WRINKLING h-PRINCIPLES FOR INTEGRAL SUBMANIFOLDS OF JET
SPACES

ALVARO DEL PINO AND LAURAN TOUSSAINT

ABSTRACT. Y. Eliashberg and N. Mishachev introduced the notion of wrinkled embedding to show
that any tangential homotopy can be approximated by a homotopy of topological embeddings with
mild singularities. This concept plays an important role in Contact Topology: The loose legendrian
h-principle of E. Murphy relies on wrinkled embeddings to manipulate the legendrian front. Simi-
larly, the simplification of legendrian front singularities was proven by D. Alvarez-Gavela by defining
the notion of wrinkled legendrian.

This paper generalises these ideas to general jet spaces. Our main theorem proves the analogue
of the result by Eliashberg and Mishachev: Any homotopy of the r—order differential information of
an embedding can be approximated by a homotopy of embeddings with wrinkle-type singularities
(of order 7).

Our first application deals with submanifolds of jet spaces tangent to the canonical distribution.
Outside of the contact case, we show that there is a complete h-principle as long as the submanifolds
have singularities of tangency with respect to the vertical of corank at most 1 (which we dub Whitney
singularities of order r). The motto is that, for spaces of jets other than contact, global topological
questions can be tackled with h-principle methods, but the local geometry of the singularities with
the vertical is non-trivial.

Our second application considers once again tangent submanifolds in jet spaces, but with pre-
scribed corank-1 singularities. We then prove that a complete h-principle holds as long as the
submanifold has a concrete local model that we call the loose chart, following Murphy. In the
front projection, the model is indeed a stabilised zig-zag (of order r) contained in a sufficiently big
neighbourhood.

As a corollary of the previous result we obtain an h-principle for singular legendrians with
prescribed singularities (modelled on the Whitney singularities of order r). This follows by projecting
down from r-jet space.
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1. INTRODUCTION

1.1. Wrinkled embeddings. Let M < N be manifolds of dimensions m and n, respectively. In
many geometrically meaningful situations, we are interested in producing isotopies of M that simplify
its position with respect to some geometric structure in N. For instance, N may be endowed with a
foliation F and we want to isotope M so that it becomes transverse.

In general, such a process is obstructed. The tangent space of M defines a section Gr(M) : M —
Gr(T'N,m)|p into the Grassmannian of m-planes of N. If we want to make M transverse to F
by an isotopy, it is certainly necessary that Gr(M) can be homotoped to be transverse to F. This
obstruction is purely algebraic topological in nature and can be analysed using obstruction theory.
One may then ponder whether the vanishing of these obstructions (that we call formal) is sufficient
for the existence of the desired isotopy. The answer is, in general, no. For instance, if N is a fibration
over R and F is the foliation by fibres, making M transverse to F would produce a function on M
with no critical points, which is impossible if M is closed. This obstruction is geometric and not
algebraic.

In situations where singularities may be unavoidable due to geometric reasons, we may attempt to
make them as mild as possible instead. This was proven, in the aforementioned setting, by Eliashberg
and Mishachev [21]: They showed that, if no formal obstruction exists, M can be isotoped to have
simple singularities of tangency (i.e double folds, see Subsection ??) with respect to F. The idea of
the proof is as follows: Since no formal obstruction exists, we are given a homotopy Gry starting at
Go = Gr(M) and finishing at a bundle G transverse to F. Then, instead of isotoping M, we produce a
homotopy M; of topological submanifolds that may have cuspidal singularities (or so-called wrinkles).
Despite being singular, the M, admit well-defined Grassmannian maps Gr(Mj) and the heart of the
argument is that it is possible to choose M, so that Gr(M,) approximates Grg; here the flexibility
provided by the cuspidal singularities/wrinkles is key. The proof concludes by smoothing out Mjg;
when we do so, M; becomes a smooth submanifold and the cusps/wrinkles are traded for (simple!)
singularities of tangency with F.

1.2. Wrinkled embeddings of higher order. The starting point of the present article is that the
result of Eliashberg-Mishachev is a first order statement. That is: Gr(M) is the first derivative of M,
and their theorem states that any homotopy Grg of this first derivative can be approximated by a
homotopy M, of M, as long as we allow for simple singularities in the process. Our main result says
that this can be done for higher order data as well:
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Theorem 1.1. Fiz an integer r. Any homotopy of the r—order information of an embedding can
be approzimated by a homotopy of topological embeddings with As,.-zig-zags. Similar statements hold
parametrically and relatively by allowing zig-zags to appear and disappear.

Generalising the first order case requires us to replace the standard cusps by singularities of higher
order; an As,.-zig-zag is precisely a pair of r-order cusps. This statement will be stated more formally
and proven, as Theorem 9.1, in Section 9.

1.3. Holonomic approximation. One can succinctly state Theorem 1.1 by saying that holonomic
approximation holds for submanifolds with zig-zags. To put this into perspective, let us recall the
standard setup for h-principle and geometric PDEs.

Given a smooth bundle Y — X, we can define the bundle of r-jets J"(Y — X) — X. Its fibres consist
of r-order Taylor polynomials of sections of Y. Given any section f : X — Y, we can consider its
r-order differential data j"f : X — J"(Y — X); such a section of jet space is said to be holonomic.
Most sections F' : X — J"(Y — X) are not holonomic and, to emphasise this, we call them formal
sections.

This provides a very convenient setup to discuss partial differential relations (PDRs). Indeed, we can
define a PDR of order r to be a subset R < J"(Y — X). It readily follows that a solution of R is a
section f : X — Y whose r-order Taylor polynomial ;" f takes values in R. More generally, we can
define formal solutions of R to be sections F' : X — R. The existence of formal solutions is thus a
necessary condition for the existence of solutions. One can then compare the spaces of solutions and
formal solutions and ask, in particular, whether the two are weakly homotopy equivalent. If this is
the case, R is said to satisfy the h-principle.

If the relation R we consider is open (as is sometimes the case with relations of geometric origin like
those describing contact or symplectic structures), we could attempt to find solutions of R using the
following idea: We start with a formal solution F' and we find f : X — Y such that 5" f approximates
F. If this approximation is good enough, 5" f will land in R and f will be a solution. This idea is
called, quite descriptively, holonomic approximation.

It turns out that this does not work and, indeed, many open relations do not satisfy the h-principle
(for instance, symplectic structures). However, using his method of flexible sheaves, M. Gromov []
proved that holonomic approximation does hold if we try to approximate only over a subset K < X
of positive codimension (in fact, one needs to approximate not quite over the given K but over a
CP-close copy of K that is more “wiggly”). Due to the fact that open manifolds can be retracted
to the skeleton (which is a positive codimension CW-complex), this can then be used to prove that
the h-principle applies for any R open and Diff-invariant (i.e. invariant under the action of the
diffeomorphism group of X), as long as M is open. This result applies to “generic” /“non-degenerate”
geometric structures (like contact or symplectic) and generalises prior results about immersions (due
to Hirsch-Smale []) and submersions (due to Phillips []).

One can then pose the question: “what can we do for closed manifolds?” We henceforth assume that
X is indeed closed.

1.4. Holonomic approximation for multiply-valued sections. At each point in J"(Y — X),
we are given a collection of tautological equations encoding the fact that certain fibre directions
should be derivatives of some others. These equations are pointwise linear and define the so-called
Cartan distribution €.,y in jet space. From its construction, it follows that holonomic sections can be
characterised as those sections tangent to ... This led R. Thom [?] to define generalised solutions
of R as maps X — J"(Y — X) (not necessarily sections!) tangent to .., and taking values in R.
To emphasise the fact that these are not sections, one may note that it also makes sense to consider
general tangent maps L — (J"(Y — X),&can), where L is some other manifold of the same dimension
as X.

Recall that holonomic sections j7f : X — J"(Y — X) are in correspondence with their underlying
sections f : X — Y. This is (almost) true for generalised solutions as well: ¢ : L — (J"(Y — X),&can)
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can be uniquely recovered from its front projection mf o ¢ : L — Y whenever the base projection
m,0¢ : L — X is a immersion. It follows that, as long as ¢ is graphical over X in a dense set, it
will be uniquely recovered from 7y o ¢. However, the fibre over a point x € X will often intersect
the image of 7y o ¢ in a number of points different than one. Due to this, we will sometimes refer to
generalised solutions as multi-sections.

We can then ask whether it is possible to approximate any formal section by a generalised section. We
phrase this as “holonomic approximation holds, even over closed manifolds, if we allow for generalised
sections”. Remarkably, Thom, preceding Gromov’s work, proved this in [?], using ideas that seem to
be a precursor of the pleating/wrinkling approaches to h-principles [?]. However, Thom’s argument
is somewhat incomplete (particularly regarding higher jets) and, more importantly for us, his method
produces generalised solutions with uncontrolled singularities. Later, Gromov provided an argument
[], based on microflexibility /pleating, to construct generalised solutions whose only singularities are
folds. His approach applies to more general manifolds endowed with bracket-generating distributions,
as long as certain dimensional constraints hold®.

Our result produces generalised solutions that are smooth and embedded. To do so, we use pleating
in the front projection, instead of in jet space itself. In particular, our generalised solutions will have
topologically embedded front projections with Ag,.-zig-zags (i.e. cusps of order r in the front, that
project to the base manifold M as double folds, and are smooth when lifted to r-jet space). Our
second result reads:

Theorem 1.2. Let F: X — J"(X) be an arbitrary section. Then, for any e > 0, there exists a map
f: X — J(X) satisfying:

e f is a section with zig-zags;
o |j7f — Floo <e.

I.e. holonomic approximation holds when we consider multi-valued sections instead of just sections.
It then follows immediately:

Corollary 1.3. Let R < J"(X) be an open differential relation admitting a formal solution F. Then,
R admits a generalised solution f with j”f C°-close to F.

That is, even though the h-principle does not hold for arbitrary open differential relations, it does
hold when we allow generalised solutions. As before, both these statements can be extended to the
parametric (in which F' varies in a family Fy) and relative settings (where all the F; are already
holonomic in some part of the domain, and some of them are everywhere holonomic). These versions
are stated and proven in Section 8.

The reader may wonder what is the relation between Theorems 1.1 and 1.2. The answer is that the
latter is the local version of the former. That is: when trying to isotope a submanifold M < N, we
work in its tubular neighbourhood Op(M), which we identify with the normal bundle v(M) — M.
Then, sufficiently small homotopies of M as a submanifold with zig-zags correspond to homotopies
of the zero section as a multi-section with zig-zags. I.e. Theorem 1.2 implies Theorem 1.1; this is
carried out in detail in Section 9.

1.5. Method of proof. The proof of Theorem 1.2 has three parts: First we triangulate M very finely
and choose holonomic approximations over each top-cell. Secondly, we apply standard holonomic
approximation along the codimension-1 skeleton, reducing the statement to the top-dimensional cells.
In the last step we are thus working on a ball and we must introduce zig-zags to interpolate between
the two holonomic approximations (one coming from the cell and the other one from its boundary).

LA distribution & can be endowed with a fibrewise inner product g¢. Under the bracket-generating assumption,
infimising the length of all tangent paths (with respect to g¢) produces a metric structure on its ambient manifold
Y, known as the Carnot-Carathéodory metric. Lipschitz maps from a Riemannian manifold (N, gn) into (Y,&,g¢) are
then Lipschitz generalisations of maps tangent to £. A result of Gromov [], also in the setting of general distributions,
explains how to construct Lipschitz maps using pleating (also under suitable dimensional assumptions). This result was
made more explicit, in the setting of jet spaces, by .... in [].
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The zig-zags will appear forming concentric spheres close to the boundary. The reader is invited to
visualise this as an “accordion” appearing in each top-cell; see Figure 77?.

The overall structure of the proof is quite common in h-principle. The first two steps are often called
reduction (and they rely on standard techniques) and the last one is called extension (which requires
more work). This last step boils down to a careful application of holonomic approximation, similar
to an idea that appeared first in the contact setting [9]. It differs somewhat significantly from the
strategy in the original wrinkled embeddings paper [21], which strongly relies on the fact that one
works with first order data. We believe that the parallels between wrinkling and wiggling are more
transparent using our viewpoint.

1.6. Submanifolds tangent to distributions. As we explained earlier, J"(Y — X) is endowed
with the Cartan distribution &..,, which is bracket-generating (i.e. iterated Lie brackets of vector
fields tangent to &ca, span the tangent space of J"(Y — X)). The main motivation behind this article
was to understand better the space of embeddings L — (J"(Y — X),&can) tangent to &can. This is
extremely natural: Recall that the first jet space of functions (J1(X x R — X),&.an) is a contact
manifold and therefore tangent embeddings are precisely legendrians. The study of legendrians is
a driving force in Contact Topology, where h-principle results provide flexibility (i.e. classification
results) and generating functions/pseudoholomorphic curves/sheaves provide rigidity (in the form of
obstructions/invariants).

There are two results on legendrians that we can highlight as inspiration of the present work: The
first is the celebrated classification of loose legendrians due to E. Murphy [37], where it is shown that
a certain subfamily of legendrians in higher dimensions satisfy the h-principle. The second is the
simplification of legendrian singularities of tangency due to D. Alvarez-Gavela [1]; this generalises the
work of Eliashberg and Mishachev on wrinkled submanifolds to the contact setting.

However, similar results are not available for higher order jets (or for bundles with larger fibre).
One exception is the case of curves tangent to Engel structures (which are locally modelled on
(J2(R,R), &can)), and which was treated in [13, 12].

To put this article into context, let us provide a brief comparison of the contact setting within the
general framework of jet spaces. Along the way we state our results about integral submanifolds.

1.6.1. The failure of the Legendre transform. The main theme is that contact jet spaces are quite
distinct from all other spaces of jets. The reason behind this is that contact structures have plenty of
symmetries. Contact transformations, like the Legendre transform, may interexchange variables and
derivatives in J1(X x R — X).

However, this is not true anymore in any other jet space. This is easy to see by dimension counting:
in all other jet spaces, there are more the directions corresponding to derivatives than directions
corresponding to base variables. One may actually prove that any transformation of J"(Y — X) is a
lift of a contact transformation in J*(Y — X).

1.6.2. Most projections are intrinsic. In a contact manifold, we have thus plenty of freedom in choosing
how to parametrise our Darboux balls. In particular, we can fix different local front projections by
changing the charts we use. This is useful in manipulating legendrians, since we can pick charts
adapted to them (often just making them graphical).

From the previous item, it can be deduced that this is not the case for other jet spaces. Namely,
the behaviour of .., as a distribution defines intrinsically the fibres of the projection J" (Y — X) —
J7HY — X), r > 1. Further, if the fibres of Y — X have dimension at least 2, the fibres of the
front projection are similarly intrinsic.

It follows that, if we want to manipulate a tangent submanifold, we may not be able to find “nice”
projections adapted to it.
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1.6.3. The geometry of tangent submanifolds is difficult. Following with the previous remark: The
fibre J*(Y — X) — J'=}Y — X) is tangent to .., but is often larger in dimension than X. In that
case, it cannot be homotoped, as a tangent submanifold, to become graphical almost everywhere (i.e.
a multi-section).

This issue is also problematic even if we consider a tangent submanifold L — J"(Y — X) with
dim(L) = dim(X). Its singularities with respect to the fibre could be quite complicated and, since
we are not allowed to change our projection to make them better, it is unclear how to perturb L to
make them “generic” from a formal point of view. In particular, even if no formal obstructions exist,
it is unclear how to simplify the singularities using h-principle arguments.

We bypass this issue by ignoring it: We focus on the subclass of tangent submanifolds whose singu-
larities are of Whitney type. These we are able to deal with using the front projection. Classification
results for general submanifolds (with arbitrary singularities) are left as an intriguing open question.

1.6.4. The topology of tangent submanifolds is flexible. Non-contact jet spaces have “more room” than
contact ones. Namely, the distribution &.,, has codimension larger than 1. This extra room can be
used to prove a complete h-principle for tangent submanifolds with Whitney singularities.

For instance, it is possible to manipulate a given submanifold to introduce (through a homotopy
of tangent submanifolds) various local models that one may interpret as incarnations of the usual
stabilisation of legendrians. This is the main ingredient behind our h-principles.

This is explained in Section 12. The proof requires some auxiliary results on prescription of singular-
ities for smooth manifolds (not necessarily integral), which we review in Appendix 15.

1.6.5. Odd vs. even. Jet spaces behave differently depending on the parity of r. In the odd case, the
standard tangent homotopy analogous to the Reidemeister I move, does resemble a Reidemeister I
move in the front. In the even case, it instead resembles a stabilisation (i.e. a zig-zag).

In practice, this means that one needs to treat each case separately. Namely, for r even, we can simply
introduce many of these zig-zags to obtain flexibility. For r odd (and not contact), we introduce
standard-looking Reidemeister Is and we then pass one of the resulting cusps to the other side of the
original strand (this can only be done through embeddings because we are not contact). This yields
a picture of a zig-zag that has one of its cusps stabilised.

To treat both cases in a more streamlined manner, we actually introduce zig-zags for r both even and
odd and then, we apply surgery of singularities in the odd case to obtain instead zig-zags with one
stabilised cusp.

1.6.6. The issue of isotopies. In the contact setting, a homotopy of embedded legendrians yields an
isotopy. This is not true anymore for other jet spaces. This follows from the fact that, since the
fibres of J"(Y — X) — J""Y(Y — X) are intrinsic, the tangencies of generalised solution with
respect to them are intrinsic as well. In particular, they will be preserved by isotopies. That is, even
though we prove flexibility for tangent submanifolds under homotopies, it is still meaningful to ask
for classification statements up to isotopy.

We remark that, assuming that the fibres of Y — X are 1-dimensional, this is related to the classifi-
cation of legendrians with singularities. Indeed, tangent submanifolds of (J"(Y — X),&.an) project
to tangent submanifolds of (J1(Y — X),&.an) and all isotopies upstairs are uniquely determined by
contact transformations downstairs. It may thus be possible to tackle this problem, from the rigid
viewpoint, using the machinery of generating functions/sheaves/holomorphic curves. This is an open
question beyond the scope of this article.

1.6.7. Flexibility for isotopies. Assume that we have a tangent submanifold L < (J"(Y — X),&can),
of dimension at least 2, and with Whitney singularities of tangency with respect to the fibre. Under
isotopies, we are not allowed to add new singularities of tangency, but we may assume from the get-go
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that there is a region in L containing a “sufficiently big” zig-zag. This zig-zag can be spread out,
through isotopies, to the whole manifold, providing us with flexibility.

That is, as long as there is some special model, we can prove an h-principle for tangent submanifolds
up to isotopy. This, of course, resembles the h-principle of Murphy for legendrians with a loose chart.
In fact, our result recovers [37] when particularised to the contact setting. Our argument is similar
to hers in spirit but differs in its implementation in one key aspect: Since we cannot change the front
projection, we need to describe how to pass our “loose zig-zag” across the other singularities of the
submanifold.

By projecting to J!(Y — X), this can be interpreted as an h-principle for legendrians with singularities
of given complexity (namely, singularities arising as projections of tangencies in J"(Y — X)) and
having a loose chart (of the same complexity).

This is explained in Section 14. The surgery arguments needed for the proof appear in Section 13.

Acknowledgments:

2. DISTRIBUTIONS

In this Section we review the basics of distributions. They will reappear in the next Section, when we
look at the Cartan distribution in jet space. The reader may want to refer to the standard references
[34, Chapters 2 and 4], [10], and [23].

2.1. The Lie flag. Fix a manifold M endowed with a distribution £ € TM. The vector fields T'(£)
tangent to £ are a C*-submodule of the space of all vector fields. It is natural to analyse to what
extent this subspace fails to be a Lie subalgebra (with respect to the Lie bracket of vector fields):

Definition 2.1. The Lie flag associated to £ is the sequence of C*-modules of vector fields defined
by the inductive formula:

W) =T, TEY) =[TE,TE"),

where the rightmost expression denotes taking the C™-span of all Lie brackets with entries in I'(€)
and T(£W).

In this article we always assume that F(f(i)) is the module of sections of a distribution £(?). Do note
that, in general, this need not be the case. Due to this, we sometimes say that the Lie flag is instead
the filtration:

D= ce® B .

2.2. Involutive vs. bracket-generating. By definition, T'(§) is a Lie subalgebra if and only if
(€)Y = T(¢). That is, if and only if the associated Lie flag is constant. Such a ¢ is said to be
involutive. Frobenius’ theorem states that involutivity of a distribution is equivalent to integrability.
The Lie flag is, therefore, a measure of the non-integrability of &.

For us, the more interesting case is the complete opposite: £ is said to be bracket-generating if,
for some integer r, it holds that £) = TM; i.e. I'(€) generates, as an algebra, the space of all
vector fields. A well-known theorem of Chow states that any two points in M can be connected by
a path tangent to £ if £ is bracket-generating. This can be regarded as the first result showing that
submanifolds tangent to bracket-generating distributions behave flexibly.

2.3. Curvature and nilpotentisation. We can define more refined invariants measuring the non-
integrability of £&. By construction, there is a map between sections

F(g(i)) x F(g(j)) N p(g(z‘ﬂ)/f(iﬂ—l))

induced by Lie bracket. It can be checked that this map is C®-linear, allowing us to write:
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Definition 2.2. The (i,j)-curvature of £ is the tensor:
Qi;(6) : g(i)/g(ifl) x g(j)/g(jfl) N §(i+j)/£(i+jfl).

We can then endow the graded vector bundle

L(§) == @1 L()i == DI, (€V/6" D) =@ (P /D) @ @ (67 /")
with a fibrewise Lie bracket Q(§) = @; ;€2 ; (&) that respects the grading. Then, the pair (L(£),2(§))
is a bundle of graded Lie algebras; we call it the nilpotentisation of £&. Do note that the different
fibres may not be isomorphic to one other as Lie algebras (although this will be the case for the
Cartan distribution in jet space).

The nilpotentisation should be thought as a linearisation of ¢ packaging its infinitesimal behaviour
under Lie bracket. From an h-principle viewpoint, once we identify L(§) =~ T'M, the nilpotentisation
plays the role of the formal data associated to &.

2.4. Integral elements and submanifolds. Maps and submanifolds tangent to £ are said to be
integral. It is immediate that the first curvature €2 1(£) vanishes when restricted to an integral
submanifold. This leads us to restrict our attention to those subspaces of £ that might potentially be
tangent to them:

Definition 2.3. An integral element is a linear subspace W < &, < T,M, p € M, satisfying
Q1,1(Eplw = 0.

The collection of all integral elements Gringegra1(§,1) < Gr(€,1) < Gr(T'M,1) of a given dimension !
is called the integral Grassmannian bundle. Its fibres are algebraic subvarieties that may not be
smooth nor vary smoothly.

Given an integral element W c ¢, we define its polar space as:
Wei={ve&, | i1(8)p(w,v) =0, Ywe W}.

