣
F ′

3=F3+2F2

↓
= (2−λ)

∣∣∣∣∣∣
1− λ 0 1

0 1 −1
−1 0 1− λ

∣∣∣∣∣∣ = (2−λ)

∣∣∣∣ 1− λ 1
−1 1− λ

∣∣∣∣
= (2− λ)(λ2 − 2λ+ 2)

Resolviendo la ecuación de segundo grado obtenemos tres autovalores distintos, uno real λ1 = 2
y dos complejos conjugados λ2 = 1 + i y λ3 = 1−i = 1 + (−1)i. Al tener tres autovalores
distintos la matriz es diagonalizable en los complejos, pero como tiene autovalores no reales, no
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es diagonalizable en los reales. En lugar de su diagonalización, obtenemos la correspondiente
forma de Jordan

J =

 2 0 0
0 1 1
0 −1 1


Para obtener la base de vectores reales en la que A se expresa con la forma anterior primero
necesitamos calcular los autoespacios complejos de A, es decir, Ker(A− 2I), Ker(A− (1 + i)I)
y Ker(A− (1− i)I). En primer lugar, Ker(A− 2I) está dado por la ecuación

0 = (A− 2I)v1 =

 −1 0 1
−1 −2 1
−1 −2 1

 x1
y1
z1


La primera ecuación resulta x1 = z1 y sustituyendo en la segunda (o tercera) obtenemos y1 = 0,
con lo que

Ker(A− 2I) ≡
{
x1 = z1
y1 = 0

}
La dimensión del espacio es 1, con lo que basta encontrar un vector v1 que satisfaga la ecuación,
por ejemplo, v1 = (1, 0, 1). Para λ2 = 1 + i, el autoespacio complejo Ker(A− (1 + i)I) está dado
por la ecuación

0 = (A− (1 + i)I)v2 =

 −i 0 1
−1 −1− i 1
−1 −2 2− i

 x2
y2
z2


La primera ecuación resulta z2 = ix2. Sustituyendo en la segunda obtenemos

y2 =
i− 1

i+ 1
x2 = ix2 = z2

Por lo tanto, las ecuaciones del autoespacio complejo son

Ker(A− (1 + i)I) ≡ z2 = ix2
y2 = z2

}
La dimensión del espacio es 1, con lo que basta encontrar un vector complejo v2 que satisfaga la
ecuación, por ejemplo, v2 = (1, i, i). Como la matriz A es real, los vectores de Ker(A− (1 + i)I)
y Ker(A− (1−i)I) son conjugados. Entonces sabemos que conjugando v3 = v2 = (1,−i,−i) es
un vector que genera el autoespacio Ker(A− (1−i)I) sin necesidad de repetir el cálculo anterior
para λ3.

Finalmente, para obtener la base de Jordan basta separar el autovector complejo v2 en su parte
real y su parte imaginaria

v2 = (1, i, i) = (1, 0, 0) + i(0, 1, 1) = u+ iw

Nuestra base de Jordan está dada, entonces, por el primer autovector v1 junto con u y w,
B = {v1, u, w} = {(1, 0, 1), (1, 0, 0), (0, 1, 1)}. La relación entre la matriz A y su forma de
Jordan real J viene dada por el cambio de base de la base canónica a B.

J =

 2 0 0
0 1 1
0 −1 1

 =

 1 1 0
0 0 1
1 0 1

−1 1 0 1
−1 0 1
−1 −2 3

 1 1 0
0 0 1
1 0 1


�
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3.2. Forma de Jordan 2x2

Ejercicio 10.2.1 (a) Comprobar que la siguiente matriz no es diagonalizable y hallar su forma
de Jordan y una base de Jordan.

A =

(
0 1
−1 2

)

Solución: Calculamos los autovalores de A. Para obtenerlos, buscamos las ráıces del polinomio
caracteŕıstico

0 = |A− λI| =
∣∣∣∣ −λ 1
−1 2− λ

∣∣∣∣ = λ2 − 2λ+ 1 = (λ− 1)2

Observamos que existe un único autovalor λ = 1 con multiplicidad algebraica 2. Buscamos el
correspondiente autoespacio Ker(A− I), que está dado por las ecuaciones

0 = (A− I)v =

(
−1 1
−1 1

)(
x
y

)
Luego Ker(A− I) está dado por la ecuación x = y. Tenemos que dim Ker(A− I) = 1 < 2, con
lo que la matriz A no es diagonalizable. Como la multiplicidad geométrica es 1, existe un único
bloque de Jordan de orden 2, luego la forma de Jordan de A es

J =

(
1 1
0 1

)
Para encontrar una base de Jordan es suficiente con buscar un vector v2 ∈ R2 tal que (A−I)v2 6=
0 y completar la base tomando v1 = (A − I)v2. Por ejemplo, como la primera columna de la
matriz (A − I) es distinta de cero, podemos tomar, v2 = (1, 0) y v1 = (A − I)v2 = (−1,−1).
Entonces la base de Jordan es B = {v1, v2} = {(−1,−1), (1, 0)}. La formad de Jordan y la
matriz A están relacionadas por la fórmula de cambio de base

J =

(
1 1
0 1

)
=

(
−1 1
−1 0

)−1(
0 1
−1 2

)(
−1 1
−1 0

)
�

3.3. Forma de Jordan 3x3

Ejercicio 10.4.1 (a) Comprobar que la siguiente matriz no es diagonalizable y hallar su forma
de Jordan y una base de Jordan.

A =

 2 −1 1
0 1 0
−1 1 0


Solución: Comenzamos calculando sus autovalores. Para ello, obtenemos las ráıces del polinomio
caracteŕıstico

0 = |A−λI| =

∣∣∣∣∣∣
2− λ −1 1

0 1− λ 0
−1 1 −λ

∣∣∣∣∣∣
F ′

1=F1+F3

↓
=

∣∣∣∣∣∣
1− λ 0 1− λ

0 1− λ 0
−1 1 −λ

∣∣∣∣∣∣ = (1−λ)2
∣∣∣∣ 1 1
−1 −λ

∣∣∣∣ = −(1−λ)3
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Por lo tanto obtenemos un único autovalor λ = 1 con multiplicidad algebraica 3. A continuación
calculamos el autoespacio correspondiente, es decir, Ker(A − I), que por definicion está dado
por la ecuacion

0 = (A− I)v =

 1 −1 1
0 0 0
−1 1 −1

 x
y
z


Claramente, el espacio está definido por la primera de las ecuaciones, y = x + z, con lo que
dim Ker(A − I) = 2 y obtenemos que la multiplicidad geométrica del autovalor 1 es 2. Como
2 < 3, A no es diagonalizable. A tiene un único autovalor con multiplicidad algebraica 3 y
multiplicidad geométrica 2, con lo que la forma de Jordan de A tiene que tener dos bloques
correspondientes al autovalor 1. Necesariamente uno debe ser de orden 1 y el otro de orden 2,
luego

J =

 1 0 0
0 1 1
0 0 1


Para obtener una base de Jordan basta tomar w ∈ R3 tal que (A− I)w 6= 0. Como la primera
columna de (A − I) es distinta de 0, basta tomar w = (1, 0, 0). Entonces v2 = (A − I)w =
(1, 0,−1) es un autovalor para el autovector 1. Para completar la base es suficiente con buscar
otro vector v1 ∈ Ker(A − I) que no sea proporcional a v2. Por ejemplo, podemos tomar v1 =
(1, 1, 0).

Entonces, una base de Jordan es B = {v1, v2, w} = {(1, 1, 0), (1, 0,−1), (1, 0, 0)}. �

Ejercicio 10.5.1 (a) Comprobar que la siguiente matriz no es diagonalizable y hallar su forma
de Jordan y una base de Jordan.

A =

 −1 −1 −2
1 2 1
1 0 2


Solución: Comenzamos calculando el polinomio caracteŕıstico y obteniendo sus ráıces

0 = |A− λI| =

∣∣∣∣∣∣
−1− λ −1 −2

1 2− λ 1
1 0 2− λ

∣∣∣∣∣∣
C′

1=C1−C3

↓
=

∣∣∣∣∣∣
1− λ −1 −2

0 2− λ 1
λ− 1 0 2− λ

∣∣∣∣∣∣
= (1−λ)

∣∣∣∣∣∣
1 −1 −2
0 2− λ 1
−1 0 2− λ

∣∣∣∣∣∣
F ′

3=F3+F1

↓
= (1−λ)

∣∣∣∣∣∣
1 −1 −2
0 2− λ 1
0 −1 −λ

∣∣∣∣∣∣ = (1−λ)(λ2−2λ+1) = (1−λ)3

Por lo tanto, la matriz A tiene un único autovalor λ = 1 con multiplicidad algebraica 3.
Buscamos el correspondiente autoespacio Ker(A− I), dado por las ecuaciones

0 = (A− I)v =

 −2 −1 −2
1 1 1
1 0 1

 x
y
z


La última ecuación es equivalente a x = −z. Sustituyendo en la segunda obtenemos y = 0,
luego