That is, the linear subspace vectors that pair trivially with W using the curvature. Since W is integral,
W& contains W. Tautologically, extensions of W to an integral element of dimension dim(W) + 1 are
in correspondence with lines in the quotient W¢/W. An element is said to be maximal if W = W¥¢,
i.e. if it is not contained in a larger integral element.

Definition 2.4. A vector w € &, satisfying (w)* = &, is called a Cauchy characteristic. The linear
subspace ker(&,) spanned by all the Cauchy characteristics is an integral element.

If the dimension of ker(¢,) does not vary with p € M, then their union is an involutive distribution
ker(§) c & that we call the characteristic foliation of £. Its leaves are integral submanifolds.

It is immediate that any local diffeomorphism preserving £ must preserve ker(§). Similarly, its differ-
ential can identify two vectors tangent to & only if their polar spaces have the same dimension.

Example 2.5. Let (M,€) be a contact manifold. Then the curvature 11(§) is a nondegenerate
2-form on & with values on TM /€. Indeed, if ker(o) = &, then we have oo Qg o(§) = —da.

A subspace W < &, is isotropic if and only if it is integral; mazimal integral elements are precisely
lagrangians. The polar space W& is the usual symplectic orthogonal. Integral Grassmannians are
thus the same as the Grassmannians of isotropic subspaces. A

3. JET SPACES

In this Section we recall some elementary notions about jet spaces, putting particular emphasis on
their tautological distribution, which is bracket-generating. We go over standard material in order to
set up notation.

A standard reference in the Geometry of PDEs literature is [27, Chapter IV], but we also recommend
[43, Section 2]. The two standard h-principle references also treat jet spaces, namely [25, Section
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1.1] and [20, Chapter 1]. Lastly, the reader may want to look at [20, Section 4.1], whose ideas have
certainly inspired parts of this work.

3.1. Jet spaces of sections. Let X be an n-dimensional manifold and let 7 : Y — X be a smooth
fibre bundle with k-dimensional fibres. We write J"(Y — X) for the space of all r-jets of sections
X — Y. When Y is the trivial R*-bundle over X we often denote it by J"(X,RF) := J" (Y — X).

The spaces of r-jets, for varying r, fit in a tower of affine bundles:
(3.1.1) J(Y - X) T gy - x) st 2 0y S X) =Y.
that map holonomic sections to holonomic sections. For notational convenience, we single out the

front projection and the base projection which are given, respectively, by the forgetful maps:

Ty ;:7'(7470;JT()/~>)()—>YV7 ﬂ'b:J’r(YHX)*)X.

3.1.1. Local coordinates. By working locally we may assume that X is a n-dimensional vector space,
denoted by B, and that the fibre of Y is a k-dimensional vector space, denoted by F. In this local
setting the jet space J" (Y — X) can be identified with J" (B, F'). To be explicit, we choose coordinates
x:= (21, -+ ,x,) in B and coordinates y := (y1,--- ,yr) in F. We use (z,y) to endow J"(B, F') with
coordinates, as we now explain.

A point p € J"(B, F) is uniquely represented by an r-order Taylor polynomial based at m(p) € X.
Now, the r-order Taylor polynomial of a map f: B — F at z reads:

dz®T
fa+n) = 3 (@' f@) = (k.o ),
o<|I|<r
where I = (i1, ...,1,) ranges over all multi-indices of length at most r. Here ® denotes the symmetric

tensor product and we use the notation
dz®? = da;, ©---Odxy,, I=(i1,...,0p).
This tells us that J"(B, F) — B is a vector bundle and that, formally, we can use the monomials

daz®!
i—,@ej, o< |I|<r 1<j<k

as a framing; here {e;}1<j<k is the standard basis of F in the (y)-coordinates. We can write 20 for

J
the coordinate dual to the vector d”ﬁl ®ej € Symll ‘(B*, F). This definition depends only on the

choice of coordinates (z,y) : Y — B x F. We give these coordinates a name:

Definition 3.1. The coordinates
/ I .
(@,2) = (wy =221 2"), 2= {0 [ =01 <G < k),

in J*(Y — X) are said to be holonomic.

The monomials above with |I| = ' form a basis of Symrl (B*, F), the space of a symmetric tensors
with 7’ entries in B and values in F. This leads us to write, in more conceptual terms:

Lemma 3.2. J"(B,F) = B x F x Hom(B, F) x Sym*(B*,F) x --- x Sym"(B*, F). In particular,
Trr—1 18 an affine bundle with fibres modelled on Sym"(B*, F).

3.2. The Cartan distribution. The tautological/Cartan distribution &.,y in J"(Y — X) is uniquely
defined by the following universal property: a section of J"(Y — X) is tangent to &..pn if and only if
it is holonomic. The subbundle Veay, := ker(dmy. ,—1) € Ecan is called the vertical distribution.

Images of holonomic sections correspond to integral submanifolds that are everywhere transverse to
Vean- Integral submanifolds and elements transverse to Vi, are said to be horizontal.
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3.2.1. Local coordinates. In terms of the holonomic coordinates (x,y, z) € J" (B, F) defined above, the
holonomic lift of a map f : B — F reads:

j"f:B — J'(B,F)= B xF xHom(B,F) xSym?(B* F) x ---x Sym"(B*, F),
z = Jfx) = (wy=fl2),z = (0f)(x),2* = (Pf)(@),....2" = (0" f)(x)).
That is, a holonomic section satisfies the relations
A0() = (Ty) (@), T =(in,...in), 0< || <1 1<j <k

Equivalently, the tautological distribution ..y, is the simultaneous kernel of the Cartan 1-forms:

(3.2.1) al = de\l) = N7l i) gy L= (i, i), 0< [ <7, 1< <
a=1

3.2.2. Associated distributions. From this it can be deduced that the Lie flag associated to (J"(Y —
X),&can) is given by the expression:

géz?n = dﬂ-rii—i(fcan),
where the right hand side is the preimage of the Cartan distribution on J"~*(Y — X). In particular,
&can bracket-generates in r + 1 steps. Furthermore:

Lemma 3.3. The following statements hold:

o Ifr>1, the vertical distribution Veay, is the characteristic foliation ker(Eean).

e Inductively, ker( és)n) = ker(dmy ,—;) for every 0 < i <.

o Assumer > 1 and k = dim(Y,) > 1. Then, the polar space of a horizontal vector is smaller
in dimension than the polar space of a vertical one.

That is: If we regard (J"(Y — X),&can) as an abstract manifold endowed with a distribution (i.e. we
forget that projections =, ,), the Lemma tells us that we can recover the fibres of 7, , intrinsically,
as long as we are not in the contact case.

We say that ker(géf;)n) is the ith characteristic foliation. If £ = dim(Y}) > 1, we say that the fibres
of 7y are the polar foliation associated to &can.

3.3. The nilpotentisation. According to the computations in the previous Subsections, the nilpo-
tentisation of &, at any point is isomorphic to the graded Lie algebra:

Definition 3.4. Let B and F be real vector spaces of dimensions n and k, respectively.
The jet Lie algebra (depending on n, r, and k) is:

e The graded vector space g := (—B:;l g; with

g1 := B®Sym"(B*, F), gi == Sym"*(B*, F).
e FEndowed with the Lie bracket defined by the contraction of vectors with tensors
[0,8] =B,  veB, BeSyw!(BYF).

All other brackets are either defined by the antisymmetry or zero.

We will often abuse notation and use g to denote the graded Lie algebra as a whole.

The degree one part gg is the direct sum B@Sym" (B*, F'). When identified with .., at a point p, the
first part corresponds to a lift of 7, X (in a canonical manner once we choose local coordinates). The
second term corresponds to the vertical distribution. We will henceforth say that B is the horizontal
component and Sym" (B*, F') is the vertical component.

Integral elements of £..,, correspond to vector subspaces W < go which are, additionally, Lie sub-
algebras. Similarly, horizontal elements correspond to Lie subalgebras transverse to the vertical
component.
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3.4. Distributions modelled on jet spaces. Much like contact manifolds look locally like first jet
spaces of functions, we can, more generally, consider manifolds with distributions locally modelled on
some other jet space.

Definition 3.5. We say that (M,€) is modelled on (J" (B, F),&can) if, for each p € M, there are
local coordinates (x,y, z) around p, with domain a subset of J"(B, F), so that { = &can-

In particular, the numbers n = dim(B), k = dim(F), and r are invariants of £. It follows that &£
bracket-generates in r steps and M is endowed with a flag {ker(E(i))}hl,wPl of characteristic
foliations. Similarly, when k£ > 1, we also have a well-defined polar foliation. In local coordinates
these correspond to the fibres of the various projections.

3.4.1. Automorphisms.

Definition 3.6. Let (M, &) be a distribution modelled on a jet space. A (contact) transformation
of (M, &) is a -preserving diffeomorphism.

A more restrictive notion of symmetry, which only makes sense for jet spaces, is the following:

Definition 3.7. Let W : Y — Y be a fibre-preserving diffeomorphism lifting a diffeomorphism 1 :
X — X. The point symmetry lifting ¥ is defined as:

jr\I/: (JT(Y_’X>7gcan) - (JT(Y_’X)agcan)
Jf@) = TG (@) =5 (Yo foyT ) (Y()).

Point symmetries form a subgroup of the group of contact transformations. It is well-known in Contact
Geometry that the space of contact transformations of J*(X,R) is strictly larger than the space of
point symmetries. From the existence of the polar and characteristic foliations we deduce:

Lemma 3.8. Assume r > 1 or k = dim(Y,) > 1. Any contact transformation of J"(Y — X) is the
lift of a contact transformation of J"~H(Y — X).

3.4.2. Jet spaces of submanifolds. Let Y be a smooth manifold and fix an integer n < dim(Y’). We
say that two n-submanifolds have the same r-jet at p € Y if they are tangent at p with multiplicity r.
We denote the space of r-jets of n-submanifolds as J"(Y,n). We have, just like in the case of sections,
a sequence of forgetful projections

Tgr 2 J7(Y,m) = J" (Y, n),

with 7y := m, o the front projection.

The holonomic lift of an n-submanifold X < Y is the submanifold j”X < J"(Y,n) consisting of
all the r-jets of N at each of its points. The Cartan distribution £ ., in J"(Y,n) is the smallest
distribution which is tangent to every holonomic lift.

Given X c Y, we can restrict our attention to its tubular neighbourhood and to those submanifolds
graphical over X. It follows that (J"(Y,n),&can) is locally modelled on a jet space.

Remark 3.9. If n = dim(Y) — 1 and r = 1, the structure we just constructed is precisely the space
of contact elements. In general, if r = 1, the space J*(Y,n) is the Grassmannian of n-planes
Gr(TY,n). VAN

3.5. The foliated setting. Due to the parametric nature of the statements we want to prove, we will
need to phrase our constructions in a foliated setting. An alternate (seemingly weaker but ultimately
equivalent way) would be to use the fibered setting [20, 6.2.E].

Let Y — (M, F) be a smooth fiber bundle over a foliated manifold. We write k for the dimension of the
fibres and n for the dimension of the leaves. We define the bundle of foliated r-jets J" (Y — (M, F))
to be the space of equivalence classes of leafwise sections that are r-tangent to one another. The
fibres of J"(Y — (M,F)) — M are again modelled on r-order Taylor polynomials of k functions
in n variables. Given a global section f : M — Y, we can consider its corresponding leafwise r-jet
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J¥f M — J(Y — (M,F)). Such a section of the space of foliated jets is said to be holonomic.
Note that j% f encodes no information about the derivatives of f along the normal bundle of F.

Given manifolds X and K, where the latter is thought of as a parameter space, we may consider the
foliated manifold
(M=XxKF=]]X x{a}).
aeK
If Y - X is a fibre bundle, we can pull it back to X x K using the obvious projection. The
corresponding space of foliated r-jets J"(Y — (M, F)) is the natural place to carry out parametric
arguments for K-families of sections of Y — X.

4. SINGULARITIES

The central theme of the wrinkling philosophy is that, sometimes, it is enough to consider maps whose
only singularities are simple. We will review some results in this direction in the next Section. For
now, we set the stage by introducing the “mild singularities” that we need.

4.1. The Thom-Boardman stratification theorem. Let IV be endowed with a foliation F of rank
k, and let f : L — N be an immersion. A point p € L is a singularity of tangency with respect
to F if dp, f(T'L) and Fy () are not transverse to one another. In our concrete case, N will be a jet
space, F will be Viun € €can and L will be an integral submanifold.

We define the locus of singularities of corank j
SI(f,F):={pe N | dim(df(T,L) n Fp) — max(k +n —m,0) = j}

as the set of points where the dimension of the intersection df(T,L) n F,, surpasses the transverse
case by j.

Assuming that Y7 (f, F) is a submanifold, one can recursively define higher tangency loci of corank
J = Jo,...,7 by setting _

E'](f,]:) = E]L(f|2j0jl”'jl—l(f7].‘)7]:)'
Thom [39] and Boardman [2] proved that one may perturb f so that all the X7/ ( f, F) are smooth sub-

manifolds forming a stratification. One should think of it as the pullback of the universal stratification
of Gr(TN,n) — N defined by F.

Given an arbitrary smooth map ¢ : L — M, one can similarly consider the locus of singularities of
mapping

¥ (f):={pe N | corank(dpg) = j},
as well as higher singularities. It is immediate to see that singularities of tangency of an immersion
f L — (N,F) correspond (in a foliation chart) to singularities of mapping of the quotient map
g:L—> N/F.

4.2. Morin-Whitney singularities. We now focus on singularities of mapping between equidimen-
sional manifolds. One can provide similar definitions when the source is larger than the target, but
this is unnecessary for our purposes.

Write (x) = (x1,- -+ ,Z,_1) for the coordinates in R*~! and (z, ¢) for the coordinates in R". Consider
the following family of corank-1 singularities of mapping:

Definition 4.1. The n-th Whitney singularity is the germ at the origin of the map:
Whit,, : R® - R"

4.2.1
( ) (CC,(])—> (xvanrl +$1qn71 +"'+xn71Q)'

For n = 1,2, these maps are referred to as the fold and the pleat, respectively.

We may think of Whit,, as the R*~!-family of maps R — R that unfolds the singularity ¢ — ¢"**.
This proves that ¥?(Whit,,) is indeed empty. We can obtain further corank-1 singularities as follows:
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Definition 4.2. The i-fold stabilisation of Whit,, is the map:
Rn-‘ri _ Rn-‘ri
(s;,z,9) — (s, Whity(z,q)),

where s € R and (r,q) € R™.

H. Whitney proved in [44] that Whit,, is a stable map and then Morin proved the converse [36]: The
germ at p € X1(f) of a stable map f : M — N, between manifolds of the same dimension, is left-right
equivalent to the germ at the origin of a stabilisation of a Whitney map. Here left and right actions
on germs need not to fix the origin (otherwise, the orbit of the Whitney map of index ! would have
codimension [ in the space of all germs).

Whenever we encounter a singularity of mapping, we will say that it is Whitney, a fold, or a pleat, if
it is equivalent to the model. We will use the same naming convention if we encounter a singularity
of tangency f : L — (N,F) whose quotient is one of these; do note that this implies that dim(L) =
corank(F).

4.3. The equidimensional wrinkle. The fold and its stabilisations are the simplest (non-trivial)
singularities of equidimensional maps. Ideally, we would work in the category of folded maps. However,
this is not possible when we consider families of maps: we must, at the very least, allow folds to appear
and disappear in birth/death events, i.e. pleats. This leads to the definition:

Definition 4.3. The (equidimensional) wrinkle is the map

Wrin,, : Op(D™) — R"
3

(@20 = (o) = T+ (o = 1a).

The region bounded by the singular locus, i.e. the interior of the disc D™ in the domain, is called the
membrane of the wrinkle.

(4.3.1)

4.3.1. Singularity locus. We see that Wrin,, is a map fibered over R*~!. Its singularities (which are
of corank 1) correspond to the vanishing of %—Z’ = ¢% + |z|* — 1, i.e. the unit sphere ¥(Wrin,,) = S"~!
bounding the membrane. If we further restrict Wrin,, to 3(Wrin,,) we observe that its singularities
live in {q = 0}, i.e. the equator X' (Wrin,) = S"~2. The map Wrin, 511 (wyin,) is non-singular so

»(Wrin,,) = £°(Wrin,,) u B (Wrin,, ).

Thus, the equator is a codimension-2 sphere of pleats and the two open hemispheres consist of folds.
Each two points in X'9(Wrin,,) sharing the same ¢-coordinate are a local maximum and a local

minimum of the corresponding function z — g + (Jz]?> = 1)g. As we move in ¢ towards the equator
Y1 (Wrin,, ), these two points collapse in a birth/death event. Hence, the singularities of the wrinkle
are seemingly in cancelling position, but not really: the domain of definition of Wrin,, is not the whole
of R™ (in which the cancellation is possible) but a small neighbourhood of the unit ball D™.

4.3.2. Formal desingularisation. Nonetheless, the singularities of the wrinkle are homotopically inessen-
tial from the point of view of obstruction theory: consider the homotopy of functions

Ws(x,q) = (q2+|$‘2_1)+3[)($»Q)a SE[O, 1]7

where p : Op(D™) — [0, ) is a non-negative function which is greater than 1 over D™ and identically
zero in a neighbourhood of the boundary of its domain. It provides a compactly-supported homotopy
between Wy = ‘;—w and a strictly positive function. We can use Wy to construct a compactly-supported
homotopy between the differential TWrin,, and a bundle monomorphism. Indeed, we keep the formal
derivatives of Wrin,, with respect to the xz-coordinates fixed, and we homotope the formal derivative
with respect to ¢ using W,. We call this the formal desingularisation. Its existence implies that
the wrinkle, as a singularity, represents a trivial class (relative to the boundary of the model).
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4.3.3. The fibered nature of a wrinkle. Let us regard the wrinkle Wrin,, ;; as a fibered over R* map.
Explicitly, we write (s) for the coordinates in R¥ and (z, q) for the coordinates in R™. The restriction
of Wrin,,, to the fibre over a fixed s is left-right equivalent to Wrin,, if |s| < 1, non-singular if |s| > 1,
and left-right equivalent to:

Op({0}) - R
4.3.2 3
e (2.9) = (2. + [20).

if |s] = 1. This singularity is called the embryo. It is precisely the event in which a wrinkle Wrin,,
is born. It follows similarly that the embryo can be formally desingularised in a unique manner up to
homotopy.

4.4. Double folds, wrinkles, and surgery. A wrinkle has non-empty X!!-locus. Sometimes, it is
useful to work with maps whose singularity locus is just £'0; we call such maps, folded. A key idea in
wrinkling is that one may produce a folded map out of a wrinkled map using surgery of singularities
[15, 21]. Conversely, one can pass from a map having double folds, defined below, to a wrinkled map
by a procedure called wrinkle chopping. Hence, wrinkles and double folds are essentially equivalent.

4.4.1. The definition.

Definition 4.4. We define the double fold to be the map:
I (’)p(S"_l x [-1,1]) = R"
(4.4.1) ¢
(.0) — (&, L~ q).

The region bounded by the singular locus, i.e. the open annulus S™~' x (—1,1) in the domain, is
called the membrane of f.

The singularity locus X(f) = X!0(f) is the union of the spheres bounding the membrane
0
{8?; =q¢* - 1} = (8" x {=1}) U (S"! x {+1}).

At each sphere the singularity is modelled on (a stabilisation of) the usual fold. Like the wrinkle, the
two fold points sharing the same g-coordinate seem to be in cancelling position, but they are not due
to the size of the domain.

We often speak of the spheres S"~1 x {£1} as being the double fold, leaving the existence of the
membrane bounding them implicit. We could also define the folds to take place along hypersurfaces
other than spheres, but for our purposes this is unnecessary.

4.4.2. Embryos. Just like wrinkles are born in an embryo event, we may define the analogous birth/death
singularity for double folds. It is given by the following expression:

£ Op(E™ x {0}) — R”
(z,9) = (z,4%),

which we call the (double fold) embryo. It is simply a parametric version, along a codimension-1
sphere, of the 1-dimensional birth/death critical point.

(4.4.2)

4.5. The (first order) wrinkle in positive codimension. The central idea behind the wrinkled
embeddings [21] of Eliashberg and Mishachev is that it is sometimes preferable to replace singularities
of tangency by singularities of mapping. Namely, we could eliminate a tangency fold by introducing
a cusp along the tangency locus. Motivated by this, we introduce:

Definition 4.5. The wrinkle (of dimension m into n > m, and of order 1) is the map

Wrin,, ,, : Op(D™) — R™

q
(x,q) — (z,¢° + 3(|z|* ~ 1)q,f (* + [2* = 1)%dt,0,...,0).
0
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Its projection to R™ is precisely the wrinkle Wrin,,.

4.5.1. Singularity locus. The (m + 1)th coordinate of Wrin,, , is a function that has exactly the
same singularity locus as Wrin,,. Therefore, the singularity locus X(Wrin,, ) is the unit sphere
Y1 (Wrin,, ,) = S™~!. It is the union of the equator X' (Wrin,, ) = S™2 and its complement
$19(Wriny, ). The singularity along %'°(Wrin,, ) is a stabilisation of the usual planar semicubic
cusp. The families of cusps in each hemisphere approach each other at the equator ¥ (Wrin, ),
cancelling in a sphere of open semicubic swallowtails.

4.5.2. Regularisation. Unlike Wrin,,, the wrinkle Wrin,, ,, is not stable as soon as m < n. Indeed, the
small perturbation:

q
(z,q) = (z,¢° + 3(|z|* — 1)q, eq + f (t* + |z|> — 1)%dt,0,...,0)
0

is a smooth embedding. A cut-off may be applied to make this perturbation compactly supported.
This smoothing process is unique up to isotopy (which may also be assumed to be compactly sup-
ported); we call it the regularisation.

4.5.3. The Gauss map. Despite being singular, Wrin,, ,, has a well-defined lift Gr(Wrin,, ) to the
space of 1-jets of submanifolds; see Subsection 3.4.2. This is clear along the cusp locus Elo(Wrinmm),
because the planar cusp has a well-defined tangent line at every point. We claim that the same is
true along the swallowtail region %' (Wrin,, ,,). This is a simple computation, but we will justify it,
in the setting of integral submanifolds of general jet spaces, in Subsection 7.1.

4.5.4. Embryos. Just as in the equidimensional setting, we may think of the wrinkle Wring 4, k4n
as a fibered over R¥ map. We write (s) for the coordinates in R* and (z,q) for those in R™. For
|s| < 1 given, the restriction of Wring,, k+n to the fibre over s is left-right equivalent to Wrin,, .
For |s| > 1, it has no singularities. Lastly, for |s| = 1 the map is equivalent to:

q
(z,9) = (z,¢° + 3Iw\2q,f (t% + |z[>)%dt,0,...,0).
0

whose only singularity is the origin. This is exactly the birth/death phenomenon for Wrin,, ,,, which
we also call embryo. It can be regularised as above.

5. THE h-PRINCIPLE

The h-principle is a collection of techniques and heuristic approaches whose purpose is to describe
the spaces of solutions of partial differential relations. This Section provides a quick overview, and
readers familiar with A-principles are invited to skip ahead.

We first review some of the necessary language (Subsections 3.1 and 5.1). Then we go over some
classic techniques: holonomic approximation in Subsection 5.3, triangulations in general position in
Subsection 5.4, and wrinkling in Subsection 5.5.

For a panoramic view of h-principles we refer the reader to the two standard texts [20] and [25] (which
we suggest to check in that order). Wrinkling techniques were introduced first in the wrinkling saga

[ ? ? ? ? ]

5.1. Differential relations. Let Y — X be a smooth fibre bundle. A partial differential relation
(PDR) of order r is a subset R < J"(Y — X). This provides a framework for PDRs of sections, but
one can define PDRs of n-submanifolds of Y as subsets of J"(Y,n) as well.
Endow ['(J"(Y — X)) with the C%-topology. We may use the inclusion

JTY S X) o TN - X)),

to pull it back and endow the domain with its usual Whitney C"-topology. This makes j" a continuous
map. We write Sol/ (R) for the subspace of sections in T'(J"(Y — X)) whose image lies in R, i.e. the



16 ALVARO DEL PINO AND LAURAN TOUSSAINT

space of formal solutions. Similarly, we write Sol(R) for the space of solutions, which is a subspace
of T'(Y).

Definition 5.1. We say that the (complete) h-principle holds for R if the inclusion
ir : Sol(R)  —  Sol/(R)
o= w(f)=7f

is a weak homotopy equivalence.

5.2. Flavours of h-principle. Sometimes, ¢ fails to be a weak homotopy equivalence, but partial
results hold. For instance, if ¢ is surjective at the level of connected components, we say that the
existence h-principle holds. Similarly, if ¢z is a bijection of connected components, we may say
that the h-principle holds in 7g; analogous statements hold for higher homotopy groups.

Furthermore, we may ask whether the h-principle holds over each open set U ¢ X in a way that is
coherent with respect to the sheaf structure of Sol(R). This can be phrased as follows. The h-principle
is relative in the domain when: any family of formal solutions of R|y, which are already honest
solutions in a neighbourhood of a closed set A < U, can be homotoped to become solutions over the
whole of U while remaining unchanged over Op(A).

Similarly, the h-principle is relative in the parameter when: any family of formal solutions {F } ke x,
parametrised by a closed manifold K, and with F}s holonomic for every k' in an open neighbourhood
of a fixed closed subset K’ < K, can be homotoped to be holonomic relative to Op(K').

5.3. Holonomic approximation. One of the cornerstones of the classical theory of h-principles
is the holonomic approximation theorem. It states that any formal section of a jet bundle can be
approximated by a holonomic one in a neighbourhood of a perturbed CW-complex of codimension at
least 1. The precise statement reads as follows:

Theorem 5.2 ([20]). Let Y — X be a fiber bundle, K a compact manifold, A = M a polyhedron of
positive codimension, and (Fyo)ker © X — J™(Y — X) a family of formal sections. Then, for any
€ > 0 there exists

e a family of isotopies (Ppt)efo,1] : X — X,
e a homotopy of formal sections (F ¢)kek te[o,1] : X = Y,

satisfying:

o [} 1 is holonomic in Op(¢pi,1(A)),
o |pr —id|co < & and is supported in a e-neighbourhood of A,
° |Fk,t — Fk70|co <E.

Moreover the following hold:

o IfV e X(Op(A)) is a vector field transverse to A, then we can arrange that ¢i+(A) is trans-
verse to V' for allt and k.

o If the F},; are already holonomic in a neighborhood of a subcomplex B < A, then we can take
Fit = Fro and ¢p, =id on Op(B), for all k.

o If Fy, is everywhere holonomic for every k in a neighbourhood of a CW-complexr K' < K,
then we can take Fy; = Fi o and ¢p ¢ = id for ke Op(K').

Remark 5.3. Note that in the above statement, the inequalities
|pr,t —id|co <&, |Ft — Frolco <e,

depend on a choice of Riemannian metric on X and Y. A

For the proof and a much longer account of its history, we refer the reader to [20]. Essentially, this
theorem recasts the method of flexible sheaves due to M. Gromov (itself a generalisation of the methods
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used by S. Smale in his proof of the sphere eversion and the general h-principle for immersions) in a
different light. Let us go over the statement.

The starting point is the family of formal sections F}, ¢, which we want to homotope until they become
holonomic. This is not possible, but the theorem tells us that at least we can achieve holonomicity
in a neighbourhood of a set of positive codimension. We are not allowed to fix this set. Instead,
we begin with a polyhedron A, which we deform in a C° small way to yield an isotopic polyhedron
¢r,1(A). This isotopy occurs in the normal directions of A (which we may prefix by taking a transverse
vector field V'), and essentially produces a copy ¢y,1(A4) of A of greater length. This process is called,
descriptively, wiggling. The room we gain by wiggling is what allows us to achieve holonomicity: the
main idea is that, at each point p € A, we approximate Fj, o by the corresponding Taylor polynomial
F}, o(p) and then we use the directions normal to A to interpolate between these polynomials keeping
control of the derivatives. Hence, we can take the F} ; to be arbitrarily close to our initial data, and
the wiggling to be C%-small. However, if we desire better C°-bounds, we will be forced to wiggle more
aggressively, i.e. the isotopies ¢, ; will become C!-large.

5.4. Thurston’s triangulations. An important step in the application of many h-principles (includ-
ing ours), is the reduction of the global statement (global in the manifold M), to a local statement
taking place in a small ball. These reductions allow us not to worry about (global) topological con-
siderations, making the geometric nature of the arguments involved more transparent. Working on
small balls (i.e. “zooming-in”) usually has the added advantage of making the geometric structures
we consider seem “almost constant”; this will play a role later on.

A possible approach to achieve this is to triangulate the ambient manifold M and then work locally
simplex by simplex. A small neighbourhood of a simplex is a smooth ball which can be assumed to
be arbitrarily small if the subdivision is sufficiently fine; thus, this achieves our intended goal. When
we deal with parametric results (phrased using the foliated setup, see subsection 3.5), we want to
zoom-in in the parameter space too. This requires us to triangulate in parameter directions as well.
For us, this means that we must triangulate a foliated manifold in a manner that is nicely adapted
to the foliation.

Let (M, F) be a manifold of dimension n endowed with a foliation of rank k . Given a triangulation
T, we write T for the collection of i-simplices, where i = 0,...,dim(M) = n. We think of each
i-simplex o € T as being parametrised o : A — M, where the domain is the standard simplex
in R?. The parametrisation o allows us to pull-back data from M to A’. In particular, if o is a
top-dimensional simplex, it is a diffeomorphism with its image and we may assume that ¢ extends to
an embedding Op(A™) — M of a ball.

If the image of o is sufficiently small, we would expect that the parametrisation o can be chosen to
be reasonable enough so that o*F is almost constant. This can be phrased as follows:

Definition 5.4. A top-dimensional simplex o is in general position with respect to the foliation F
if the linear projection (identifying T,R"™ = R™)

A" (0" F)y > RO

restricts to a map of maximal rank over each subsimplex of o. In particular, o*F is transverse to
each subsimplez.

The triangulation T is in general position with respect to F if all of its top-simplices are in general
position.

Theorem 5.5. Let (M, F) be a foliated manifold. Then, there exists a triangulation T of M which
is in general position with respect to F.

This statement was first stated and proven by W. Thurston in [40, 41], playing a central role in
his h-principles for foliations. A sketch of the argument goes roughly as follows: we start with a
triangulation 7. We then subdivide it (in a controlled fashion called crystalline subdivision, which
ensures that angles remain controlled and that the cardinality of the star of a vertex is uniformly
bounded). As we subdivide, the foliation seems progressively flatter from the perspective of each
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simplex. In particular, the measure of the set of planes that intersect the foliation non-transversally
goes to zero. This allows us to apply Thurston’s jiggling: we tilt slightly the vertices, yielding simplices
that are transverse to F.

5.5. Wrinkling. Wrinkling is an h-principle method whose goal is constructing mildly singular so-
lutions of partial differential relations. It was used by Y. Eliashberg and M. Mishachev to prove
flexibility results for submersions [17], equidimensional immersions with prescribed folds [22], folia-
tions [18], and fibrations [16]. It entered the world of Contact Topology with [21], which would then
lead to the works of E. Murphy on loose legendrians [37] and D. Alvarez-Gavela on the simplification
of front singularities of legendrians [2, 1]. It is also one of the central ingredients in the construc-
tion and classification of overtwisted contact structures in all dimensions [9] due to M.S. Borman, Y.
Eliashberg, and E. Murphy. More recently, it has been used in Engel Geometry to classify overtwisted
Engel structures [14] and integral knots in Engel manifolds [12].

For the reader to have a somewhat complete picture, let us provide a list of sample theorems on
wrinkling.

5.5.1. Wrinkled submersions. Let M and N be n-dimensional manifolds (we assume equidimension-
ality for simplicity). It is well-known that the space of submersions M — N may not be homotopy
equivalent to the space of formal submersions if M is closed. The first wrinkling result of Y. Eliash-
berg and M. Mishachev [17] says that one may salvage the h-principle by relaxing the submersion
condition:

Definition 5.6. A wrinkled submersion is:

e amap f: N — M between n-dimensional manifolds,
e a finite collection of disjoint open balls {B;},

such that:

e f is a submersion in the complement of the B;.
o f|B, is left-right equivalent to Wrin,, (Definition 4.3).

A wrinkled submersion with embryos has an additional collection of balls in which f is modelled
by the embryo (Equation 4.3.2).

Using the formal desingularisation of wrinkles and embryos we dedyce that there is a map, well-
defined up to homotopy, from the space of wrinkled submersions with embryos to the space of formal
submersions. Then:

Theorem 5.7 (Eliashberg and Mishachev [17]). The space of wrinkled submersions with embryos is
homotopy equivalent to the space of formal submersions. This h-principle is, additionally, C°-close.

We can similarly define submersions with double folds to be maps which are submersions in the
complement of a finite collection of disjoint annuli in which they are modelled by a double fold. They
may additionally have finitely many spheres in which they are modelled by a double fold embryo.
Using surgery of singularities one can deduce the equivalent statement:

Corollary 5.8. The space of submersions with double folds and embryos is homotopy equivalent to
the space of formal submersions. This h-principle is, additionally, C°-close.

5.5.2. Wrinkled embeddings. Let M < N be smooth manifolds with dim(M) < dim(N). In [21], Y.
Eliashberg and M. Mishachev study the problem of isotoping M, as an embedded submanifold of N,
to approximate a given tangential homotopy in a holonomic manner. This problem is solvable if we
relax the embedding condition:

Definition 5.9. A smooth map f: M — N is a wrinkled embedding if:

e it is a topological embedding,
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e it is a smooth embedding away from a collection of disjoint embedded codimension-1 spheres
S;
o flops,) is left-right equivalent to Wringim(ar),dim(N)-

A map f: M — N is a wrinkled embedding with embryos if it is a wrinkled embedding in the
complement of a finite collection {p;} of points and it is left-right equivalent to an embryo in each
neighbourhood Op(p;).

Theorem 5.10 (Eliashberg and Mishachev [21]). Let N and K be smooth manifolds. Let (My)kex <
N be a K-family of submanifolds of N. Assume that there is a family of tangential homotopies
(Vk,s )keK,se[0,1] Starting at vy o = T Mj,.

Then, there is a K x [0, 1]-family of wrinkled submanifolds with embryos (My, s)kek sef0,1], Starting at
My, 0 = My, such that TMy, s is CY-close to Vk,s-

Furthermore:

o Assume there is a closed submanifold K' < K such that vy, s = TMy, for every k € K'. Then,
we may assume that My s = My, for all ke K'.

o Assume there are closed submanifolds M, < My, such that vy s(x) = Tp My for all x € Mj.
Then we may assume that My, s agrees with My, in Op(Mj,).

An equivalent result can be proven using double cusps instead of wrinkles.

6. GENERATING FUNCTIONS AND METASYMPLECTIC PROJECTIONS

In this Section we introduce local methods to construct and manipulate ¥:2-free integral submanifolds.
Before we get there, we will introduce some notation regarding Grassmannians of integral elements.

In Subsection 6.2 we introduce the formalism of generating functions in jet space. We will review
constructions due to Lychagin and Givental using the lens of reduction.

In Subsection 6.3, we introduce the metasymplectic formalism. Namely, we will be able to deal
with X2-free integral submanifolds by projecting them down to so-called metasymplectic space. This
generalises the standard lagrangian projection used in Contact Geometry to the setting of jet spaces.

We denote dim(X) = n and dim(Y) = k, where J"(Y — X) is the jet space of interest. We will
quickly pass to local coordinates, and we will replace X by a vector space B and the fibres of Y by a
vector space F'.

6.1. Grassmannian bundles. Recall the notation Grintegrai(&can,!) for the Grassmannian bundle
of [-dimensional integral elements of {..,. According to Proposition ?? we can identify each fibre
(TpJ"(Y — X),&can) with the jet Lie algebra g (uniquely up to point symmetries). From this, it
follows that the fibres of Grintegrai(can,!) correspond to Grassmannians of Lie subalgebras of g.

We can further denote the horizontal Grassmannian by

Grso (gcana l) = Grintegral(&cana l)

We will be interested in integral submanifolds that are horizontal over a dense set. From this it follows
that their tangent spaces will take values in the multi-section Grassmannian

Grso(Ecan, ).
We remark (even though this is not the case in the contact setting) that there may be, in general,
integral elements not contained in this closure. This can be checked by dimension counting, noting
that Vian, which is an integral element, is often larger than X in dimension.

More generally, we can write:

Gryi (ﬁcana l) = {W € Grintegral(ﬁcan; l) | dlm(W N ‘/can) = Z}
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and, since we want to restrict our attention to Whitney singularities, we introduce the X?-free
Grassmannian

Gr227free (gcanv l) = GrZO (gcana l) o Gr21 (gcarn l)
We will prove in the sequel [?] that its fibres are smooth manifolds; this will play no role in the present
paper. It is unclear to the authors whether the fibres of Gryo(&can,!) are smooth.

6.2. Generating functions. V. Arnold proved in [4, 5] that front singularities of embedded legen-
drians/lagrangians can always be (locally) described by generating functions. This is not true for
arbitrary integral submanifolds of jet spaces [38, p. 14] [15], but it nonetheless holds that front singu-
larities are rather special compared to the singularities of a general map. This was first explored by
V. Lychagin [29] for 1-jet spaces in more than one variable, and later by A. Givental [24] for general
jet spaces.

Our goal in this Section is to define what a generating function is for a general jet space. We do
this using reduction, which we introduce in Subsection 6.2.1. This allows us, in subsection 6.2.4,
to provide a recipe for corank-1 front singularities admitting a generating function description. We
will see in subsection 7.1.1 that this recipe can be particularised to recover Givental’s description of
integral submanifolds that have Whitney type front singularities.

6.2.1. Reduction. The main idea behind generating functions is that we can follow a two step process
when constructing non-horizontal integral submanifolds: first, we produce a horizontal submanifold
over a base of greater dimension. Then, we use a “reduction” procedure to go down to the actual jet
space we want to work in. It is in this latter step in which the horizontality condition is lost.

The “enlarged base” will be the total space of a fibration 7 : F — X, endowed with the foliation F by
fibres. We pullback Y to E and we denote it by Yg; tautologically, there is fibrewise flat connection
over each fibre of E that identifies the fibres of Yg.

We denote by C*(FE,YE) the space of smooth sections E — Yg. Using the pullback of 7, we have a
natural inclusion 7* : C*(X,Y) — C*(E,Yg), whose image we denote by C¥(E,Yg). A function in
C%(E,YE) is said to be basic. We collect all the r-jets of basic functions to yield:

Definition 6.1. The space of basic r-jets is defined as:
Jp(E,Yg) = {jcfe J(E,YE)|e€ E, fe CF(E,Yp)}

The canonical projection map
7 Jr (B, Yg) — J(X,)Y)
j;(foﬂ-) = J;(e)f7

is called the reduction map.

In this general setting, the familiar properties of the contact reduction process still hold. We leave
the proof to the reader:

Lemma 6.2. The following statements hold:

o J-(E,Yg) is a smooth submanifold of J"(E,YEg).
o The restriction
€ 1= Cean N TJR(B, YE)
has a rank(F)-dimensional characteristic foliation ker(¢2, ). It is the lift of F to the fibrewise
connection of Yg.
e The reduction map 7 preserves the Cartan distribution.

e Leaves of the characteristic foliation ker(&Z, ) correspond to fibres of 7.

We say that J"(X,Y) is the reduction of J"(E,Yg) with respect to ker(¢Z ). We may study next
how integral submanifolds interact with the reduction process:
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Definition 6.3. Let L < J"(E,YE) be an integral submanifold. Its reduction is the set
L/F = #(L n JH(E,Yg)) < J"(X,Y).

We say that f : E — Yg is the generating function for
Ly :=Image(j"f)/F.

As suggested by the definition, even if the intersection L n J%(E,YE) is a smooth submanifold, it
may have singularities of tangency with ker(¢Z ). Therefore, the reduction L/F is often not smooth.

However, it is integral (in the sense that it is the image of an integral map).

6.2.2. Reduction in concrete terms. We now describe the local situation. Fix vector spaces B and A
and endow their product B x A with coordinates (x,¢). Similarly, take the fibre of Y to be a vector
space F. In this manner, the reduced space is J" (B, F).

Lemma 6.4. A function G : B x A — F generates the subset:
(6.2.1) Le ={(z,G(x,q),0.G(x,q), -, 05G(x,q)) | V(z,q) s.t. L0;G(x,q) =0 Vs #0,t}.

Proof. The lift of G is given by the expression:
J"G(x,q) = (2,q,G(2,q), 0.G(x,q), 0,G (2, q), 02G(x,q), 004G (2, q), .. ., 04 G(x, q)).

The intersection of j”G with the space of basic r-jets is the subset of j7G in which all derivatives of G
involving ¢ at least once are zero. Do note that this set is contained in the locus of fibrewise critical
points of G and the two agree if r = 1. O

6.2.3. Remark: dimension counting. In the contact case the collection of leafwise critical points on a
given fibre {z} x A is, generically, a finite collection of points and, for most fibres, the points are of
Morse type. In particular, the reduction Lg is a legendrian, that can be regarded as the 1-jet of a
multiply-valued function B — R.

For mr > 1, having derivative purely in the g-directions is an overdetermined condition. The expected
dimension of Lg may be computed to be:

(n+m)k§<(n+ml+ll) (nJrlll))

The expected dimension is n only in the contact setting, and it is non-negative only if r = 1 and
n = (k — 1)m. Otherwise, and in particular for all higher jet spaces, the expected dimension is
negative.

This tells us that any generating function theory for higher jet spaces would not rely on generic
functions, but rather on a subclass of functions (of positive codimension given by the formula above)
with prescribed singularities. We will look at one particularly manageable example next. Developing
a general theory is left as an open question.

6.2.4. Integral expressions. Consider now the situation where £ = X x R. Being a rank-1 bundle over
M, any integral manifold we produce by reduction will be ¥:2-free. We work in the product case and
assume the target is the vector space F'.

Given a submersion H : E — R, we define:

G:XxR — F

(z,q) — (Gl(x,q):=LqH(m,t)’“dt,0,...,0).

The only relevant entry is Gy, since the other (k—1) entries are zero and therefore singular everywhere.
We see that 0,G1(x,q) = H(x,q)". Furthermore, using induction one may show that:
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Lemma 6.5. Let t > 0 and s > 0 be integers. Then, there are functions ¥; : X x R — R such that

s+t—1

405G (x,q) = Y H M x,q)Wi(x,q).
=0

That is, all the derivatives (up to order r) involving g at least once vanish at the fibrewise critical
points of G. Therefore:

Lemma 6.6. The reduction Lg is parametrised by the locus of zeroes of H:
LG = {(Jf, G(J?, Q)7 awG(Iv Q)y ) agG(ma Q)) | V(x, Q) s.t. H(m7Q) = O}

In particular:

o Lg is an X2-free integral submanifold in J" (X, F).
o [ts singularities of tangency with the wvertical distribution correspond to the singularities of
tangency of H=1(0) with F.

Proof. The concrete expression for Lg follows from the previous Lemma. The integrality condition is
automatic since we are using generating functions. The X2-free condition follows because the fibres of
F are 1-dimensional. All we have to do is check that Lg is smooth and then describe its singularities.

Due to the submersion condition, the locus of zeroes H~1(0) is a smooth hypersurface in E, which we
can use to parametrise Lg. In each branch of H~1(0) graphical over the z-coordinates, the variable q
can be regarded as a function of x. Hence, branches of H~1(0) are mapped to branches of Lg simply
by taking the graph j"(G(z, ¢(z)), which is thus smooth.

We focus then on the tangencies of H~! with F. Fix (%,q) € £(H 1(0), F). Since H is a submersion,
we have that d,, H(Z,q) # 0, for some i. We may then compute:

0q0,G1(Z,q) = r![0x, H(Z,q)]" # 0

because all other terms involve H and are zero. Therefore, the map ¢ — 05 Gi(z,q) is a local
diffeomorphism of R. This implies that (x1,...,2—1,%i+1,---,%n,q) locally parametrises Lg as a
smooth embedded manifold, concluding the proof. ([

We can define additional X2-free integral subvarieties, for every 0 <1 < r, as follows:
,’TTJ(LG) = {($, G(ﬂ?, Q)7 axG(qu)a T 7(7£EG('J33 Q)) | V(I‘, Q) s.t. aqG(xa q) = 0} < Jl(Xa F)v

which are none other than the usual projections of Lg to lower jet spaces. All of them are generated
by G and have a well-defined Gauss map into the horizontal Grassmannian. They have singularities
of mapping corresponding to the front tangencies of L¢.

6.3. Metasymplectic projections and lifts. In Contact Topology it is fruitful to manipulate leg-
endrian knots using their lagrangian projection. In this Subsection we describe the analogue of this
process for general jet spaces. We work locally in J"(B, F'), with B and F vector spaces. We fix
holonomic coordinates (z,y, 2).

We will project J"(B,F) to the so-called standard metasympletic space. Morally speaking, this
amounts to projecting to &can endowed with its curvature (seen as a vector-valued 2-form). In this
manner, integral submanifolds will project to isotropics. This is explained in Subsection 6.3.1.

In Subsection 6.3.2 we prove Theorem 6.14: isotropic submanifolds in standard metasympletic space
can be lifted to J"(B, F). This is sufficient to manipulate 1-dimensional integral submanifolds; see
Subsection 6.3.3.