Ker(A− I) ≡
{
x = −z
y = 0
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dim Ker(A− I) = 1 < 3, con lo que A no es diagonalizable. Como la multiplicidad geométrica
es 1, su forma de Jordan tiene un único bloque, que entonces debe ser de orden 3, luego

J =

 1 1 0
0 1 1
0 0 1


Para obtener una base de Jordan en este caso necesitamos encontrar un vector v3 ∈ R3 tal
que (A − I)2v3 6= 0. Después tomamos como los otros dos elementos de la base los vectores
v2 = (A − I)v3 y v1 = (A − I)v2 = (A − I)2v3. Para ello, un método consiste en calcular la
matriz (A− I)2 y buscar una colmuna no nula

(A− I)2 =

 1 1 1
0 0 0
−1 −1 −1


Como la primera columna es no nula, tomando v3 = (1, 0, 0) obtenemos los vectores

v2 = (A− I)v3 = (−2, 1, 1)

v1 = (A− I)v2 = (1, 0,−1)

Por lo tanto, la base está dada por B = {v1, v2, v3} = {(1, 0,−1), (−2, 1, 1), (1, 0, 0)}. �

Ejercicio 10.6.1 (a) Comprobar que la siguiente matriz no es diagonalizable y hallar su forma
de Jordan y una base de Jordan.

A =

 1 −1 3
0 2 1
0 0 2


Solución: Como la matriz es triangular, sabemos que los autovalores son los elementos de la
diagonal (ejercicio 8.1.5 de las notas), con lo que tendriamos el autovalor λ1 = 1 con mul-
tiplicidad algebraica 1 y el autovalor λ2 = 2 con multiplicidad algebraica 2. Calculemos los
correspondientes autoespacios Ker(A− I) y Ker(A− 2I).

Las ecuaciones de Ker(A− I) son

0 = (A− I)v =

 0 −1 3
0 1 1
0 0 1

 x
y
z


La última ecuación es equivalente a z = 0 y sustituyendo en cualquiera de las otras obtenemos
y = 0, con lo que

Ker(A− I) ≡
{
y = 0
z = 0

Podemos obtener una base de este espacio tomando simplemente cualquier vector no nulo que
satisfaga la ecuación, por ejemplo, v1 = (1, 0, 0). Por otro lado, las ecuaciones de Ker(A − 2I)
son

0 = (A− 2I)v =

 −1 −1 3
0 0 1
0 0 0

 x
y
z


La segunda ecuación es equivalente a z = 0 y sustituyendo en la primera obtenemos x = −y,
luego

Ker(A− 2I) ≡
{
x = −y
z = 0
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Como dim Ker(A− 2I) = 1 < 2, la matriz A no es diagonalizable. Veamos cuál es la estructura
de su forma de Jordan.

1. La multiplicidad geométrica de λ1 = 1 es 1, que es igual que su multiplicidad algebraica.
Por lo tanto, tiene un bloque de Jordan de orden 1 para el autovalor λ1 = 1.

2. La multiplicidad geométrica de λ2 = 2 es 1 y su multiplicidad algebraica es 2, luego tiene
un bloque de Jordan de orden 2 para el autovalor λ2 = 2

Por lo tanto, la forma de Jordan resulta

J =

 1 0 0
0 2 1
0 0 2


Para obtener la base de Jordan, en primer lugar buscamos un vector no nulo v1 ∈ Ker(A− I).
A partir de las ecuaciones del espacio encontramos, por ejemplo v1 = (1, 0, 0). Para completar
la base de Jordan necesitamos encontrar un vector v3 que esté en Ker(A − 2I)2 pero no en
Ker(A− 2I). Las ecuaciones de Ker(A− I)2 son

0 = (A− 2I)2v =

 1 1 −4
0 0 0
0 0 0

 x
y
z


con lo que Ker(A − 2I)2 está dado por la ecuación x + y − 4z = 0. Basta encontrar un vector
v3 que cumpla esta ecuación pero no alguna de las que definen Ker(A− 2I), por ejemplo, basta
encontrar un vector v3 que satisfaga x + y − 4z = 0 con z 6= 0. Claramente podemos tomar
v3 = (4, 0, 1). Finalmente, completamos la base tomando v2 = (A− 2I)v3 = (−1, 1, 0). Entonces
la base de Jordan es B = {v1, v2, v3} = ((1, 0, 0), (−1, 1, 0), (4, 0, 1)}. La relación entre la matriz
A y la forma de Jordan se obtiene mediante el cambio de base entre la base canónica y la de
Jordan