For higher-dimensional integral submanifolds the story is more complicated, because it is non-trivial
to manipulate their metasymplectic projections directly. To address this, we work “one direction at
a time”, effectively thinking about them as parametric families of curves. This is done in Subsection
6.3.4.
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6.3.1. Standard metasymplectic space. Recall the Cartan 1-forms defining &y, as introduced in Sub-
section 3.2.1:

n
OZJI' = dZ](I) — 2 Zj(-“’m’Za+17m71n)dma7 I = (ih e 7in)7 |I| =r— 17 1 g] < k’
a=1
which only depend on the coordinates z". Their differentials are the 2-forms:
n
QF = Y dag a0t i) T iy ), [ == 1,1 < K

a=1

which, by construction, are pullbacks of forms in the product B@® Sym" (B*, F') (which have the same
coordinate expression, so we abuse notation and denote them the same). We can package them in the
following intrinsic manner:

Definition 6.7. The canonical metasymplectic structure in B @ Sym’ (B*, F') is the 2-form:
Qean = () j1=r—1,1<j<k © A(B@®Sym"(B*,F)) — Sym" '(B* F).

The pair (B @® Sym" (B*, F), Qcan) is called standard metasymplectic space.

We remark that we can regard standard metasymplectic space as a vector space endowed with a
(vector-valued) linear 2-form, or as a manifold endowed with a smooth 2-form. The tangent fibres of
the latter are, of course, isomorphic to the former. We can readily check:

Lemma 6.8. Given a point p € B @ Sym" (B*, F) and vectors v; + A; € T,,(B @ Sym" (B*,F)) =~
B@®Sym"(B*, F):
Qcan(l}o + Ao,’Ul + Al) = ngAl — Lleo.

I.e. the canonical metasymplectic structure is precisely the contraction map of tensors with vectors.
When 7 = k = 1, the standard metasymplectic space (B ® B*, Qcan) is simply R?" endowed with its
linear symplectic form. We then generalise the lagrangian projection:

Definition 6.9. The metasymplectic projection is the map
nr:J(B,F) — B@®Sym'(B* F)

(x,y,2) — 7p(z,y,2):=(x,2").

By construction, the differential at each point
dpyrp : T,J"(B,F) — Ty (,(B®Sym"(B* F))

is an epimorphism that restricts to an isomorphism (&can)p — T, (p) (B@Sym” (B*, F)). Furthermore,
using the duality between distributions and their annihilators, it readily follows that:

Lemma 6.10. The differential is an isomorphism of metasymplectic linear spaces:
dPﬂ—L : ((gcan)pa Q(gcan)) - (Tm,(p)(B @ SymT(B*, F)), Qcan)a

where Q(Ecan) s the curvature of Ecan-

It is convenient to define: A vector subspace V of the standard metasymplectic (linear) space is said
to be an isotropic element if (Qc.y)|y = 0. An isotropic element is maximal if it is not contained in
a larger isotropic subspace. Similarly, a submanifold of standard metasymplectic space is isotropic
if all its tangent subspaces are isotropic elements. Then, it readily follows:

Corollary 6.11. Let f: N — J"(B, F) be a map. Then:

o f is integral if and only if wp, o f is isotropic.
o If f is integral then f is an immersion if and only if w7 o f is an immersion.
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6.3.2. Integral lift of an isotropic. Our next goal is proving the converse: every isotropic submanifold
can be lifted to an integral one. First we need an auxiliary concept:

Definition 6.12. The standard Liouville form
Aean € QY (B @ Sym" (B*, F); Sym”~*(B*, F))
is defined, at a point (v, A) in standard metasymplectic space, by the following tautological expression:
Acan (v, A)(w, B) := —i,, A.

The computations in Subsection 6.3.1 imply that:

Lemma 6.13. Then following statements hold:

e The Liouville form can be explicitly written as:
/\can(xv ZT) = ( Z ZJ(‘ihm ot 7in)dl,a) .
a=1 |(7;1,... Vg 77;n)‘=7«,1
o The Cartan 1-forms o € Q' (J"(B, F); Sym" ' (B*, F)) are given by the expression
O‘r(xa Y, Z) =dz_1+ /\can(xy Zr)-

e In particular, d\can = Qcan-

That is, the familiar properties for the Liouville form in the symplectic/contact setting hold as well
in more general jet spaces. Then:

Theorem 6.14. Let N be a disc. Given an isotropic map
g: N — (B®Sym"(B*, F), Qcan)

there exists an integral map
Lift(g) : N — J"(B, F)
satisfying 7p, o Lift(g) = g. The lift Lift(g) is unique once we fix Lift(g)(x) for some x € N.

Proof. Write g(p) = (z(p),2"(p)). By construction, g*Qc.n = 0. We deduce that each component of
¥ Acan is closed and thus exact. We choose primitives, which we denote suggestively by 2"~ ! : N —
Sym"!(B*, F). These functions are unique up to a shift by an element of Sym"!(B*, F).

We put together g with the chosen primitives to produce a map
h:=(x,2",2""Y): N - B@®Sym"(B*, F) @ Sym" *(B*, F).
We can readily check, using Lemma 6.13, that
h*a" = dz""' + g*Aean = 0.

Furthermore, consider the 2-form with values in Sym"2(B*, F):
r—1 _ S (i1, yia+1,- 4in)
Qoo = (Z dra A dz; >
a=1

It corresponds to the curvature of 5((;;1121, which depends only on the coordinates (z,2"~!). We can
compute:

[(i1, e siay i) |=r—2

WL = b (‘ D g g dw) = (0).
a,b=1

In the last step we get zero because cross derivatives agree. This computation tells us that the map
(z,2"" Y : N - B@Sym" *(B*, F)

is isotropic. Therefore, the argument can be iterated for decreasing r to produce a lift. (I

The contractibility assumption on N is used in the proof to ensure that the restriction of the Liouville
form at each step is exact.
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6.3.3. Lifting curves. Let us particularise now to the case dim(B) = 1. Then, in holonomic coordinates
(z,y = 2%, 2) the Cartan 1-forms read

ol = dzt — 2 d, l=0,...,7r—1.

The particular flexibility of curves (compared to higher dimensional integral submanifolds) stems from
the fact that any
g(t) = (x(t), 2(t)) : [0,1] —» B @ Sym"(B*, F)
is automatically isotropic. Then, following the recipe outlined in the proof of Theorem 6.14, we solve
for the 2"~! coordinates using a’:
g*a” = 2z, (t)dt — z.(t)2' (t)dt

leading to the integral expression
¢

2r—1(t) = 2,_1(0) + J zr(s)2'(s)ds

0

which uniquely recovers z._1 up to the choice of lift z._1(0). Proceeding decreasingly in [ we can
solve for all the z!(t), effectively lifting g to an integral curve Lift(g) : [0,1] — J"(B, F).

According to Lemma 6.11, the lift Lift(g) is immersed if and only if g was immersed. Assuming g
is immersed, the front tangencies X(Lift(g), 7s) correspond precisely to the singularities of tangency
(g, 7). This implies that to control the singularities of an integral curve it is sufficient to control
the singularities of its metasymplectic projection, which is a smooth curve with no constraints.

6.3.4. Restricted metasymplectic projection. Unlike curves, higher-dimensional isotropic/integral sub-
manifolds cannot be deformed freely. To get rid of differential constraints we consider instead:

Definition 6.15. The principal metasymplectic projection with respect to the principal direction
determined by the coordinate x,, is the map:

np:J(B,F) — B®Sym (R* F)

(x,9,2) — (x7z(0,...,0,7-)).

That is, we only remember the pure r-order derivatives associated to x,,. We then work with X2-free
maps whose rank drops along the z,-directions. We think of them as (n — 1)-families of curves,
allowing us to prove:

Lemma 6.16. Given a smooth map:
g:B — B®Sym"(R* F)
() = (ta) = (b nta) = (n(t), 2O 1)),
there exists an integral map Lift(g) : B — J"(B, F) satisfying ©} o Lift(g) = g.

The map Lift(g) is unique up to the choice of Lift(g)|, —oy-

Proof. The integral lift Lift(g) is given by the formula:

t) = (tzn

5§y, s 552(07...,0,“1), Z(Ow.,Ow)).

All the terms on the right hand side depend only on ¢t. Let us explain how the other functions are
obtained from t, z,, and z(0-07),
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The term z(%%1 is the (formal) pure derivative of order I in the direction of z,, and it is defined
(for decreasing [) by the integral expression:

tn
Z(O,A..,O,l)(t) = Z(O,.A.,O,l)(ﬂ O) +J Z(O""’O’l+1)(£7s)$/ (gj,s)ds,
0

following what we did in the previous Subsection for curves. In particular, the coordinate y = 2z(0+0:0)

is recovered by integrating r times. At every step we can choose the value of z(o""’O’l)(f, 0).

All other functions are derivatives of the form 6;22(0"“’0’3' ), for some integers i and j. Hence, we obtain
them, uniquely, by differentiation. O

Note that the polar space of a (n — 1)-dimensional horizontal element is (n + k)-dimensional and it
consists of the (n — 1) original directions, the additional missing direction from the base, and the
corresponding k pure derivative directions along the fibre. This indicates that any X2-free integral
map can be reconstructed by the lifting method we just used.

Most of the key properties of the lift can be read from the projected map:

Corollary 6.17. Let g be a map into a principal metasymplectic projection. Then:

e The map Lift(g) is well-defined, smooth, integral and %2-free.

e The singularities of mapping X(Lift(g)) are in correspondence with %(g).

o The singularities of tangency S(Lift(g), Vean) wtih respect to the vertical are in correspondence
with (g, Sym" (B*, F)).

7. SINGULARITIES OF INTEGRAL SUBMANIFOLDS

In this Section we introduce the models of integral $?-free singularities needed for our h-principles.

Remark 7.1. Our naming conventions for singularities reflect the behaviour of the integral maps
themselves, not their front projections. In particular, the names we use often refer to their singularities
of tangency with the vertical distribution. When singularities of mapping are present, we point it out
explicitly. A

In Section 7.1 we describe singularities of tangency of Whitney type. In Subsection 7.2 we use these to
define models of singularities of tangency along submanifolds (as opposed to germs at points). Lastly,
in Subsection 7.3 we look at singularities of mapping.

Recall our notation: We work on J"(Y — X), where X is n-dimensional and & is the dimension of
the fibres of Y. Sometimes we pass to local coordinates, in which case we write B for the base and F
for the fibre.

7.1. Whitney singularities in jet spaces. We introduced smooth Whitney singularities in Defini-
tion 4.1. We now discuss their integral analogues in jet space:

Definition 7.2. Let f: N — (J"(Y — X),&can) be a X2-free integral mapping. The germ of f at a
point p is a Whitney singularity (of tangency with respect to the vertical Veay ) if:

e f is an immersion at p, and
e the base map mp, o f has a Whitney singularity (Definition 4.1) at p.

In particular, a germ of integral immersion f is said to be a fold/pleat if m, o f is a fold/pleat.

The stability of Whitney singularities due to Morin generalises to jet spaces through Givental’s sta-
bility theorem [24]:

Theorem 7.3 (A. Givental). Assume k = 1. Then, up to point symmetries, integral Whitney singu-
larities have no moduli.
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The statement for general k is not addressed in [32, 24] and, to our knowledge, it remains open.

This potential lack of uniqueness will not play a role in our arguments. We will always rely on concrete
models produced using either generating functions or metasymplectic lifts. Every time a singularity
appears, we will always mean one of these concrete local models, and not a general singularity given
by Definition 7.2. By construction, these models will only make use of “one direction” in F' and, as
such, we will be able to pass between them invoking Givental’s result.

7.1.1. Generating functions. Recall the notation from Subsections 4.2 and 6.2.4: Endow B xR with co-
ordinates (z1,...,%n,q) and denote x = (Z,x,) = (x1,...,2,) and Tj 1= (T1, ..., Ti—1, Tit1s- -+, Tn)-
Consider the fibration 7 : B x R — B defined by (z,q) — . We set

Hi(z,q): BxR — R,

I+1 1

(x,9) — ¢ HadTt o+,

and we let T'; := H; '(0) be the locus of roots of ¢ — Hj(z,q). The coordinates (Z;,q) parametrise
I';, and we denote the parametrisation by

si:R" — BxR,

(Elvq) — (m17"'aXl(EL'\l7m) = _ql+1 _xlqlil _"'_xl—1Q7"'7xn,q)'

Define the generating functions:

Gri:BxR—F

(x,q) — (Jq(Hl(a:,t))rdt,O,...,()) )

0

(7.1.1)

where 7 is the order of the jet space and | < n.

The function H; a submersion, as required in Subsection 6.2.4. Therefore, the loci Lg, , are smooth
integral manifolds which are parametrised by the locus of roots T'; = R™(Z;, ¢). This is shown as the
dashed diagonal arrow in the following diagram:

R"(Z,q) —2 Ty Bx R 9" J"(B x R, F)

B <T LGr,l C JT(B,F)

where Lg, ,, is the reduction of J"G).; along the fibers of 7, as in Definition 6.3. The diagram provides
a parametrisation R"(z;,2) — Lg, . The composition of the parametrisation with the base projection
7y : JT(B, F) — B is precisely the (n — [)-fold stabilisation of the {-th Whitney map.

We now provide further details on folds and pleats.

7.1.2. Folds. Fix holonomic coordinates (z,y,z) in J"(B, F). We use the restricted metasymplectic
projection (z, (%)) defined by the first (n — 1)-coordinates. The following map

gr: B — BxSym"(R* F)

8
N":ﬁm

(‘Tla”' 7':CTL) - <l’17'" ,In_l,Xn(.T) = 132507.”7077‘)(1‘) :xnaow"a())

has a fold singularity with respect to the vertical Sym" (R*, F') along the hyperplane

E(AQT-) = ElO(AQ,«) = {In = 0}
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50,7

We can integrate zlo’“ ) with respect to X, r times, yielding the integral lift:

22 22r+1
n) — y Ty nf>Xn =7n> = 2 707"'
(@1, n) (‘rl 1, Xn(@) = 55 11 (2) @r+D)er—1)...1
. 2r—2i+1
zﬁo’“"o”)(x) = Tn 0,...

(2r—2i+1)(2r—2i—1)...1
z%o"" 0r) (x) = z,,0,... ,O) )
This integral mapping can be recovered, using differentiation, from its front projection:
Definition 7.4. The As.-cusp is the germ at the origin of the map:
Ay,:B — DBxF

IQ I2r+1
L - N R, ¢ = = n ,0,...,0).
(JC17 , T ) (Il Tp—1 n(l‘) 2 yl(x) (27‘+1)(2T—1) 0 0>

That is, the front projection is described by multivalued function whose only non-zero entry is y;.
Invoking Theorem 7.3] we deduce that that the integral map we started with is equivalent to Lg,. 1,
the fold we obtained using generating functions.

7.1.3. Pleats. We continue using the same setup. The following singularity of tangency with respect
to the vertical is a pleat:

B — B xSym"(R* F)

(z1,+ ,an) — (961> e X1, X (7) = xi/S — T1Tp, 250"" ’O’T)(x) =x,,0,..., 0) .

This restricted metasymplectic projection can then be lifted to produce a formula for the pleat in
J"(B, F). To avoid cluttering the text, we write only the formula for the front:
Definition 7.5. The As.-swallowtail is the germ at the origin of the mapping:

Swo,.: B — BxF
Ty, S1 Sr—1
() — (xl,... ,xn,l,Xn(x):xi/?)—xlwn,yl(x)zf J J srn(s?—xl)dsr...dsl,..).
o Jo 0 ;
J

Its singularity locus reads:
EI(SWQT) = {(Ei — X1 = 0}7 Ell(SWQT) = {xn,xl = 0}

Givental’s theorem tells us once more that this is equivalent to Lg, 2. We leave it to the reader to
produce similar formulas for the higher Whitney singularities using lifting.

7.1.4. The Reidemeister I move. The Ag,.-swallowtail has a fibered nature. Consider a vector space K,
serving as parameter space. Endow K x B with coordinates (s, ) and consider the fronts B — B x F
obtained from

Swo,(k,x) : K x B> K x Bx F

by freezing the coordinates (s).

If s > 0, the map has no singularities and is graphical over the base. If s < 0, the map has a pair of
Agp-cusps. At |s| = 0, the following birth/death phenomenon takes place:

Jj% $3r+1
T4ty Tp_1,T) — | Tja1,- oy Tno1, =, Z ,0,...,0 ),
(@1 n-1,2) (l“ "B Br+)(Br—2)...1 )
its lift to r-jet space is an embedded integral manifold whose tangency with respect to the vertical is
a cubic singularity. In particular, it is not of Whitney type.

Definition 7.6. The family of integral maps, obtained from Swa,(s,x) by lifting to J"(B, F), para-
metrically in s, is called the first Reidemeister mowve.

One can define similar homotopies for integral mappings by lifting the higher Whitney singularities
(as fibered maps over some of their coordinates).
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7.2. Semi-local singularities of tangency. We go on describing singularities of tangency for ¥.2-
free integral embeddings. The singularities we present are semi-local in the sense that they are not
germs at points but germs along higher dimensional submanifolds.

The singularities we go through are: the double fold (Subsection 7.2.1), the regularised wrinkle (Sub-
section 7.2.3) and the stabilisation (Subsection 7.2.5). We also discuss their birth/death phenomena.

7.2.1. The double fold. Regard D = S"~! x R as a fibration over S*~! and endow it with coordinates
(Z,2,). We make use of the restricted metasymplectic projection in J"(D, F) associated to the
foliation by spheres.

The following map has two consecutive folds along the x,, direction:
c:D — D®Sym"(R* F)
(F,2,) — (& Xn(@) =23/3 — 2,2 (2) = 2,,0,...0).

WHhen k£ = 1, the two folds have opposite orientations. The reader should think of this as having
opposite Maslov coorientations once we lift. This will play no role in the present paper and we refer
to the sequel [?] for further details.

Definition 7.7. We say that an integral embedding
fiN = (Y = X),&ean)
has a double fold in an annulus A = N if
flopeay = Lift"(0)|open-1x[-1,1))

up to point symmetry. The interior of A is often called the membrane.

Do note that we do not require for the identification with the model to extend to the membrane,
but the membrane is still part of the data of a double fold. The reason behind this is that, in our
arguments, we will allow for double folds to appear nested inside one another, but we still want to
remember how they are paired up.

The front of a double fold is equivalent to the map:

Ty S1 Sr—1
(7.2.1) (x) — (i,aji/an;J J f 57"1_[(5?l)dST"'dsl’O""()) )
o Jo 0 -
J

whose singularity locus is comprised of two spheres {|z,| = 1} of As,.-cusps.

7.2.2. Fibered double folds. We now describe how a double fold may appear in a family. Denote still
D := S» ! x R and fix additionally coordinates s in the parameter space K := R™. Then, consider
the family of maps:

c:KxD — KxD@®Sym'(R* F)

(8,8,2,) — (& Xn(z)=23/3+ (s> - 1)xn;z§0"" r)(a:) = 2,,0,...0).

For |s| < 1 fixed, the singularities are double folds of tangency with the vertical. When |s| = 1, the
double folds merge into a S*~! of cubic singularities. If |s| > 1, there are no singularities. Looking at
o as a single function, its singularities appear along:

S = {22 4[5 = 1} = D™ x (S™1 x {+(1—|s[?)} = §™ x §"1.
and the cubical ones correspond to S™ ! x S*~! < K x X.

Lifting o, parametrically in s, we obtain the fibered double fold. Using Givental’s theorem we
readily see that, for |s| < 1, the resulting lift is indeed a double fold in r-jet space (in the sense of
Definition 7.7).
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Definition 7.8. A family of integral maps fibered over K
f:KxN->Kx(J(Y - X),&an)
has a fibered double fold if there is a fibered over K embedding of ¥ < K x N such that
flopy = Lift"(0)|ops)
up to fibrewise point symmetry.
7.2.3. Wrinkles of tangency. We now define singularities of tangency of wrinkle type. The reader
should compare with the smooth Definition 4.3.

Consider now the restricted metasymplectic projection associated to the first (n — 1)-coordinates of
B. The following map has wrinkle-type singularities of tangency with respect to the vertical:

(7.2.2) c:B — X®Sym"(R* F)
(F,20) — (& 233+ (3% = Dan; 2" = 2,,0,...0).
Definition 7.9. An integral embedding of a ball D is a tangency wrinkle if its germ along 0D is
equivalent to Lift" (o)|opsn—1)-
The interior of D is called the membrane. A wrinkle may have further singularities in its membrane.

The front projection of a wrinkle reads:

Tn S1 Sr—1
(%, 2p) — (j,xi/3+(|j|2—l)xn;J f f srﬂ(s;%r|332+1)ds,....31,0,...,0>.
0 0 0 ;
J

7.2.4. Fibered tangency wrinkles. Usual smooth wrinkles are fibered, as explained in Subsection 4.3.3.
The same is true for the tangency wrinkle in r-jet space. We let D = R™*"~! where the first m-
coordinates (q) are regarded as parameters and the last (n—1)-coordinates (Z) are domain coordinates.
We fix X = R”, with coordinates (z) = (Z, zy).

A particular incarnation of the embryo is given by lifting the map:

(@) = (&, 25/3 + [#[ 2, 217" = 20,0,...0),

7.2.5. The stabilisation.
Definition 7.10. Set D = S"~!. A fibered over D integral embedding

f:Dx0Op([0,1]) — J(X,F)
is a stabilisation if

S(f,Vean) = D x {0} u D x {1}

and these are folds with the same Maslov coorientation. The image f(D x (0,1)) is called the mem-
brane of the stabilisation.
For a model we may consider the lift Lift" (o) of the map:
(7.2.3) o:DxOp([0,1]) — X@Sym"(R* F)

(Z,xn) — (&mi/i’)—xn;zgo’”"r):ﬁ 0,...0).

no



WRINKLING hA-PRINCIPLES FOR INTEGRAL SUBMANIFOLDS OF JET SPACES 31

7.2.6. Zig-zags. In the proof of Lemma 7?7 we see one of the incarnations of a phenomenon we call
open/closed switching. It was first observed by A. Givental in [24]. Let us explain what it is.

Let us recall Equation 7.2.1, which defines the front projection of a double fold:

t sy Spr—1
f(5c,t)=<§:7xn=t3/3—t;y1=fJ J srn(s?—1)dsr...dsl,0...,0>.
0 Jo 0 .
J

The term y; is defined by an iterated integral, as explained in Lemma 6.16. The way in which we
obtained it was as follows: let j” f(Z,t) be the holonomic lift of f to a multi-section. Consider one of
its components, the odd function

(2170 0 )@ 1) = t.

We then multiply it by ¢ — 1, so it remains odd, and then we integrate it once to yield the even

function
t

(250"”’0’T71) o " )&, t) = J 5,(s2 = 1)ds,.
0

Inductively we see that:

Lemma 7.11. The function zgo’”"o’r_l) 04" f is:

e odd if | is even,
e cven if | is odd.

This alternation between even and odd is precisely what we call open/closed switching. It can be
rephrased using Maslov coorientations in each (r — [)-jet space, but we leave this for the reader. We
can interpret it geometrically:

Lemma 7.12. The following statements hold:

e Ifr is even, the function y; increases at a fold point if and only if it increases at the other.
e Ifr is odd, the function y; increases at a fold point if and only if decreases at the other.

Proof. Being critical points, when we say increase/decrease we mean as continuous functions, without
considerations on the derivative. Note that the model at each fold point tells us that y; must be
either increasing or decreasing.

If r is even, the function y; is odd. This is equivalent to the first statement. Similarly, if r is odd, the
function y; is even, so the second statement follows. O

We can reason in exactly the same manner for the stabilisation and prove that the situation is exactly
the opposite.

Lemma 7.13. Let g be a stabilisation:

e Ifr is odd, the function yi o g increases at a fold point if and only if it increases at the other.
o Ifr is even, the function yi o g increases at a fold point if and only if decreases at the other.

What this means is that if we want to have two Ag,.-singularities in the front projection forming a
“zig-zag” shape, we must use a double fold if r is even and a stabilisation if r is odd. We define:

Definition 7.14. Set D = S"~!. A fibered over D integral embedding
J:DxOp(0,1]) — J(XF)
is a zig-zag if:

e r is even and f is a double fold,
e r is odd and f is a stabilisation.
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The front of the zig-zag is what we would call an open shape, and the other two situations (double
fold with r odd, stabilisation with r even) we would call them closed. The importance of zig-zags is
that they can be stacked on top of each other keeping the front projection embedded. This will be
central in our h-principle in Section 8.

7.3. Singularities of mapping. The singularities we have presented so far are all of tangency, i.e.
the integral maps themselves are non-singular. We will now look at singularities of mapping having
well-defined Gauss map taking values in Grse_gree(Ecan, 1)-

The main source of examples of singularities of mapping are projections of singularities of tangency
(from a higher jet space). We make some remarks in this direction in subsection 7.3.1. We then
define several germs: the cusp in its two incarnations (subsections 7.3.2 and ?77) and the swallowtail
(subsection 7.3.3). These are the pieces we need to then define some semi-local singularities: the
wrinkly stabilisation (subsection 7.3.4), the double cusp (subsection 7.3.6), and the wrinkle (subsection
7.3.7).

We continue using the notation from the previous Subsection 7.2.

7.3.1. Projecting singularities. Let f : N — J"(B,F) be an integral map. Then the projection
Trr—10f: N — J71(B,F) is integral as well. In Lemma ?? we additionally showed that if f is
a multi-section then =, ,_1 o f is a multi-section with a well-defined Gauss map Gr(m,,—10 f) = f
into the horizontal elements (where we use the identification between horizontal elements and lifts to
J"(B, F)). Hence, when we project, singularities of tangency become singularities of mapping.

Some of the singularities we will describe below are obtained by projecting an r-times differentiable
Whitney singularity. For instance, in subsections 7.1.2 and 7.1.3 we already saw that the front
projection of the fold and the pleat are the Ao, cusp and swallowtail, respectively.

One important observation is:

Lemma 7.15. Assume dim(F) = 1. Let f : N — J"(B, F) be a topologically embedded multi-section
of the form f = w41, 0g, with
g: N — J (B, F)

an embedded multi-section with Whitney singularities.

Then f is stable among multi-sections lifting to J"T'(B, F).

Proof. Let (fs)se0,1] be a deformation of fy := f and let (gs)se[o,1] be the corresponding deformation
of go := g lifting it. Observe that the lifts, when they exist, are uniquely defined (by lifting on each
branch).

According to Corollary 77, the map g is stable up to contact transformation germs. Higher contact
transformations are lifts of contact transformations in J" (B, F)) (Lemma 3.8). This implies that the
isotopy of contact transformations identifying gs with g is a lift of an isotopy taking fs to f, proving
the claim. 0

Remark 7.16. We will encounter below singularities of mapping that have a well-defined Gauss map
taking values in Grsi (Ecan,n). Therefore, none of those singularities can admit a lift to J" (B, F).
However, one may instead look the total space of

Grzszree (5can7 n) - JT(B, F)

and endow it with its tautological distribution. This partially compactifies J" (B, F) and, by defini-
tion, the singularities we describe admit a lift to Grsz _gee(Ecan,1)-

For dim(B) = dim(F), iterating this construction yields the Monster tower, as introduced by R.
Montgomery and M. Zhitomirskii in the treatise [35]. They show that there is a correspondence
between points in the tower and singularities of fronts. Their results should partly translate to our
context of ¥2-free singularities, but we point out some difficulties in Remark 7.22 below.
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An intriguing question is whether the whole Grassmannian of multi-section elements Grso(can, 1) 1S
smooth. If this were true, the natural next step would be to construct the analogue of the Monster
tower.

7.3.2. The horizontal cusp. As we prove below, projecting a fold down one level yields:

Definition 7.17. An integral map (Definition ?7)
f:0p({0})  —  JU(X,F)

is a horizontal cusp if:

o The singularities of n} o f form a hypersurface of semicubic cusps.
o Gr(f) takes values in Grso(€can, ).

A explicit fibered model can be obtained by lifting

- . 0,:1,0,
(%, 2n) — (x,xi;z§ ™) =23.0,...,0).

Lemma 7.18. Let dim(F') = 1. Then any horizontal cusp is equivalent to the model (using point
symmetries in the target, and diffeomorphisms in the domain).

Proof. By assumption f can be lifted to an integral map Gr(f) : N — J"*1(X, F). Since its meta-
symplectic projection has semicubic cusps, this lift is an embedding. The singularities of mapping of
f correspond to fold singularities of tangency of Gr(f). The claim follows from Lemma 7.15. O

In particular, a horizontal cusp f is a topological embedding, even if it is not an immersion. Its front
singularities are As,o-cusps.

7.3.3. The swallowtail. In subsection 4.5.1 we defined the smooth the open semicubic swallowtail
within the context of the wrinkle in positive codimension (Subsection 4.5). Now we define its jet
space analogue:

Definition 7.19. An integral map (Definition ?7)
f:0p({0})  —  JU(X,F)

is a horizontal swallowtail if:

e 7} o f has a open semi-cubic swallowtail at the origin.
o Gr(f) takes values in Grso(Ecan, ).

It is yet again a topological embedding because that is the case for 7} o f.

We can produce a model by lifting the following map into a principal metasymplectic projection:

(Z,zp) — (:%,J

0

Tn Tn

(52 — x1)ds; Z;O,...,O,r) = J (5% — 21)%ds,0,...,0).

0
Its singularity locus I' consists of the parabola {z2 = 1}, which is tangent to the x,-lines along the
codimension-2 linear subspace A = {z,, = 21 = 0}. A is the locus of swallowtails, and its complement
in T consists of horizontal cusps. Hence, the swallowtail serves as a birth/death of cusps (as is the
case in the smooth setting).

Lemma 7.20. Let dim(F) = 1. Then any horizontal swallowtail is equivalent (using point symmetries
in the target, and diffeomorphisms in the domain) to the model.

Proof. We lift f to Gr(f) : Op({0}) — J"1(X, F), which is smooth, embedded, and has a pleat at
the origin. Lemma 7.15 applies. (]

One can also consider vertical swallowtails or swallowtails with singularity locus becoming vertical
over a submanifold. We will not study this.
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7.3.4. The wrinkly stabilisation. We explained in subsection 77 that there is a correspondence between
smooth wrinkles and double folds by performing surgeries. We will not provide a justification of this,
but the same is true in jet spaces. For instance, the double fold (subsection 7.2.1) and the regularised
wrinkle (subsection 7.2.3) are, up to surgery, equivalent. Similarly, there is a “wrinkle” analogue of
the stabilisation, and one can pass between them through surgeries. It is defined as follows:

Definition 7.21. Set D = R"~'. An integral map (Definition 7?) fibered over D
frop(s™h) - JU(XF)

is a wrinkly stabilisation if:

S0(f) = S"2 is a locus of vertical cusps,

Elo(f, ‘/can) — Sn—l’

The hemispheres S*~1\S"~2 are folds with the same Maslov coorientation.
It is a topological embeddeding and has no other singularities.

Note that along S"~2 there is discontinuity in the Gauss map. Hence, the wrinkly stabilisation is not
a multi-section in the sense of Definition 77.

Remark 7.22. This is a continuation of Remark 7.16 above. The wrinkly stabilisation shows the
first difficulty with the Monster tower approach for higher dimensional manifolds: some singularities
do not admit a continuous Gauss map.

If we look at the maps induced by f on each fibre, we see that if || < 1 then they are curves with
two folds, if |Z| > 1 they are curves graphical over the zero section, and if |Z| = 1, they are vertical
cusps. That is, it corresponds to the standard unfolding of the cusp. Thus, not admitting a continuous
Gauss map corresponds to a phenomenon already observed in [35, Section 9.1]: the lifting procedure
to the Monster tower is not continuous in the unfolding parameter. This is something to be explored
in future work.

Lemma 7.23. The topological embedding condition is implied, in the vicinity of its cusp locus, from
the first three items.

Proof. For |Z| smaller than but close to one, the curve 7} o f({Z} x R) is an unfolding of the cusp.
(0,:,0,)

It describes a little loop when projected to (x,, z; ). In particular, it has a self-intersection
point. However, according to the subsection 6.3.3, the two intersection points have different lifts by
integration. (I

A model we may consider is the lift of

(#,2) > (7,23 /3 + (7> = Dan; 20 =22, 0,...,0).

n?

The principal metasymplectic projection of any wrinkly stabilisation is equivalent, as a smooth map,
to this model. However, it is unclear whether the model is unique up to point symmetries.

7.3.5. The wrinkled zig-zag.
Definition 7.24. An integral embedding
f:Op(S"™) = J'(X,F)

is a wrinkled zig-zag if:

e 1 is odd and f is a regularized wrinkle (Definition ?7),
o 7 is even and f is a wrinkled stabilization (Definition 7.21).
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7.3.6. The double (horizontal) cusp. Now we consider two spheres of horizontal cusps bounding an
annulus:
Definition 7.25. Set D = S"~'. A fibered over D integral map (Definition ?77)
f:Dx0p([0,1]) — J(X,F)
is a double cusp if

e [ is a topological embedding.
e Gr(f): D x Op([0,1]) — J"TH(X, F) is a stabilisation.

The image f(D x (0,1)) is called the membrane of f.

In particular, we are requiring that
X(f) =D x {0} u D x {1}

are horizontal cusps. If that is the case, the lift Gr(f) exists and is an immersion with two folds.
Hence, it may be a double fold or a stabilisation. We require that it is the latter.

The key property here is:

Lemma 7.26. The front singularities of the double cusp are two As,yo-cusps in an open configuration
(i.e. a zig-zag).

This follows from the open/closed switching from Lemma 7.13, see subsection 7.2.6.

7.3.7. The wrinkle. The “wrinkly” analogue of the double cusp is precisely:
Definition 7.27. Set D = R"~!. An integral map (Definition ??), fibered over D,
f:Ops"™h) -~ JU(XF)

is a wrinkle if

e Gr(f): D x Op([0,1]) = J" (X, F) is a wrinkly stabilisation (Definition 77?).
e f is a topological embedding.

The image f(D x (0,1)) is called the membrane.

A possible model is the lift of the wrinkled map of positive codimension (see Subsection 4.5):

Ty T

P, ) (z,j (52 + 3] — 1)ds; 200 _ J (2 + |72 — 1)2ds,0,...,0).
0 0

We do not know if Lift(F) is the only possible model. However, the principal metasymplectic projec-
tion of a wrinkle is equivalent to F' if we let left equivalences be diffeomorphisms preserving the base
projection. From this we deduce:

Lemma 7.28. FEquivalently, a wrinkle is an integral topological embedding
f:0p(S"Y) — JU(X,F)
with singularity locus L(f) = S"~ satisfying:
o The equator S*~2 consists of semicubic swallowtails.
e The hemispheres are horizontal cusps.

Remark 7.29. The wrinkle is unique for smooth maps (i.e. v = 0). Uniqueness for r > 0, as we
stated, is unknown. In the contact case (i.e. r =1 and dim(F) = 1), wrinkles for legendrians were
defined by D. Alvarez-Gavela in [1], providing a explicit model. Although not stated explicitly in his
paper, it seems like uniqueness follows from the constructions he provides.
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7.3.8. Fibered wrinkles. Let us present the fibered version. We fix coordinates (¢) in R™ and (z) in
X =R".
Definition 7.30. A fibered over R™ wrinkle is a map
f:O0p(S™ ) - R™xJ(X,F),
which we regard as a m-parameter family of integral topological embeddings f,(x) = f(g,x) with

singularity locus S™t" 1 satisfying:

o SO o f,) = S™T2 are open semicubic swallowtails,
o 9o f,) = STTTINS™TN2 gre horizontal cusps.

The maps with |q| = 1 are called (wrinkle) embryos.

A possible model for the principal metasymplectic projection of an embryo reads:

T

(5;%,)%(5:,] (52+|i\2)ds;z§0""’0’r)=J (s2 + |2|?)2ds, 0, ...,0).
0 0

However, we do not know whether this model is unique.

8. HOLONOMIC APPROXIMATION BY MULTI-SECTIONS

The main result of this Section is an A-principle with PDE flavour. It states that the holonomic
approximation Theorem 5.2 applies to closed manifolds as long as we are willing to be flexible and
allow for multi-sections. A particular consequence is that any open partial differential relation admits
a solution in the class of multi-sections.

The interesting part of the result is that it is sufficient to work with multi-sections with simple
singularities. Namely, they will satisfy that:

e Their only singularities are folds in a zig-zag configuration.
e Their front projection is topologically embedded.

In Subsection 8.1 we formulate this formally. In Subsection 8.2 we present the key geometric insight
needed for our arguments. Lastly, in Subsection 8.3 we provide the proof.

As in previous Sections, we fix a smooth fibre bundle Y — X, with X compact. We work on the jet
space J"(Y — X). In order to quantify how close two sections of J"(Y — X) are, we fix a metric.
8.1. Statement of the result. Recall the notion of zig-zag from subsection 7.2.6. We are interested
in multi-sections of the form:

Definition 8.1. A section with zig-zags is:

o an embedded multi-section f: X — J' (Y — X),
e a finite collection of disjoint annuli {A; < X},

satisfying:
o 7wy o f is a topological embedding,
o flx\(u,4,) i horizontal,

o fla, is a zig-zag.

Our main result is the natural multi-section version of the holonomic approximation Theorem 5.2:

Theorem 8.2. Let 0 : X — J"(Y — X) an arbitrary section. Then, for any e > 0, there exists a
map f: X — J(Y — X) satisfying:

e f is a section with zig-zags;
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o |f—0l|co<e.

It should be immediate to the reader experienced in h-principles, after inspecting the proof, that a
parametric and relative (in the domain and the parameter) version also holds. The parametric version
is stated and proven later in this Section.

Furthermore, the Theorem is the graphical case of the analogous result about approximating r-jets
of submanifolds through submanifolds with zig-zags (that is, the generalisation to higher jets of the
wrinkled embeddings Theorem 5.10). This will be addresed in the next Section.

8.2. The key ingredient of the proof. We now present the simple observation that constitutes
the basis of our work:

Definition 8.3. Let I = [a,b] be an interval. An asymptotically flat sequence of zig-zag bump
functions is a sequence of maps

(pn)wen = [a,0] — J°([a, b], R)
satisfying

their holonomic lifts j"pn : [a,b] — J"([a,b],R) are sections with zig-zags,
pN|OP(ﬂ)(t) = (.’13 =ty= 0)7

pnlopwy(t) = (x =ty =1),

|20 o pN| < L forall v’ > 0.

The name follows from the fact that an element py, with N sufficiently large, allows us to interpolate
between two given sections without introducing big derivatives (unlike a normal bump function).

Proposition 8.4. An asymptotically flat sequence of zig-zag bump functions exists on any interval.

Before we provide a proof, let us explain a Corollary that showcases this.
Corollary 8.5. Let ¢,6 > 0 be given. Consider sections sg,s1 : D® — R¥ satisfying |so — s1|cr < €.
Then, there exists a section with zig-zags f : D™ — J" (D", R¥) satisfying:

o (mpo f)lpp_, = so,

o (my 0 f)lop@pn) = 1,
o |j"so — flco < 4e.

Proof. We write (y1,...,yx) for the coordinates in the fibre R* and (x) for the coordinates in the
base. We break down the proof into elementary steps.

The pushing trick. Since |so — s1|co < €, we can shift sy by adding a constant in R¥:
So(x) := so(z) + (2¢,0,...,0).

Replacing sg by 59 guarantees that:

So(x) # s1(x), for every z € S"7! x [1 — 6, 1],
while retaining a bound |5y — s1|cr < 3e. We henceforth restrict the domain of 5y and s; to the region
of interest S*~1 x [1 — 4, 1].
First simplification. We can simplify the setup by applying the fibrewise translation:
JOS T x [1-6,1,RY) - JoS" ! x [1—46,1],R¥)
p — p—S(m(p),

It preserves the C"—distance and maps 3y to the zero section. The section s; is mapped to s := s; — 3g.
Consequently, we just need to explain how to interpolate between the zero section and some arbitrary
section s satisfying |s|cr < 3¢ and s(z) # 0 for all x.
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Second simplification. A second symmetry allows us to put s in normal form. Due to the nature of
the shift we performed, we have that

e <|yios(x)] < 3e
for all . This allows us to define a framing
A:S" 1 x[1-6,1] — GL(RY
A(z) = (s,ez,€3,...,€k),

where {e;};—1, . i is the framing dual to the coordinates y; in RF. The framing A defines a fibre-
preserving transformation of the R*-bundle by left multiplication. By construction Ae; = s.

Main construction. Apply Proposition 8.4 to produce an asymptotically flat sequence of zig-zag bump
functions

(pn)ven:[1=06,1] —  JO([1—4,1]R).
We use it to define a sequence of front projections:
Zn ST x [1-6,1] — JOS"x [1-6,1],RY)
@) — Alpy(t)el
We claim that, for N large enough, the holonomic lift fy := j"Zy satisfies the properties prescribed.

Checking the claimed properties. We first observe that fy is a section with zigzags. This follows
from the fact that j"(pyer) is a section with zigzags and fy is obtained from it by applying the point
symmetry j" A. In particular, the singularities of fy are codimension-1 spheres of folds, corresponding
to the values of ¢ in which py has an Ag,-singularity.

The second and final claim is that |fny|co < 4e if N is large enough. Equivalently, we have to bound
the C'"-size of:

A(pner) = pns.

Note that we can pretend that py is an actual function, because this is true over a dense set. Therefore,
for each multi-index I with |I| < r we compute:

2

W (pns)2 =] D1 (@)@ s)| < D1 [0 pw Pl s

IIr=1 EUTEY,

Now, each derivative [0’ py| is smaller than 1/N, with the exception of |py| = 1. Similarly, |07 s| < 3¢
for all I"”.

Let K7 be the maximum number of decompositions I’ + I” = I that a multi-index |I| < r in n
variables and k outputs may have. Let K5 be the number of multi-indices |I| < r. Then:

9K
|07 (pws)|? < |07s? + N—;EQ
9K 9IK1 K.
lpns|Z. < Z <8IS|2 + N;52> <|s|& + ]\}2 22,

1

Therefore, by setting N2 > 9K, K,, we conclude:

|fN|CO = |pN5|Cr < ‘S‘CT‘ + e < 4e.
(]
Remark 8.6. An interesting feature of the proof is that the sections with zig-zags we construct are
obtained from the “standard” sections with zig-zags j"(pne1) by applying a point symmetry. The

same argument would work if instead of j"pn we used a particular model of wrinkle (subsection
7.8.7). Hence, we can bypass the potential uniqueness issues for wrinkles pointed out in Remark 7.29.

Now we construct the zig-zag bump functions:
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Proof of Proposition 8.4. Observe that it is sufficient to prove the claim for I = [0, 1], since any two
intervals are diffeomorphic by a scaling and a translation. The scaling dilates the fibres of jet space
in a homogeneous manner, so any asymptotically flat sequence is mapped to an asymptotically flat
sequence.

Fix N. We will construct py as the holonomic lift px = j"(7f o pn) of its front projection 75 o py.

The infinite zig-zag. We first define:
Z:R — J0,1],R),

0 — <x(t) _ ;f sin(s)ds, y(t) J t sin(s)Q’”ds).

0 0

We claim that, at each of its critical points {¢ = 0,7,2m,...}, the map Z is modelled on the Ay,-
singularity. To prove this we compute the Taylor expansion at each of these points:

sin(lr + h) = g + O(h?), sin(ir + h)*" = A% + O(h*"+?),

h2 4 h2r+1
alim+h) =T+ O, ylr+h) = 5

+ O(h2r+3)_
Which proves the claim because the A, singularity is stable.

From this computation we deduce that the lift
J"Z R — J°([0,1],R)

is an integral mapping with fold singularities. Since its front is topologically embedded, j"Z is
embedded. Lastly, according to the definition in Subsubection 7.2.6, the germ j"Z|op([(21-1)r,2i]) 18
a zig-zag. The section with zig-zags j7Z has infinitely many of them stacked.

A piece of the infinite zig-zag. Next, observe that Z is graphical over [0, 1] in the intervals (2ir, (21 +
1)m). In particular, we can flatten Z in Op(0) so that it is identically 0, without introducing self-
intersections of the front. Similarly, for any [, we can flatten Z in the region Op((2l + 1)7) so that
it is identically Z((2l + 1)7). Lastly, we can scale this modification of Z, dividing by the constant
Z((2l+1)7). In this manner we obtain a front that is identically 0 and 1 in Op(0) and Op((2] + 1)7),
respectively. We denote it by Zy.

We claim that, if  is large enough, then |2(%) 05" Zx| < € for all @ > 0. This follows immediately from
the scaling we just did: Z was 2m-periodic, so the quantities z(*) o j”Z were bounded. The quantity
Z((2l 4+ 1)) goes to infinity as [ does, so a sufficiently large choice guarantees that the derivatives of
j"Zn are smaller than 1/N.

Lastly, we simply reparametrise
Ty o pn(t) = Zn o ¢(1),
where ¢ : [0,1] — [0, (2] + 1)7] is a suitable diffeomorphism. O

8.3. The proof. The proof of Theorem 8.2 follows the standard structure of an h-principle.

In subsection 8.3.2 we prove the reduction step. Its output is a holonomic section g, defined along the
codimension-1 skeleton of X and approximating the given formal section o.

In subsection 8.3.3 we provide the extension argument: we extend g to the interior of the top dimen-
sional cells. In order to obtain a good approximation of ¢, the extension to the interior must be a
multi-section, as presented in Corollary 8.5.

8.3.1. Preliminaries. We must fix some auxiliary data first. Depending on the constant € > 0 we fix
a finite collection of pairs {(U;, f;)} such that

e {U;} is a covering of X by balls,
o fi:U; —» J"(Y|y, — U;) is a holonomic section satisfying |f; — o|u,| < €.
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The existence of such a collection follows from the standard holonomic approximation Theorem 5.2
applied to each point in X. By compactness of X we get a finite refinement.

We then triangulate X, yielding a triangulation 7. We assume that this triangulation is fine enough
to guarantee that each simplex is contained in one of the U;. Given a top-simplex A € T, we choose
a preferred U; and we denote the corresponding section f; by fa.

We remark that Y|y, is trivial, so we can make the identification J" (Y |y, — U;) = J7(D",R¥). We
can then relate the C%-norm in the former with the standard C°-norm in the latter. By finiteness of
the cover there is a constant bounding one in terms of the other. We assume this constant is 1 to
avoid cluttering the notation.

8.3.2. Reduction. The codimension-1 skeleton of X is a CW-complex of positive codimension. Thus,
according to Theorem 5.2, there exists:

e a wiggled version T of T, 3
e a holonomic section g : Op(T) — Y satistying |0 — j"¢g| < e.

The wiggling can be assumed to be C%-small, so each top-simplex A € T is contained in the same
U; as the original simplex. IL.e., we have sections g (defined over Op(dA)) and fa (defined over the
whole of A), both of them approximating o.

8.3.3. Extension. We focus on a single top-simplex A € T because the argument is the same for all of
them. We simply observe that Corollary 8.5 applies to g and fa over the annulus Op(dA), producing
the desired multi-section extension f of j"g to the interior of A. The Corollary guarantees that:

If —ol <|f =" fal + 15" fa — of < 5e.
This concludes the proof of Theorem 8.2. O

We close with an extremely biased remark about the proof: the idea presented (zig-zag bump func-
tions together with the pushing trick) seems simpler than the path followed in [21] (reducing to
simple tangential homotopies and approximating them with a model zig-zag). Additionally, it has a
more transparent connection with holonomic approximation. Therefore, Theorem 8.2 provides a new
understanding even in the classic case r = 1.

8.4. Parametric and relative version. To state the parametric version of Theorem 8.2 we work in
the foliated setting of Section 3.5. Let X be an n-dimensional manifold endowed with a codimension-k
foliation F. Then, given a fiber bundle Y — X, we consider the leafwise jet bundle J" (Y — (X, F)).

In parametric families, double folds (Definition 7.7) can appear and disappear. Thus, we need to
extend the notion of a section with zig-zags (Definition 8.1) to include the appropriate birth-death
behavior.

Definition 8.7. A foliated section with zig-zags is:
e an embedded multi-section f: (X, F) — J" (Y — (X,F)) (Definition ?7);

e a finite collection of disjoint (embedded) cylinders {C; = X} each isomorphic to S*~F=1 x
Dk+1.

This data is assumed to satisfy:

wy o f is a topological embedding;

flx\(u,0,) is transverse to the fibers of m, : J"(Y — (X, F)) — X;

Fle, is equal to the foliation induced by the projection m : Srk=1 x DEL — DF onto the first
k coordinates of D**1;

fle, is equal to the S*"F=1 stabilization of a wrinkled zig-zag (Definition 7.24) fibered over
]D)kJrl N ]D)k.
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Thus, the singular locus of a foliated zig-zag equals X(f) = 10 U X110 where
0(fle,) =SS BMO(fle,) = $M,
and each cylinder C; and for leaf £ of F, one of the following holds:

L Cj NL= Q,
e C; n L =S""% "1 consisting of double fold embryos (Equation 4.4.2),
e C;nL=S"%"1x1], and the restriction of f to this annulus is a zig-zag (Definition 7.14).

The parametric version of Theorem 8.2 is then stated as follows:

Theorem 8.8. Let 0 : X — J"(Y — (X, F)) be an arbitrary section. Then, for any e > 0, there
exists a map f: X — 'Y satisfying:

e f is a foliated section with zig-zags,
o |f—0l|co <e.

Moreover, if o is holonomic in a neighborhood of a polyhedron A < M, then we can arrange f = o
on a neighborhood of A.

8.5. The key ingredient of the proof. The proof closely follows that of Theorem 8.2. The addi-
tional ingredient is a description of the birth/death of zig-zag bump functions as in Definition 8.3.

Definition 8.9. Let [—4,0] x [a,b] < R be a square and fix coordinates (s,t) € [—6,0] x [a,b]. An
aymptotically flat sequence of zig-zag bump functions with birth/death of order r is a
sequence of maps

(pN)Nen : [<6,6] x [a,b] = [=6,5] x J°([a, b],R)
satisfying:

(1) their holonomic lifts j"pn : [—9, 8] x [a,b] — [6, ] x J"([a, b], R) are multi-sections with zig-zag
birth/deaths, should define this describe the singular locus inside the domain?,
(i) pn(6,t) is an asymptotically flat sequence of zig-zag bump functions as in Definition 8.3,
(iti) pn(=6,t) = (z =t,y =0),
(iv) dipn(s,t) =0 for all t € Op(d[a,b]), and pn(s,t) = (x =t,y = 0) for all t € Op(a).
(v) |z o pn| < ~ forall0<7r' <,

FIGURE 1. Schematic depiction of the graph of py for N = 2.

Conditions (i) — (4i¢) imply that for each N € N the function py defines an interpolation between
the bump function of Definition 8.3, and the zero function. The last two conditions say that we can
control the derivatives of the interpolation.
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Proposition 8.10. Asymptotically flat sequences of zig-zag bump functions with birth/death exists
on any interval.

Proof. Throughout the proof we think of pn as a l-parameter family of maps pns : [a,b] —
J%([a,b],R). We first construct the bump function and show it satisfies conditions (i) — (iv) of
Definition 8.9. We treat the cases N = 1 and N > 1 separately, since the main idea is already
contained in the N = 1 case. Lastly we show that the derivatives can be controlled proving condition

().

The case N = 1. Consider the As,-swallowtail Sws, : R? — R3, as in Definition 7.5, and restrict it to
[—9, 6] x [a,b]. We identify this map with its image, which is a topologically embedded submanifold
of JO(R% R) ~ R®. Modifying this submanifold we obtain a map interpolating between p; : [a,b] —
J%([a,b],R) from Definition 8.3, and the zero section.

In the coordinates (s,t), the map Swa, is given by

t
(5,t) — (s, —t> — st,f (2% + sz — 13 — st)"dz),
0

which we view as a 1-parameter family of maps Swo, . It follows from this formula that
SW2T,§/2 : [a7 b] - JO([aa b]rR)
is a zig-zag conform Definition 7.14. Therefore, Proposition ?? provides an isotopy ¢s : [a,b] —

Diff (J%([a,b],R)), s € [§/2, ] satisfying:

(i) ¢s © Sway s = p1 where p; is as in Definition 8.3 with N =1,
(i) ¢s = id for s € [24,6] and ¢, = ¢; for s € Op(d),
(iii) @5 o Sway s is a zig-zag (Definition 7.14) for all s € [6/2, 4].

Hence, the map defined by

¢s0Swar s S€[§/20] ’

satisfies Conditions (i), (#4) of Definition 8.9. A similar argument, modifying Sws, around {—d} x
[a,b] U [—6,0] x [a,b], shows that conditions (iii) and (iv) can also be satisfied.

{swm se[-8,6/2]
Pl,s =

The case N > 1. The proof is virtually the same as that for N = 1. We choose N disjoint subintervals
of [a,b] by setting:

(oo, be] e [%—1 20
G N ¥ 12N + 1
We can assume that the restriction of the bump function py : [a,b] — J°([a,b],R), constructed in
Proposition 8.4, to the interval [ag,bs] is equivalent to a zig-zag. Furthermore, the images of these
restrictions are disjoint in J%([a, b], R), and py is graphical on the complement [a, b]\UéV:l[ag, be].

| o=

Let Swa, n : [—6,6] x [a,b] — J([—4,5] x [a,b],R) be a multi-section such that:

(i) The restriction
SWar, N|[—8.6]x[ac.be] * [0, 0] % [ag, be] — J°([=6, 6] x [az, be], R)

is equivalent to the As.-swallowtail Swo, : R? — R? from Definition 7.5.
(ii) Swa, n is an honest section on the complement [a, b]\Uévzl[ag, be].

Again, we think of this as a [, §]-family of multi-sections Swa, x s : [a,b] — J°([a, b], R).
By Proposition ?? we find isotopies ¢, : Op [a,b] — Diff (J°([a,b],R)), s € [6/2, 6] satisfying:
(i) ¢s ©Swar ns = pv Where py is as above,

(i) ¢s = ¢s for s € [26,0] and ¢, = id for s € Op(5/2),
(iii) @5 o Swar n,s is a zig-zag (Definition 7.14) for all s € [6/2, d].
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As before, this means that the map defined by

N SW?T,N,S S€E [_57 6/2]
PNS ) 6y o Swarns s€[6/20]

satisfies Conditions (), (i¢) and (iv) of Definition 8.9. Modifying Swa, around {—4d} x [a,b] U [—d,d] x
0d[a, b], shows that condition (7#i7) and (iv) can also be satisfied.

The flattening trick: It remains to show that |zrl opn.s| < % for all 0 < 7" < r. The above construction
of pn,s depends on the (abstract) isotopy provided by Proposition ??. Nevertheless, since the domain
is compact, the derivatives of py s are bounded (although potentially very large). The key observation
is that by “flattening "the graph of py s its derivatives can be made arbitrarily small.

For a small € > 0, choose a strictly positive function A, : [—4, 6] — [0, 1] satisfying:

(i) Ae(s) =1 for s € Op(d),
(i) 0 < Ae(s) < e for s € Op([—4, 26]).
This defines a "flattening diffeomorphism”
Y. 1 [=6,0] x J%([a,b],R) — [4,6] x J°([a,b],R)
(87 €T, y) — (57 z, )\E(S) : y)

Since 1. is fibered over (s, x) it follows that:

zT/owEOpN’sz)\s(s)-(z opns), VO<7 <

The construction of py,s shows that 2" o pn,s is bounded for all s. Indeed, this follows immediately
from the compactness of its domain and continuity of px ;. Therefore, choosing ¢ sufficiciently small
the claim follows.

O

8.5.1. Patching tears. Proposition 8.10 provides a tool for gluing multisections in the foliated setting,
analogous to Corollary 8.5.

Corollary 8.11. Let g,6 > 0 be given and consider the foliated cylinder
(D* x D" *, Fi= | ] {a} x D"7F).
zeDk

Given two sections sg,s1 : D" — R* there exist a foliated section with zig-zags (Definition 8.7)
s:D" — J'(RF — (D", F)) satisfying:

(i) (708l ppt = 515

(i3) (s © 8)|opeDk xDr—k LDk xaDn—k) = S0;
(i) |J"so — 8| < 4e.

Proof. The proof follows closely the argument of Proposition 8.4, but replacing the zig-zag bump
fuentions from Proposition 8.4 by the zig-zag bump functions with birth/death from Proposition
8.10. The first parts of the proof of Proposition 8.4 go through word for word. Thus, after applying
the “pushing trick” and the “first and second simplification” we can assume to be in the following
situation:

e We have two sections s, s1 : D¥ x D"=% — J7((D* x D"~* F) R),
e sq is the zero-section and s; = j"1, is the lift of the constant function equal to one.

We identify these sections with their front projections.

Matching along the horizontal boundary:




44 ALVARO DEL PINO AND LAURAN TOUSSAINT

The boundary of the cylinder splits into two parts:

O(DF x D" F) = SF=1 x Dk U DF x sPRL
We refer to the first and second component as the vertical and horizontal boundary respectively.
We want to match sy and 5; along the horizontal boundary while keeping control on the derivatives.

In order to do this we introduce singularities. In the spirit of Proposition 8.4 we construct a suitable
bump function “interpolating” between the constant functons sy and s;.

Given a small &’ > 0, consider the leafwise thickening of the horizontal boundary
T:=D" x [1—6,1] x S"F1
as in Figure 8.5.1.

A neighborhood of the corner (i.e. the boundary of the horizontal boundary) S¥=1 x §"=F=1 is
contained in the region where s; = 0. This will be important since our bump function will have
birth/death events along SF=1 x SP—=F-1,

We decompose the thickening into two regions:

(8.5.1) T=[1-61] xS x [1=61] xS"F JDf7j x [ —6,1] x "7+,

Now we define our bump function py : T — JO((T,F) — R) as follows. On the first component
we set py to be the (SF=1 x S"=F~1)_stabilization of the bump function on [1 — §,1] x [1 — 4, 1] as
constructed in Proposition 8.10.

Note that the restriction of py to {1 —d} x [1 — 4,1] x Sk~ x §*7F~1 equals the bumpfunction
constructed in Proposition 8.4. Hence, we can smoothly extend px over the second component as the
(D¥_s x S"=*~1)-stabilization of the bump function from Proposition 8.4.

If 6 > 0 is chosen sufficiently small, then the first component of the decomposition in 8.5.1 is contained
in the region where §; = 0. This implies, together with the “Checking the claimed properties”
argument in the proof of Proposition 8.4 shows, that py defines a foliated section with zig-zags
(Definition 8.7) satisfying the required conditions.

Matching along the vertical boundary: There are no restrictions on the derivatives of s in the param-
eter direction. Therefore any interpolation between sy and s; in the parameter direction suffices.

A thickening of (part of) the vertical boundary
Vi=[1-4] xS x DIy,
intersects the thickening of Equation 8.5.1 in the region
VAT =[1-0]xS"1xsn=r1
It follows from the way we defined py above that
pn|var = (SF71 x S"7F~1)_stabilization of PNI[1=5,1]x{1=6}>

where py : [=6,6] x [1 —6,1] — JO([1 — 6,1], R) is constructed in Proposition 8.10. Thus, this
restriction is a smooth function (without singularities) interpolating between sy and s;. By extending
it over V as the S¥~1 x D"~* stabilization of p defines we obtain an interpolation along the vertical
boundary.

O

8.6. Resolving singularities when r is odd. The zig-zag bump function p with birth/death (Def-
inition 8.9) allows us to interpolate between multisections with zig-zag singularities and non-singular
sections. When r (the order of the jet-space we are working in) is even, the holonomic lift j"p defines
an embedding into the jet bundle. Indeed, the metasymplectic projection (Section ??) of the lift is
given by the birth death of a double fold, see Section 4.4.
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FIGURE 2. Schematic depiction of the graph of s together with the relevant regions
in its domain. Note that the vertical and horizontal boundaries are connected if
k> 1.

When r is odd, the situation is more complicated. Although a zig-zag still lifts to a smooth map (an
immersion), its birth/death is singular. The reason for this is the open/closed switching from Section
7.2.6. The front projection of a zigzag is a pair of Ag,. 1 singularities in an open configuration. Hence,
since r is odd, its metasymplectic projection is in closed configuration. As the following lemma shows
this forces the birth/death to be singular.

This side comment needs to appear in the section on singularities

Lemma 8.12. If r is odd, then the metasymplectic projection of a zig-zag cannot be homotoped,
through immersions, to an embedding.

Remark 8.13. Since all of our singularities are stabilizations of the 1-dimensional zigzag the previous
lemma suffices. For the general case we argue using the Maslov class? Is it clear that indepdently of the
topology of the singular locus the zigzag can never be homotoped to the identity through immersions?

Proof. Winding number O

To work around this problem we will change the singularities by a surgery to obtain a singularity
whose birth/death is smooth. Before discussing the details let us first describe the birth/death of the
resulting singularity.

8.6.1. Birth/death of double folds. Consider the trivial bundle 7= : R — R which we think of as the
front projection of J"(R — R). We describe a 1-parameter family of multi-sections f;, ¢ € [0,1],
(identified with their front projection) connecting the constant section fo = 0 and a multisection f;
with two Ag,.41-folds. The family f; is illustrated in Figure 8.6.1.

e Starting from the constant section fy we first add a stabilization (Section ?7). We denote by
r; and r_ the right and left singularity respectively.

e Using an isotopy supported around r_, we move r_ above the left branch of f;. Note that
this can be done is such a way that all the self-intersections of (the front of) f; are transverse.

e Again using a locally supported isotopy, we move the right branch completely above the other
branches. In this proces all the self-intersections are transverse, except for a single time where
the right and middle branch intersect tangentially. At the tangential intersection points the
curvature of the two branches can be chosen differently.
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FIGURE 3. The 1-parameter family of multi-sections described in Proposition 8.14.

The self-intersections created in the homotopy above resolve when lifting to J"(R — R) provided r
is at least 2. Thus we obtain an embedding into the total space. On the other hand, for r = 1 it is
known [] that it is impossible to remove self intersections. The downside to this construction is that
the front projections of the resulting multi-sections are no longer topological embeddings (in contrast
with the case when r is even).

Proposition 8.14. If r > 2 the family of sections fi, t € [0,1], described above lifts to a family of
(embedded) multi-sections of J"(R — R). Furthermore, for any € > 0 we can arrange that |§" f¢|co <
€.

Proof. The birth/death of a stabilization lifts to a smooth map in J"(R — R), as shown in Section ?7.
Moreover, the stabilization is a multi-section with two As,., 1 singularities. Thus, the above family
lifts to a smooth family of maps.

Whenever two branches intersect, either their tangent spaces differ (transverse intersection) or their
curvatures differ (non-transverse intersection). Hence, their lifts are disjoint and we obtain an em-
bedded multi-section.

The domain of f; and the parameter space of the family are compact. Hence the lift 5" f; is bounded.
Denote by e : R — R the fiberwise multiplication by the constant C' € R. Then for C' > 0 sufficiently
small (depending on €) the composition uc o f; satisfies the required properties. O

Remark 8.15. In the above proposition we need v > 2 in order for the self-intersections to resolve.
If the dimension of the fiber is = 2, that is if we consider sections of R¥ — R for k > 2, this condition
is not necessary. Indeed, in this case the we can "push one branch in the extra direction” around each
self-intersection. Also observe that in this case the front projection is a topological embedding.

8.6.2. Surgery. The main purpose of our surgery result stated below is to use it in the proof of Theorem
8.8. Therefore, although the argument holds more generally, we state a somewhat specialized version
which can be applied immediately.

Proposition 8.16. Forr > 0 let f : M — J?>"*Y(R — M) a foliated section with zigzags conform

Definition 8.7. Then, for any € > 0, there exists an embedded multi-section f: M — J"(R — M)
satisfying:

(i) X(f) = E(f) as subsets of M. However, the type of singularities differ.
(i) The singularities of f consist of folds and birth/deaths of folds.
(iii) |f — flco < e (inside J"(X — M)) and f = f away from the singularity locus.
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Proof. According to Definition 8.7 the singularities of f are stabilizations of wrinkly zig-zags. Since
2r + 1 is odd this means that they are regularized wrinkled (see Definition 7.24 and Definition ?7).
Throughout the proof we identify these (multi-)sections with their front projections, as usual.

For our construction it is useful to think of a wrinkle along S”~! as a pair of folds along the upper and
lower hemisphere Dgfl which come together and die along the equator S”~2. By applying a surgery
we will change the wrinkle so that ”the birth/death movie” matches that of Proposition 8.14.

We start by decomposing a neighborhood of the singular locus Op(S™~1) of the wrinkle in the following
way.

A neighborhood of the equator can be identified with S"=2 x R2. Let (t,x) denote coordinates on
R2, then the intersection of the singular locus S"~! is given by S"~2 x {z = ¢?}. In particular, the
equator is given by S"~2 x {0}. On this neighborhood the wrinkle equals the S"~2-stabilization of a
swallowtail Swy, 12 : R? — R3 (Definition 7.5).

We can then simply replace the graph of Swy,.o by the one from Proposition 8.14, as illustrated in
Figure 8.6.2. Note that the graphs match along {t = 1} U {# = +1} and hence on these sides the
new graph can be smoothly continued as f. Then, since the upper and lower hemisphere are disjoint,
the new graph can be extended over S*~!. Thus, around the upper and lower hemisphere f equals a
D"~ L_stabilization of an Ay, i-cusp (Definition 7.4).

It remains to check that the resulting map satisfies the required properties. The first two properties
follow immediately from the construction. For the third property observe that the surgery can be
performed on an arbitrary small neighborhood of the equator S*~2. Here the lift of the original section
is arbitrarily small. By Proposition 8.14 the same holds for the new map. Similarly the change of the
fold locus can be performed on an arbitray small neighborhood of the upper hemisphere. Hence the
lifts of f and f are C9-close. O

kt

> >

FIGURE 4. On the left: the swallowtail Swy,,» around the equator S*~2. On the
right: the result after applying surgery.

8.7. Proof of Theorem 8.8. The main difference with the non-parametric proof originate from the
fact that when r is odd the birth/death of a zig-zag does not lift to a (smooth, embedded) multi-
section. Therefore, when r is odd, we apply apply the proof for r + 1 which is even. Then, in the
last step we use the surgery construction of Proposition 8.16 to obtain a multi-section of the r-th Jet
bundle. When 7 is even, proof is mostly the same as that of Theorem 8.2 and so we only point out
the differences.
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Firstly, now we are in the foliated setting. Hence, when we choose a triangulation 7 of X we need
to ensure it is compatible with the foliation F. This follows from Theorem 5.5, stating that the
triangulation can be chosen in general position with respect to F.

In the reduction step of the proof we apply Theorem 5.2 wiggeling the codimension-one skeleton.
This results in a new trianguliation of X, and we want it to be in general position with respect to
F. To this end we choose a vector field V € Op(7"~1) tangen to the leaves of F. Then (as stated in
Theorem 5.2) we can arrange that the wiggled skeleton stays transverse to V' (and thus to F).

Next, we apply the extension step, using Corollary 8.11 instead of Corollary 8.5. Each top dimensional
cell A of T is tangent to F along a sphere S¥=!, see Figure 8.7. It has a small neighborhood (inside
D") diffeomorphic to the upper half ball:

D%} :={zeD" |z, = 0},
and such that the leaves of F are tangent to the bottom boundary
0_D% :={xeD? |z, = 0}.

Hence, removing this neighborhood from D™ we obtain a cylinder D* x D"~* satisfying the conditions
of Corollary 8.11. Thus we can extend the section around the (n — 1)-skeleton over each of the top
dimensional cells.

If r is even this concludes the proof. In the odd case (having applied the previous steps with r + 1)
it remains to apply Proposition 8.16.

A ~| D"

I

/TN

|
|
|
|
>

Lo

F1GURE 5. Top dimensional cell A of T.

9. HIGHER WRINKLED EMBEDDINGS

As an application of Theorem 8.2 we prove in this section a generalization of the h-principle for
wrinkled embeddings from [21].

At the end of the Section we explain various surgery results for wrinkles, including the passage from
wrinkles to double folds and viceversa.

9.1. Statement of the result. Two submanifolds Ny, Ny € M have the same r-jet at x € N1 n Ny
if Ny is graphical over N; (around z) and the induced section of the normal bundle vanishes up to
order r, see Section 3.4.2. As before we denote by J"(M,n) the space of r-jets of submanifolds of
dimension n in M.

Theorem 9.1. Let the following data be given:

o Two smooth manifolds N and M of dimensions n and m, respectively.
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A connected, compact manifold pair (K, K"), with K' possibly empty, playing the role of the
parameter space.

A family of smooth embeddings fr : M — N, with k € K.

A family Fy, s of lifts of f:

J"(N,m)
V l” (k,s) e K x [0,1]
fr

M ————- N

with Fy s = j" fi whenever ke K' or s =0.
e A constant € > 0.

Then there exists a family of A,-folded embeddings fr.s : M — N parametrized by (k,s) € K x [0,1],
possibly containing embryos, and satisfying:

o frs = fr whenever ke K’ or s =0.

b |fk,s*fk|00 <E.
® |jrfk,s_Fk,s|CO <e.

We need to add a proof of the following two statements, since they are used in the proof of the
h-principle for integral submanifolds modelled on jet space.

e If P c M is a polyhedron of positive codimension, then the fold locus of fj, s can be assumed
to be disjoint from P.

e Given a line bundle V' < T'N we can arrange that the folds of f; s are "along V7. That is, in
the local model of the folds, V' can be chosen as the vertical direction. Also point out that
such line bundles need to be chosen locally on the top dimensional cells of a triangulation, so
there is no obstruction to their existence.

By surgery of the singularities we can pass from folded maps to wrinkled maps, see Section ??. This
immediately implies the following:

Proposition 9.2. Given the same data as in Theorem 9.1, there exists a family of A,.-wrinkled
embeddings frs : M — N parametrized by (k,s) € K x [0,1], possibly containing embryos, and
satisfying:

o fis = fr whenever ke K' ors=0.
® |fk,s —fk|co <e.
® | frs — Frslco <e.

Should add the parametric arguments

9.2. Reduction to sections. Consider an embedded submanifold f : M — N. The normal bundle
7w : N — M provides the structure of a fibration on an open neighborhood, also denoted by N/, of M.
In turn this gives an embedding

(9.2.1) J'N > M) — JN,m)c J(N,m).

If the homotopy F, in Theorem 9.1 is sufficiently small (in the C%-norm on J"(N,m)) then we can
interpret it as a section of J"(N — M).

For the proof of Theorem 9.1 we will also need a fibration structure around folded embeddings (Defi-
nition ??). Let f : M — N be a folded embedding, which we identify with its image. Recall that the
singular locus ¥ := X(f) consists of a disjoint union of codimension one spheres. Even though f has
singularities, it has a well-defined Gauss map (Remark ??) Gr(f) : M — Gr(T'N,m).

Given a thickening of the singular locus:
S:=0p(¥)~(-1,1) x ¥ c M,
we can find an embedding g : S < N, such that jlg = jlf for all points x € X.
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Similarly, for any top-dimensional cell U; € T™ we find a thickening
U; = Op(U;) ~ U; vy, [0,1) x 0U; < M,
and an embedding g; : U; — N extending flins(v,)-
Both U; and V are embedded submanifolds. We choose normal bundles, denoted by A; — U; and

N — V respectively, such that their restriction to intersection U; NV agrees. This provides the
structure of a fibration as in Equation 9.2.1.

9.3. The graphical case. In this section we prove a special case of Theorem 9.1. Let f: M — N
be a wrinkled embedding and Fs : M — J"(N,m), s € [0,1] a lift of f such that

|_7Tf — F0|Co < €.

Choose N; — U; and N' — S as in the previous section. We assume that the image of Fj is contained
in the image of the induced coordinates, see Equation 9.2.1. Thus, we only have to work with jet
spaces of fibrations and we can think of F as a family of sections. We show how to extend f to a
family of wrinkled embeddings fs : M — N satisfying

‘jrfs - Fs|CO <é&.

9.3.1. Holonomic approzimation around the folds. Using the bundle ' — S we interpret f|s as a
section of A/ and the family Fs|s, s € [0,1], as sections of J"(N — &). Since ¥ < S has positive
codimension we can apply Theorem 5.2 to find:

e a family of isotopies ¢, : S — S, s,t € [0, 1],
e a family of sections o5 : § — J"(N — 8),

satisfying:

e 0y is the zero-section corresponding to j"g,

~

e 0, is holonomic on Op(f)s) where ¥, 1= ¢51(2),
o |0, — Fslco <e.

This data induces an isotopy in the front projection of J"(N — &) which we use to translate the folds
of f as follows. Choose a trivialization /' ~ S x R* such that g corresponds to the zero-section, and
an isomorphism Op(X) ~ (—1,1) x ¥ inducing coordinates (r,z). We define

Ve Op(E) x R¥ - & x RF

(r,x,y) e (d)s,t(m) +7ry+o0s ((bs_%(x)) .

To extend 15+ to a global isotopy choose a family of bump functions
(9.3.1) 7s: S —[0,1], se€][0,1],
supported in S and satisfying TS|Op(is) = 1. Then the extension is given by s : N - N, z —

Vs 7. (2)(T), see Figure ?7. Finally, fs := ¢s o f defins the desired translation of the fold locus.

Since 15 is supported in Op(Y) it follow that f; = f away from X. We claim that the fold locus of f
"follows F as s varies”. More precisely we have 3(f;) = X(f) and

" fs = Filco <& on Op(X).

To see this note that j”(fs|s) = 0s|s implying that the above inequality holds when restricted to X.
Furthermore, recall that the folds of f are equal to the 3-stabilization of the 1-dimensional fold whose
r-jet is C%-close to that of the zero function. Together with the fact that ¢, is linear in the r and y
coordinates (as in Equation 9.3.1) on an open neighborhood of ¥ this implies the claim
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9.3.2. Extending over M. To extend the solution fs on Op(X) defined above to the whole M we want
to apply Theorem 8.8 relative to . This cannot be done immediately since j" fs does not agree (or is
close to) Fy away from ¥. We solve this problem by interpolating between j" fs and Fs while keeping
the front projection fixed.

Choosing a trivialization of N' — S induces the usual coordinates (z,y,2) € J"(N — S) where z :=
(2%,...,2") denotes the collection of coordinates corresponding to formal derivatives (see Definition
3.1). Then, using the bumpfunction 7, from Equation 9.3.1 we define a (formal) multi-section f: :
S — J"(N — 8) by defining its front projection to be equal to fs and

zo fy = 7(2)5" fo (@) + (1 = 74 (x)) Fy (2).
Near the boundary of S this map is equal to F and so we can extend it to a map fg : M — J"(N,m).

On each connected component of M\ the map ﬁ can be interpreted as an honest section of N' —
(M\X) which is holonomic near the boundary. Hence applying Theorem 8.8 relative to the boundary
yields the desired extension.

9.4. Proof of Theorem 9.1. In the non-parametric case (i.e. when K is a point) the proof follows
from inductively applying the graphical case from the previous section. More precisely assume that
the required family fs has been constructured for s € [0,s0] = [0,1]. Then, for sufficiently small
s1 > 8o, the pair (fs,, Fs) for s € [so, 1], satisfies the assumptions of Section ??. Hence, we can
extend fs to [0, s1].

The proof of the parametric case follows exactly the same argument. Indeed both the classical and
the wrinkled holonomic approximation, Theorem 5.2 and Theorem 8.8 hold parametrically.

9.5. Modifying singularities. In this section we explain two surgery constructions on the singular-
ities of maps into jet space. The first construction allows us to pass between (double) fold and wrinkle
type singularities. Recall that singular locus of a wrinkle is a sphere whose hemisphere consists of
birth death Secondly we show how a wrinkle can be replaced by many smaller ones. Together with
the previous construction this also allows us to replace double folds by smaller ones.

The value of these surgeries as technical lemmas, comes from the fact that they are C%-small in nature.
By this we mean that the difference between original and the modified map is arbitarily small in the
C°-norm on maps to jet space. Thus these results can be applied at will simplifying many arguments.
Moreover, they also serve as an illustration of the flexibility of wrinkle and fold singularities.

Most of the singularities we have encountered so far are fibered in nature. They are essentially just
higher parametric versions of (double) folds with birth/deaths. For example, the standard wrinkle
(Definition 4.3) is fibered over its membrane D (isomorphic to a disk D™). Thus we can think of a
wrinkle as a family of double folds indexed by D, and with birth/deaths at dD. It is straightforward
to generalize this, allowing the membrane to be any domain.

Definition 9.3. Let M be a manifold and D a hypersurface (possibly with smooth boundary). Assume
that D admits a product neighborhood D x R with coordinates (q,x). Then we define a As,.-wrinkle
along D (or just a D-wrinkle) as the map

wp : D xR — D xR?

T

(@.2) = (02" = pla)a, | (5* + pla)s —a° = pla)a)"ds)
0
where p : D — R is a distance function to the boundary 0D. If 0D = & then we take p = 1

everywhere.

It is instructive to compare this definition with Definition 7.5. Although the precise definition (and
its singular locus) depends on the choice of distance function and product neighborhood, different
choices yield equivalent maps.

If 0D # & then the singular locus of Wp is isomorphic to the double of D. More precisely,
Y(Wp) = %' (Wp) = D usp D,
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where dD (given by the boundary of the membrane) consists of birth/death points. The other points
in the singular locus are folds. If 0D = ¢ then the singular locus is the disjoint union of two (parallel)
copies of D. In this case X(Wp) consists of fold points only. For example, taking D = D"~ ! gives
Definition 4.3, while taking D = S™~! recovers Definition 7.7. There are several surgery operations
we can perform to change the properties of (the singular locus of) an As,.-wrinkle.

9.5.1. Moving the singular locus. The most elementary operation consists of changing the singular
locus of a given map. As we are usually considering (front projections of) maps into jet space of order
r, we want the difference between the initial and final map to be C"-small.

To explain the construction in its most elementary form consider the map
(9.5.1) fiR2SR2 (g,1) > (q,2%).

It has fold singularities along its singular locus X(f) = {x = 0}. Let v : [~1,1] — R? be an embedded
curve such that y(£1) = (+1,0). Suppose we want to change the singular locus to

= (B0} x [=1,1]) uy([=1,1]).
Although this can easily be arranged by precomposing f with a suitable diffeomorphism mapping

¥ to ¥ this changes f in a way that is not C"-small. Instead, by adding more singularities we can
achieve a C"-small change.

Lemma 9.4. We use the same notation as above. For any € > 0 there exists a map f: R? — R?,
depicted in Figure 9.5.1, with the following properties:

(i) The singular locus off has two connected components:

S(f) = (SO0} x [-1,1] u([~1,1])) uS".
Eurthermore, it consists only of fold and birth/death points.
(it) f— fler <e.

Additionally it is not hard to see that the above maps f and f are homotopic.
Proof. Consider the function fwhose graph is depicted in Figure 9.5.1. (|

The general case is similar. The map ]? can be interpreted as a 1-parameter family of maps fq :R—-R.
Hence it suffices to understand how to deal with more general parameter spaces. The key point is
that on a collar neighborhood of the boundary ¢D x [0, 1) the general case is just a stabilization of
the 1-dimensional case. The statement is as follows:

Lemma 9.5. Let f: M — J"(X — M) be a multisection, and assume we have the following data:

(i) A domain D = X0(f), possibly with non-empty (smooth) boundary;
(i) A product neighborhood D x R < M with coordinates (q,x), such that D = D x {0} and f equals:

f:DxR— D xRFF!
(q7 x) = (q’ x27x2r+17 0’ M) 0)'
(iii) A smooth function A : D — R satisfying j*(A)|ap = 0. We denote its graph by Dc DxR.

Then for any r € N and € > 0 there exists a multi-section ]?: M — J(X — M) satisfying:

() li"f=i"floo<e
(ii) The singular locus 3(f) is obtained from X(f) by cutting out D (from the fold locus), gluing in
D, and adding a D-wrinkle (Definition ??). That is:

S(F) = (S(H\D) U,z D L (f) Ui b) .
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Note that by definition of a wrinkle, a product neighborhood D xR as above always exists. However, in
general it is not true that any hypersurface D graphical over X(f) is contained in such a neighborhood.
The same arguments also allow for vertical singularities/singularities of mapping?

Proof. By assumption we may assume that
f:DxR— D xRF!
(q,x) — (q,2% z* T 0,...,0).
Forgetting the coordinates which are constant, f is the D-stabilization of the map
fiR>R? 2+ (z?, 2 Th).

Then, by another change of coordinates (preserving f), we may assume that there exists a collar
neighborhood

(9.5.2) 0D x [0,1) € D,
and that A satisies the following properties:
(i) On the complement of the collar A is constant and equal to 1.

(ii) On the collar A depends only on the interval direction, and the induced function A, : [0,1) —» R
is strictly increasing.

To construct the required map we use the 1-parameter family of maps F : [0,1] x R — R?, depicted
in Figure 9.5.1.

FIGURE 6.
It has the following properties:

(i) The upper branch is given by the graph of Aj, the lower branch is contained in D x {0} and the
middle branch is arbitrary close to the upper branch.
(ii) Along the upper branch F" has Ay,-cusps (Definition 7.4). In particular Iy := F|; g is equal
to f for t € Op(0).
(iii) Along the two bottom branches (and the domain between them) the map

F:R?> S R3  (t,z) — (t, Fy(z)),

is equivalent to an As,.-swallowtail (Definition 7.5). The orientation of the cusps is indicated in
Figure 9.5.1.
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Then on the collar neighborhood from Equation 9.5.2 we define
f:0D x[0,1) x R — 0D x [0,1) x R?,

(q7t7x) = (q7t7Ft(x))
We can smoothly extend this over the interior as the stabilization of Fy : R — R2. It follows

immediately from the definition that the resulting f: D xR — D x R? satisfies the claimed properties.
O

9.5.2. cutting wrinkles?

Lemma 9.6. Consider a multi-section f : M — J (X — M). Let D x R ¢ M be a product
neighborhood of a hypersurface D, and € > 0 a small constant such that:

(i) f has a double fold on D x Op([0,1]) (Definition 7.7).
(i) |57 f(2,0) =" f(2,1)[co <€

Then for any (separating) hypersurface A < D there exists a multi-section f: M- J(X —- M)
satisfying:

0 17T = 5" fleo < & N
(ii) LO(f) = Z10(f) n A, and LH1O(f) = SHO(f) u A.

Informally, the above conditions say that the fold locus of f is cut into two along A. Since the double
fold of f is small the resulting map is C°-close to f.

Proof. (Il

Theorem 9.7. Let f : M — J (X — M) be a multi-section without nested singularities, and
{Uitier, and {V;},es be covers of M and X respectively. Given any e > 0 there exists a multi-section

fiM - J"(X — M) satisfying:

(1) 13" f = 7" fleo <e&;
(i) f has only wrinkle singularities (Definition 77);
(i1i) The membrane, and image of each wrinkle are contained in some U; and V; respectively.

Proof. By choosing refinements of the covers we can assume that for any U; there exists a V; such

Let us first consider the case that the singular locus of f consists of a single double fold. Thus we may
assume (see Definition 7.7) that M = D x R and that f has folds of opposite Maslov coorientation
along D x {0} and D x {1}.

If we choose 0 < ¢ < 1 sufficiently small we can find a (finite) cover {ﬁi}i=1 ~ of D with the
following properties:

.....

(i) the sets U; x [0, 8] cover D x [0,4];

~

(ii) each of the U; x [0, 4] is contained in some Us.

Let 6 = Zfil p; be a partition of the constant function § : D — R, subordinate to {ﬁ}iel- We denote
the partial sums by

J
04 :=Zpi, j=1,...,N
i=1
so that dg = 0 and dny = 6.

We can interpret J;4; as a function on (i.e. whose domain is) the graph of §;. Hence, we can
inductively apply Lemma 9.5 taking (in the notation of the lemma) D to be the graph of §; and D the



WRINKLING hA-PRINCIPLES FOR INTEGRAL SUBMANIFOLDS OF JET SPACES 55

graph of ¢;41. The resulting multisection has N additional wrinkles and the singular locus D x {0}
has moved to A x {d}.

Repeating the above argument we reduce to the case that f has a double fold along D x [1—4¢, 1] where
d > 0 is arbitrarily small. Hence removing this double fold only induces a C°-small perturbation.
The resulting multi-section f: M — J"(X — M) satisfies the required properties. Indeed, each of
its wrinkles is contained in some U; and hence is mapped into some V;. Moreover, the induction
proces consists of finitely many steps. Hence making suitable choices in each step it follows that

3" f = 3" fleo <e.

Next, consider the case that f has a single wrinkle. On the complement of the birth/death locus a
wrinkle defines a double fold. Hence, we can apply the argument above. That is, in complement of
the birth/death locus, we can move the fold loci of the original wrinkle arbitrarily close to each other.
Then, as before, removing this double fold and its birth/death induces only a C°-small perturbation.

For the general case observe that the above arguments only change f in a neighborhood of the double
fold or wrinkle. Thus, since the singularities of f are assumed not to be nested, we can apply the
construction to one singularity at a time. (I

9.5.3. Passing between wrinkles and folds.
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PAPER II:
10. INTRODUCTION

Consider a manifold M endowed with a geometric structure, e.g. a distribution £ € TM. A common
problem in this setting is to find embeddings f : N — M which are in some way compatible with the
geometric structure, e.g. are in general position with respect to £. In this paper we study a particular
example of such a problem; the case of embeddings which are tangent to a distribution modelled on
jet-spaces.

Recall that any jet bundle J"(B, F) comes equipped with a Cartan distribution & which measures
whether a section is holonomic. More precisely, the graphs of holonomic sections are integral sub-
manifolds, i.e. submanifolds tangent to .

More generally, (M, €) is a Cartan-Goursat manifold if it is locally isomorphic to (J" (B, F),&can) for
some B, F and r. In this setting we are interested in (the homotopy type of) the space of integral
submanifolds N c (M, ¢).

Unlike (the image of) a section, an arbitrary submanifold can be tangent to the fibers of J"(B, F) — B.
An extreme example is the fiber F' which is itself an integral submanifold. Except when (M, &) is a
contact structure (i.e. when the model jet space is J*(B,R)), the fiber direction can be recovered
directly from ¢ and defines a global foliation V., on M.

To avoid some of the complications which arise in the general case we restrict ourselves to Emby2 (N, (M, £)),
the space of ¥2-free embeddings. This means that the dimension of the intersection of N with the
leaves of Veqn is at most one. The formal counterpart of a Y2-free embedding is a pair (f, F}) :

N — (M), t € [0,1], consisting of a smooth embedding f : N — M and a family of bundle
monomorphisms F; : TN — TM, such that Fy = df and X2(Fy, Vean) = .

Apart from the ideas of [?] we consider three types of techniques. In Section 15 we consider the
problem in the smooth (i.e. non-integrable) case. That is, we consider (non-integral) embeddings in
(M, &) which have prescribed singularities with Vea,. The simplest version of the main result is stated
as follows:

Theorem 10.1. Let & be a distribution on M and (f, Fy) : N — (M, €) a formally ¥?-free embedding.
Then for any € > 0 there exist an isotopy fs : N — M satisfying:

(i) fo=f and |fs — folco <e;
(#) 3(f1,Vean) consists of X(F1, Vean) plus an arbitrary collection of (potentially nested) wrinkles.

11. CARTAN-GOURSAT MANIFOLDS AND SINGULARITIES

11.1. Cartan-Goursat distributions. Consider a manifold M endowed with a distribution £. Re-
call from Section 3.4 that we say that £ is modelled on the jet space (J"(B, F),&{.qn) if around
each p € M there exists coordinates (z,y, z), whose domain is a subset of J"(B, F'), in which £ = £.qp,.
We also refer to such distributions as Cartan-Goursat distributions when the precise model is not
important.

Although the identification with a (trivial) jet bundle exists only locally, many of the useful properties
of jet bundles can be encoded purely in terms of the canonical distribution and hence make sense
globally on (M,¢). In particular associated to any Cartan-Goursat distribution are the numbers
n = dim(B), k = dim(F) and r, the number of steps in which ¢ is bracket generating.

As most of our techniques are based on manipulations in the front projection of jet bundles, we would
like to have a global analogue of the front projection. If k > 1, the fibers of the (local) front projections
can be recovered from the Cartan-Goursat distribution, see Section ??. Thus we obtain a well-defined
foliation Feqn on (M, &), called the characteristic foliation, whose leaves (locally) correspond to
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the fibers of the front projection. In general (when k& = 1 and r > 1) this foliation does not exist.
However by Corollary 7?7 we can still recover the vertical distribution

Vean = kerdm, 1 : TJ'(B, F) — TJT_l(B’F)’

from £. Again this defines a foliation V., on (M,§), called the vertical foliation. Lastly note
that in the contact case, when ¢ is modelled on J!(R™, R), neither the characteristic foliation nor the
vertical foliation exists globally on (M,&). This is a consequence of the fact that contact structures
have a much bigger symmetry group than the other Cartan distributions.

11.2. Integral Submanifolds. The objects of interest in this section are embedded integral sub-
manifolds of Cartan-Goursat distributions, i.e. submanifolds N < (M, ) everywhere tangent to &.
Note that as distributions V.4, is contained in £&. Hence an integral submanifold can have singularities
of tangency (Definition ??) with respect t0 Vean, i.6. (N, Vearn) # . In general, complicated singu-
larities of tangency with V.., cause rigidity for integral submanifolds. Example; Engel structures?.
However, if the singularities of tangency are not too complicated, integral submanifolds satisfy the
h-principle. Thus we focus on the following class of submanifolds.

Definition 11.1. An integral submanifold of a Cartan-Goursat distribution N < (M,&) is called
Y2-free if X?(N,Vean) = &. The space of all such embeddings of a manifold N is denoted by
Emb22 (N7 (M7 E))

As usual, the formal counterpart of an integral submanifold decouples the embedding from its deriv-
ative. Observe that the definition of singularity of tangency still makes sense for (injective) bundle
maps. Furthermore, it is not hard to see that there are injective bundle maps which are not homotopic
to a X2-free one. Thus we need to require the existence of such a homotopy in the definition of an
formal integral submanifold.

Definition 11.2. An X2-free formal integral submanifold of a Cartan-Goursat distribution
(M, &) is a pair (f, F;) consisting of

(i) An embeddeding f : N — M;

(i) A homotopy of injective bundle maps Fy : TN — T M covering f and satisfying:
(i) Fo = df;
(ii) the image of Fy is contained in &, and Fy is X2-free, i.e. 2(F1, Vean) = .

The space of formal integral submanifolds with domain N is denoted by FEmbyz (N, (M, £))).

Note that in the contact case, i.e. when ¢ is modelled on J!(B, R), any integral submanifold is Y2-free
since Veqy, 18 not defined in this case. Given (f, Fy) € FEmbs2 (N, (M, €)) it can happen that (f, F})
is already an integral embedding on a domain D < N. By this we mean that when restricted to D
we have Fy = Fy = df. In this case we also say that (f, F}) is holonomic on D.

The projection 7 : FEmbs2 (N, (M, §)) — Emb(NV, M) is a fibration. In particular to define a homo-
topy of (f, Fs) it suffices to specify an isotopy of f.

Lemma 11.3. let (f,Fs): N — (M,&) be a X%-free formal integral submanifold, and f, : N — M a
DF-parameter family of embeddings with fo = f. Then there exists a DF-parameter family (fq: Fqs) :
N — (M, €) such that (fo, Fos) = (f, Fs).

Proof. Since f, is an embedding, df, is an injective bundle map for all ¢ € DF. Hence we can define

F o {df(12s)q 0< /2

S
q,s * FQS 1/2 < .

<
s < 1.
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11.3. Homotopically essential singularities. This section should probably be included somewhere
else Let us start by assuming that the formal integral submanifold (f, Fs) : N — (M,§) is generic.
That is, both f and Fj, s € [0, 1] are generic. It then follows from the Thom-Boardmann stratification
theorem that the singular locus $! := $1(F}, Vean) is a (codimension-1) submanifold. Furthermore,
it comes with a stratification by submanifolds

Yostls 20 g

where each $1'"" = ¥ is a codimension-1 submanifold. Note that general these singularities cannot

~

be removed even homotopically. Indeed, otherwise we could choose a different family Fj, satisfying
the conditions of Definition 11.2 and with X(Fy, Vean) = .
Along X! the image of Fy intersects V.q, which defines a line bundle:

V= F7Y (FL{(TN) A Vean) < TN|s1.

The Maslov coorientation (Section ?7) can be encoded in a trivialization of V. More explicitely, we
can choose a nowhere vanishing vector field v € X(Op(%!)) such that V = Span(v|s1). This vector
field satisfies the following transversality conditions:

Vs € F(TElF1 wi), and, U|21i0m21i0, 1=1,...,n.

Here we used the convention that S = Op(E!). For an illustration of such a vector field see Figure
79

Definition 11.4. The pair (X', v) is the essential singular locus of the almost X-free integral
submanifold (f, Fs).

Two such pairs (X,v) and (il,ﬁ) are equivalent if there exists a germ of diffeomorphism ¢ :
Op(Lh) = Op(il) preserving the stratification and taking v to U.

Up to equivalence the extension of v|s1 to Op(X!) does not matter. Hence we will usually not
distinguish between v and its restriction v|s1.

12. Y2-FREE INTEGRAL SUBMANIFOLDS

Evidently any (X2-free) integral submanifold determines a formal integral submanifold. This gives
rise to a canonical inclusion map,

(12.0.1) t: Emby2 (N, (M, §)) — FEmbs: (N, (M, £)).

The main goal of this section is to show that the above map satisfies the h-principle, i.e. is a weak
homotopy equivalence.

In order to prove that Equation 12.0.1 is a weak homotopy equivalence we will produce integral
submanifolds whose singularity locus contains the singularity locus of the formal data and, in addition,
has extra wrinkles/double folds. We introduce the former using explicit Whitney singularity models.
Their complement is transverse to the vertical foliation and can then be handled using the previous
sections; this step is where the additional singularities are introduced.

Theorem 12.1. Let the following data be given:

e A non-contact Cartan-Goursat distribution £ on a manifold pair (M, M').

A manifold N.

A connected and compact manifold pair (K, K'), with K' possibly empty, playing the role of

parameter space.

o A K-parametric family (fi, Frs) € FEmby2(N, (M,§)) which is holonomic when x € M’ or
ke K'.

e A constant € > 0.

Then there exists a family of formal $2-free integral submanifolds (fi.t, Fr.t.s) € FEmbsz (N, (M, £))
indexed by K x [0, 1] satisfying:

(1) (fr,00Fr0,5) = (fr, Fr,s) and (fr1,Fr1,s) is holonomic.
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(ii) |fr,t — frolco <e.
(iii) (frts Fets) = (fiy Fi.s) whenever k€ K' or x € M.

Corollary 12.2. The canonical inclusion
Embs: (N, (M, §)) — FEmbg= (N, (M,¢))

is a weak homotopy equivalence.
12.1. Proof of main theorem.

12.1.1. The case when M' = K' = . We start by applying Theorem 15.2 to (f, Fs) : N — (M, Vean)-
Thus we may assume that f is a smooth embedding whose singularity locus with respect to V.
satisfies:
E(fa Vcan) = E(-Flvvcan) Y U Sia
iel

where {S;}icr is a finite collection of (nested) spheres along which f has singularities of fold type.
Furthermore, we may assume that |df — Fs|co < & on an open neighborhood of the essential singularity
locus X(F1, Vean)-

Next we want to make f integral with respect to £, while preserving the essential singularity locus.
This is a two step process. On Op(X(F1, Vearn) we change the singularities of f by hand (using a local
model) to become integral. Then, we use general h-principle arguments to make f integral on the
complement of the singularity locus. We state the first part as the following lemma:

Are we using the assumption |[df — Fs|co < e somewhere in the proof of the following lemma?

Lemma 12.3. Consider a Cartan — Goursat manifold (M,£) and let f : N — (M,€) be a smooth
embedding which is X.?-free with respect to Vean, i.e.

E(fa Vcan) = El(fa Vcan)~
Then, for any € > 0, there exists an isotopy fi : N — (M,§), t € [0,1] such that:

(i) fo=[f and |fi — flco <e&;
(i3) L(ft, Vean) = 2(f, Vean) and f1 is integral with respect to & on Op(E(f1, Vean)-

Remark 12.4. It is not hard to see that the conclusion of the above lemma can be arranged directly
in the proof of Theorem 15.2. However, since we want to use that theorem as a blackbox we do not
include the result there.

Proof of Lemma 12.53. For ease of notation we denote ¥ := X(f,V.en) and we (often) identify N
with its image under f. Let us start by assuming that there exists a global fibration chart (M,¢) =
J"(B, F). Recall that V., is the tangent space of the fibers of the fibration 7 : J"(B, F)) — B. Hence
the assumptions of the lemma imply that f : N — J"(B, F') defines a (non-holonomic) multi-section,
i.e. the image of each component of N\X(f, V.an) is graphical over B. The idea of the proof is to
homotope f to an integral multi-section on Op(X(f, Vean))-

By the following lemma there is a C°-small homotopy making ¥ integral with respect to &.

Lemma 12.5. Let f : N — J"(B,F) be a (non-holonomic) multi-section with singularity locus
Y :=3(f, Vean), and let € > 0 be a constant. Then there exists a homotopy (through multi-sections)
fe: N - J"(B,F), te|0,1] satisfying:

(Z) fo = f and |ft — f|co <eE;
(i1) (ft,Vean) =X, for all t € [0,1];
(iii) The restriction fi|s is integral.

Proof of Lemma 12.5. Use holonomic approximation to make the singularity locus integral. Use iso-
topy extension theorem applied to the original section to produce the homotopy. Then an isomorphism
in the tangent space along ¥ allows us to map F(TN) n £ to a principal direction. By the implicit
function theorem we obtain an isotopy of the ambient manifold realizing this.
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Recall (see Section 16.4) that since F is 32-free and maps into £, the line
Fi(TN) " Vean =<{V)cTM

is a principal subspace. This implies that Whitney singularities in the direction of V' are lifts of
sections. More precisely, let ©!" be a stratum of 3(f, V.an), which by the previous lemma we assume
to be integral. Then the corresponding Whitney map with singularity locus ¥ in the direction of V
is the r-th order lift of a multi-section. We use this observation to make f holonomic in the normal
direction to X. Again this is done by induction on the strata of X.

Assume f is holonomic on Op(EliH). More precisely assume f = j"o; where o;,1 : Op(Zli) —
JO(B, F) is a multi-section satisfying:

() Fo(S ) = FE S and dffa(e) = V:
(ii) £(570, Vean) = X' (j70, Vean) and contains X' (£, Vean)-

Note that we start the induction at 4 = dim N. In this case %! = (J so that the base of the
induction is trivially satisfied. We extend o to a multi-section o; : Op(le) with the same properties as
above. Such a map is easily defined by taking the 21" stabilization of a suitable Whitney singularity
(Definition 7.2) in the direction of V' = F}(v), using that V is a principal direction as explained above.

Next we homotope f to agree with j"o; on Op(Ell). Observe that by assumption we have that
|df —Fi|co < e implying |df(v)—V|co < &, while dj"o(v) = V. Thus, j70 and f agree on ¥ and locally
around X their images are graphical over each other. A simple linear interpolation in a neighborhood
of ¥1" deforms f into j"o. Note that this does not change f on (’)p(ZlHl) and on X (although it
does change df at points in 211\211“). Furthermore, since both f and j"o; are X2-free so is the
interpolation. Inductively repeating the above argument yields a multi-section o : Op(X) — J°(B, F).
The r-th order lift of o agrees with f along 3 and satisfies (570, Vean) = X(f, Vean) as stratified sets.

To finish the proof it remains to make f integral on the complement of the essential singularity locus.
Here f is graphical over B. By applying Theorem 8.8, relative to Op(X), we can homotopy f into an
integral submanifold at the cost of adding double folds (in the complement of the essential singularity
locus). Recall that, according to Section ??, these can be added relatively by a homotopy through
integral embeddings as long as we are not in the contact case. O

13. EATING WRINKLES

In this Section we explain various surgery procedures for integral submanifolds in Cartan-Goursat
manifolds. The main goal is proving that a suitable zig-zag (the “loose chart”) can absorb other
singularities with respect to the vertical. This will be used in the next Section to prove an h-principle
for integral submanifolds with prescribed singularities.

13.1. Merging wrinkles. The solutions constructed using h-principle arguments are often rather
abstract. One of the main causes is that the amount of singularities needed in these arguments is
never made explicit. In this section we show that it is fact sufficient to have a single wrinkle. More
precisely, given a wrinkled multisection we show that it can be modified to have only a single wrinkle.
This provides a moral inverse to the operation from the previous section. Moreover, just like the
chopping construction, reducing the number of wrinkles only requires in a C%-small change of the
map.

The mental picture to have in mind for the construction is as follows. As we have seen in the previous
section the birth/death locus can be propagated in the domain of a multi-section (through a C°-small
perturbation). In this way a wrinkle can ’grow tentacles’ connecting to the other wrinkles. After
connecting the wrinkles can be merged into a single one. We note that although the (image of) the
multi-section stays C%-close to the original one, the singularity locus changes a lot.
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Let us start giving the details by formalizing the notion of tentacles.

Definition 13.1. Let X — M be a fibration and f : M — J (X — M) be a multi-section. A
tentacle system for f is a pair (B,~) where

N
B .= UB“ and, v:=(Y0,---,YN),
i=1

are collections of (embedded) balls and curves in M such that:

(i) flB; is equivalent to a wrinkle and f|ypp has only fold singularities;
(i) ~vi is a curve from By to B; starting and ending in the singular locus of f|p, and f|p, respectively;
(iii) the v; are disjoint and each of them intersects the fold locus of f transversely.

Remark 13.2. Using the passing between wrinkles and folds, the above theorem gives a similar result
for folded maps. The construction is local in the sense that the map is only changed on a neighborhood
of the wrinkles and the connecting curves.

It is not hard to see that if M is connected and f has only folds and wrinkle singularties then a
tentacle system always exists. In general it can happen that the wrinkles of f are nested. In this case
we will always assume that the indices are compatible with the nesting in the sense that

B; < B; implies ¢ > j.

Here B; c B; means that the membrane of B; is contained in the membrane of B;. Note that the
wrinkle f|pg, is distinguished since the curves connect all the other wrinkles to this one. Furthermore,
the compatibility condition implies that this wrinkle is never nested inside another one.

Then we move the wrinkles giving the following statement. It is important to realize that although
the (image of) the map stays C%-close the singularity locus of f changes a lot!

The precise statement is as follows:

Theorem 13.3. Let X — M be a fibration and f : M — J" (X — M) a multi-section and (B,v) a
tentacle system (Definition 13.1). Then, for any € > 0 there exists a multi-section [ satifying:

(i) f has a single wrinkle;
(i) 157" f = 3" fleo <€ and f = f on M\Op(B v 7).

Add remark that the proof mostly works also for double folds instead of wrinkles. The only difficulty is
that making a double fold into an inside out fold is not C° small unless the double fold is. Furthermore
since we can pass between folds and wrinkles it also follows from the above theorem.

How far are we from proving everything here for submanifolds of jet space, analogous to emmys paper?

Remark 13.4. Altough it not relevant to our setup, the above condition that f|ynp has only fold
singularities is not strictly necessary. The proof below still goes through if f has higher singularities
provided that we can choose a tentacle system disjoint from them. This happens for example if they
form a subset of M which has codimension > 2.

The proof uses two observations which are presented in the next two subsections. First, since the
curves of a tentacle system can intersect the fold locus, we need to show that a double fold can ’pass
through another fold’. This allows the tentacles to grow ’through’ the fold locus. Second, we show
how two wrinkles connected by a curve (which does not intersect any other folds) can be merged to
a single wrinkle. Using these ingredients the proof of the theorem is given in Section 13.3.

13.1.1. Mowing wrinkles through folds. We start with a special case in which we have local coordinates
and the sections are in normal form. Consider the trivial fibration R — R?. Let (g, z) be coordinates
for the base and y for the fiber. We use our usual identification of multi-sections f : R? — J"(R — R?)
with their front projection. That is, we identify them with surfaces in R3, or with 1-parameter families
of curves in R2.
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There are two different operations to pass a double fold 'through’ a fold, depending on the Maslov
coorientation of the folds relative to each other. Recall that, since our fiber bundle is trivial, this
amounts to whether the front has a positive of negative singularity of tangency with the fiber. That
is, away from the singularities of tangency, the orientation of the front (coming from the base) and the
orientation of the fiber determine an orientation of the total space. At the singularity of tangency this
orientation changes, and we say the singularity is positive (resp. negative) if the orientation changes
from negative to positive (resp. positive to negative).

For the first case, when the folds have alternating Maslov coorientations, our starting section is
denoted by f_ o : R? — J"(R — R?). Its front projection is depicted on the left in Figure 13.1.1. It
has fold singularities at {x = —2}, {x = —1} and {x = 1} which have negative, positive, and negative
Maslov coorientation respectively. We think of the first two folds as a doublefold which we want to
pass through the third fold. As in Figure 13.1.1 this fold can be moved arbitrarily close to the third
fold. Then, unpairing the first two folds and pairing tge last two the double fold jumps over’ the fold
and can then continue moving. Note that the fold locus of a single fold cannot be moved without
introducing a C%large change. Therefore, after the second step the position left most fold is fixed
and cannot be moved back to its starting position.

This proves the following lemma:

Lemma 13.5. For any e > 0 there exists a 1-parameter family of multi-sections f—; : R — J"(R —
R?), t € [0,1], satisfying the following conditions:

(i) " f=tlco <& for allt € [0,1];

(ii) J-o(q.2) = [—ola,@) for all t € [0,1] and (¢,) € Op({q = £2} U {w = £2});

(i) the front projection and singular locus of f_ 4 are as depicted in Figure 13.1.1. To be precise, for
all t, the singular locus of f; consists of 3 connected components of fold points with alternating
Maslov coorientation. For t = 0 the first two fold loci are paired together forming a double-fold
while for t =1 and q € [—1,1] the last two folds are paired.

L—L> < o

FIGURE 7. The top and bottom depict respectively the front and fold locus of the
family of multi-sections f;, ¢t € [0, 1] defined in Lemma 13.5. To be precise, the top
depicts the restriction of f; to the dashed line in the domain. As ¢ varies from 0 to 1
(from left to right in the figure), the double fold moves to the third fold, the pairing
switches to the last two folds forming a new double-fold which then moves further.

In the second case, when the last two folds have the same Maslov coorientation, the homotopy is
slightly more complicated. Consider the 1-parameter family of multi-sections depicted in Figure ?7.

Add in the premilinaries somewhere a remark pointing out that Reidemeister moves also work in J"
using As,-folds.

TODO, important: the procedure to pass the zig-zag to the other side, without surgery, is missing.
This is key to preserve the singularity locus. The point is that it appears in the other side as a zig-zag
with “fishes”

Since the pairing trick does not work we need to apply surgery to the singular locus. This amounts to
first applying a Reidemeister II move to create a self-intersection in the front and then cancel the last
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two folds (which have the same Maslov coorientation) by an inverse Reidemeister I move. In terms
of the singular locus this amounts (locally around {g = 0}) to cancelling the two folds against each
other. Thus, we create a "hole’ in the singular locus through which we would like to move the first
fold. However, recall that only double folds can be moved while preserving the C%-norm of the map.
Hence we first apply a Reidemeister I move, creating a double fold. This puts us in the setting of
Lemma 13.5 allowing us to move two of the folds through the hole. Again we state this as a lemma
for later reference.

Lemma 13.6. For any e > 0 there exists a 1-parameter family of multi-sections f+,t: R? — J"(R —
R?), t € [0, 1], satisfying the following conditions:

(1) " f+.tlco < el for all t € [0,1];
(i1) fii(g,x) = f+o0(g,x) for allt €[0,1] and (¢,z) € Op({g = £2} U {z = £2});
(i) the front projection and singular locus of f1 ; are as depicted in Figure 13.1.1.

Eo T o=

T

FIGURE 8. The top and bottom depict respectively the front and fold locus of the
family of multi-sections f, ¢t € [0, 1] defined in Lemma 13.6. From left to right (as ¢
varies) the front projection changes by a Reidmeister 11, an inverse Reidemeister I,
a Reidemeister I, and an inverse Reidemeister II move. On the fold locus this has
the effect of locally canceling the last two folds against each other, then creating a
wrinkle and moving the resulting double fold through the gap.

13.2. Inside out wrinkles. Next we describe how to wrinkles can be merged into a single one. Recall
from Section 7.1.3 that the As,.-Swallowtail is given by the map

Swy, : R*  — R"HF

T
(13.2.1) @)~ (@ - | s qo)ds).

0
We usually interpret it as a 1-parameter family of maps, indexed by ¢7, interpolating between a double
fold and a regular map. In other words, the g;-coordinate controls the birth/death of the double fold.
Replacing g; with another function depending on the ¢ coordinates we obtain different configurations
of the birth/death locus.

Definition 13.7. The Ag.-inside out wrinkle is the germ around {(¢,x) e R? |z =0,-1 < ¢ < 1}
of the map

Wry, : R — R"TF

(13.2.2) (¢,z) — (¢,—2°— (¢} —a, J:(s + (¢ —1)s — 2% — (¢} — 1)2)"ds,0,...,0).

There is another configuration of the birth/death locus that is relevant to us. Let (¢,p) € S"72 x R
denote spherical coordinates on R?~ 1.
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Definition 13.8. The As.-Spherical inside out wrinkle is the germ around {(¢,p,z) e R" | p <
1, x = 0} of the map

IWry, : R*  — R"F

T

(13.2.3) (¢, p,7) — (G, —2*—(p* — I)I,L (83 + (p* = 1)s — 2 — (p* — 1)z)"ds,0,...,0).

Observe that up to equivalence, only the qualitative behavior of the function p? — 1 in the above
definition matters. That is, if A : R — R is any function which is negative on [0, 1), positive on (1, 00),
and transverse to zero then replacing p? — 1 by A(p) yields an equivalent map. In particular the value
of A does not matter.

Using a suitable family of functions depending on p we can homotope the spherical inside out wrinkle
into a double fold. This will be our model for the merging of two wrinkles. Thus, for a fixed £ > 0 let
At : R —> R, t€[0,1], be a smoothing of the following piecewise linear map, see Figure 77:

(i) At(p) = Ae(—p) for all t € [0,1] and g € R;

E pel(l+e(1—t),0)
(ii) Ae(p) :=4 —¢ pel0,(1—¢e)(1—1))

p— 1+t everywhere else on [0, )

Then, the desired map is defined as:
SIWrg,., : R"  — R**F

X

(13.2.4) (b, p,x)  — (¢, p,—2 — A,g(p)%‘,J0 (83 + (p* = 1)s — 2> — N\(p)x)"ds,0,...,0).

Note that the homotopy can be made arbitrarily small by a suitable choice of ¢ > 0. Have to do
emmy style calculation to show that the perturbation is C"-small not jst C%-small

3 —>\1
e - -
] ] ,'
[ '] H
1 1 H
l' " )\ ’
1 I !
K K 1/2 l, .
L v 'l 1
! 1
H ]
] ,')\0
H 1
- I L o'
—E&
FIGURE 9.

Should be careful that the coorientations of the folds of each wrinkle might not match

Lemma 13.9. Suppose f: M — J" (X — M) is a multi-section whose singular set consists of two
disjoint wrinkles. Furthermore, let v be a path from (he singular locus of) one wrinkle to the other
and which does not intersect the singular locus away from its endpoints. Then, for any € > 0 there
exists a multi-section ]?: M — J(X — M) satisfying:

(i) The singular set of f consists of a single wrinkle;

(ii) |i"f — 5" floo < e and f = f on M\Op(Z(f) U 7).

Proof. Recall that although a wrinkle has a local model arounds its singular locus S™ (where n =
dim M), in general this local model does not extend over the ball D™. In particular, the folds at
corresponding points in the northern and southern hemisphere of S™ need not be in cancelling position.
On the other hand as the equator consists of birth/death points, the folds near the equator are in
cancelling position.
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We start by modifying v so that its endpoints lie in the fold locus of the wrinkle sufficiently close to
the birth/death locus. Note that this only requires modlfylng v i in an (arbitrary small) neighborhood
of the wrinkle. This ensures that the resulting map f satisfies f = f on M\Op(y U (f)).

Around the endpoints of the modified curve (still denoted by +y) there there exists a coordinate
neighborhood (¢, p, ) € R™ where f equals SIWry, 1 (see Equation 13.2.4) and the (image of the)
curve 7 is given by {(¢,p,x) | p =0,z = e} . Here € > 0 will be chosen sufficiently small at the end
of the proof.

We start modifying f by replacing SIWry,.; with SIWra,.o. Then we can find a cilinder C' ~ §"2 x [
around y whose boundary equals the birth/death locus of SIWrs, ¢ as in Figure ??. To be precise C
satisfies the following conditions:

(i) Let g be a metric on M which agrees with the standard Euclidean metric in the coordinate
charts around the endpoints of 4. Then C' is contained in an e-thickening (with respect to g)
D™ x v of 4.

(ii) Near its boundary C is tangent to the hyperplane {(¢, p, z) | z = 0}.

The second condition implies that there exists a coordinate neighborhood §"~2 x R? of C' on which f
(after the first modification) looks like the S"~2 stabilization of IWry,. : R? — R2** from Definition
13.7.

O

13.3. proof of Theorem 13.3. The proof is essentially a straightforward applicatication of the
results from the previous sections. The main technicallity is that the wrinkles of the multi-section
f:M — J(X — M) might be nested. Recall (Definition 13.1 that given a tentacle system (B,~)
the indices of the singular loci are compatible with the nesting in the sense that if B; < B; then i > j.
This means that if we remove the wrinkles one by one, starting from the highest index, we can assume
without loss of generality that the wrinkle we are removing does not contain any other wrinkle.

Thus let ~;(t) : [0,1] — M be the curve from By to B; as in Definition 13.1. By modifying v; we can
arrange that its endpoints lie in the fold locus of the wrinkle arbitrarily close to the birth/death locus.
Then, slightly extending ~;, we may assume that it intersects both the upper and lower hemispheres
of BQ and Bz

We associate to 7; a partitition of the unit interval tg =0 <t; <--- <ty_1 <ty =1