J =

 1 0 0
0 2 1
0 0 2

 =

 1 −1 4
0 1 0
0 0 1

−1 1 −1 3
0 2 1
0 0 2

 1 −1 4
0 1 0
0 0 1


�

4. Espacio eucĺıdeo general

Ejercicio 7.9.1 Comprobar que es un producto escalar en R3 el dado por la expresión

f(x, y) = (x1 + x2)(y1 + y2) + (x1 + x3)(y1 + y3) + (x2 + x3)(y2 + y3)

Utilizando el producto escalar anterior

a) Calcular una base ortonormal del subespacio U = {x1 = 0}.

b) Hallar la matriz en la base canónica de la proyección ortogonal en el plano U .

c) Hallar la matriz en la base canónica de la simetŕıa ortogonal respecto al plano U

SU (v) = PU (v)− PU⊥(v)
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Solución: Para ver que f es un producto escalar debemos comprobar que es simétrico,bilineal,
y definido positivo.

Simétrico:

f(x, y) = (x1 + x2)(y1 + y2) + (x1 + x3)(y1 + y3) + (x2 + x3)(y2 + y3)

= (y1 + y2)(x1 + x2) + (y1 + y3)(x1 + x3) + (y2 + y3)(x2 + x3) = f(y, x)

Bilineal: Como f es simétrico, para ver que es bilineal únicamente es necesario comprobar
que es lineal en la primera (o segunda) variable, es decir, que f(ax + by, z) = af(x, z) +
bf(y, z).

f(ax+ by, z) = (ax1 + by1 + ax2 + by2)(z1 + z2) + (ax1 + by1 + ax3 + by3)(z1 + z3)

+ (ax2 + by2 + ax3 + by3)(z2 + z3)

= a [(x1 + x2)(z1 + z2) + (x1 + x3)(z1 + z3) + (x2 + x3)(z2 + z3)]

+ b [(y1 + y2)(z1 + z2) + (y1 + y3)(z1 + z3) + (y2 + y3)(z2 + z3)] = af(x, z) + bf(y, z)

Definido positivo: Como el cuadrado de un número real es siempre mayor o igual que
cero tenemos que

f(x, x) = (x1 + x2)2 + (x1 + x3)2 + (x2 + x3)2 ≥ 0

Si f(x, x) = 0, entonces como cada uno de los sumandos anteriores es mayor o igual que
0, los tres deben ser 0 y, por lo tanto

x1 + x2 = 0
x1 + x3 = 0

x2 + x3 = 0

 ≡
 1 1 0

1 0 1
0 1 1

 x1
x2
x3

 = 0

Como el rango de la matriz anterior es 3, la única solución es x = 0.

Una vez hemos comprobado que f define un produto escalar, resolvamos los otros apartados.

a) Para calcular una base ortonormal del subespacio utilizamos el metodo de Gram-Schmidt.
Comenzamos por obtener una base cualquiera de U = {x1 = 0}. Por ejemplo, {e1, e2} =
{(0, 1, 0), (0, 0, 1)}. Tomamos

u1 = e1 =

 0
1
0


u2 = e2 − P〈u1〉(e2) = e2 −

f(e2, u1)

f(u1, u1)
u1 =

 0
0
1

− 1

2

 0
1
0

 =

 0
−1/2

1


{u1, u2} es una base ortogonal de U . Para obtener una base ortonormal normalizamos los
vectores de la base anterior

v1 =
u1√

f(u1, u1)
=

1√
(0 + 1)2 + (0 + 0)2 + (1 + 0)2

 0
1
0

 =
1√
2

 0
1
0


v2 =

u2√
f(u2, u2)

=
1√

(0− 1/2)2 + (0 + 1)2 + (−1/2 + 1)2

 0
−1/2

1

 =
1√
6

 0
−1
2


La base ortonormal buscada es {v1, v2}. Podemos ver que f(v1, v2) = 0.
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b) Solución 1: Proyección usando una base ortonormal de U

Una forma cómoda de proceder es trabajar con la matriz F correspondiente a f . En la
entrada aij tiene el coeficiente del monomio xiyj en f :

F =

 a11 a12 a13
a21 a22 a33
a31 a32 a33

 =

 2 1 1
1 2 1
1 1 2


Efectivamente, se puede ver que

f(x, y) = xTFy = (x1, x2, x3)F

 y1
y2
y3


Ahora, procedemos igual que hicimos en el caṕıtulo de proyectores para el producto esca-
lar estándar. Lo único que tenemos que recordar es que cualquier cálculo que hagamos de
productos escalares o normas se hace con F . Entonces:

PU (X) = f(X, v1)v1 + f(X, v2)v2 = v1v
T
1 FX + v2v

T
2 FX = (v1v

T
1 + v2v

T
2 )FX =1

2

 0
1
0

 (0, 1, 0) +
1

6

 0
−1
2

 (0,−1, 2)

 2 1 1
1 2 1
1 1 2

X =

1

2

 0 0 0
0 1 0
0 0 0

+
1

6

 0 0 0
0 1 −2
0 −2 4

 2 1 1
1 2 1
1 1 2

X =

1

6

 0 0 0
0 4 −2
0 −2 4

 2 1 1
1 2 1
1 1 2

X =
1

3

 0 0 0
1 3 0
1 0 3

X

y podemos comprobar que efectivamente esta matriz tiene rango 2 y sus columnas verifican
la ecuación de U .

Solución 2: Proyección usando una base ortogonal sin calcular F

Si {u1, u2} es una base ortogonal (no necesariamente ortonormal) de U , podemos calcular
la proyección tomando

PU (X) =
f(X,u1)

f(u1, u1)
u1 +

f(X,u2)

f(u2, u2)
u2

Tomando la base {u1, u2} = {(0, 1, 0), (0,−1/2, 1)} calculada en el apartado anterior tenemos
que

PU (x, y, z) =
f((x, y, z), (0, 1, 0))

f((0, 1, 0), (0, 1, 0))
(0, 1, 0) +

f((x, y, z), (0,−1/2, 1))

f((0,−1/2, 1), (0,−1/2, 1))
=

(x+ y) · 1 + (x+ z) · 0 + (y + z) · 1
2

(0, 1, 0)+
(x+ y) · (− 1

2 ) + (x+ z) · 1 + (y + z) · 12
3
2

(
0,

1

2
, 1

)

=
x+ 2y + z

2
(0, 1, 0)+

(x
3

+ z
)(

0,
1

2
, 1

)
=
(

0,
x

3
+ y,

x

3
+ z
)

=

 0 0 0
1/3 1 0
1/3 0 1

 x
y
z


Por lo tanto, la matriz de PU en la base canónica es

PU =

 0 0 0
1/3 1 0
1/3 0 1





Universidad Autónoma de Madrid Álgebra II. F́ısicas. Curso 2015–16

Solución 3: Proyección usando la proyección al ortogonal

Dada la base (no necesariamente ortogonal) {e1, e2} de U , tenemos que

U⊥ = {x ∈ R3|f(x, u) = 0, ∀u ∈ U} = {x ∈ R3|f(x, e1) = f(x, e2) = 0}

Por lo tanto, sustituyendo en la expresión de f , las ecuaciones de U⊥ son{
0 = f((x, y, z), (0, 1, 0)) = (x+ y) · 1 + (x+ z) · 0 + (y + z) · 1 = x+ 2y + z
0 = f((x, y, z), (0, 0, 1)) = (x+ y) · 0 + (x+ z) · 1 + (y + z) · 1 = x+ y + 2z

≡
{

y = z
x = −3y

Luego U⊥ tiene dimensión 1 y para dar una base ortogonal basta obtener cualquier vector
no nulo v que satisfaga las ecuaciones anteriores. Por ejemplo, v = (3,−1,−1). Como R3 =
U ⊕ U⊥ tenemos que para todo X ∈ R3, X = PU (X) + PU⊥(X), con lo que PU (X) =
X − PU⊥(X). De esta forma, tenemos que

PU (x, y, z) = (x, y, z)− PU⊥(x, y, z) = (x, y, z)− P〈v〉(x, y, z)

= (x, y, z)− f((x, y, z), (3,−1,−1))

f((3,−1,−1), (3,−1,−1))
(3,−1,−1)

= (x, y, z)− (x+ y) · 2 + (x+ z) · 2 + (y + z) · (−2)

22 + 22 + (−2)2
(3,−1,−1)

= (x, y, z)− x

3
(3,−1,−1) =

(
0,
x

3
+ y,

x

3
+ z
)

=

 0 0 0
1/3 1 0
1/3 0 1

 x
y
z


c) De forma análoga al apartado anterior, tenemos que PU⊥ = I − PU . Por lo tanto,

SU = PU−PU⊥ = PU−(I−PU ) = 2PU−I = 2

 0 0 0
1/3 1 0
1/3 0 1

−
 1 0 0

0 1 0
0 0 1

 =

 −1 0 0
2/3 1 0
2/3 0 1


�


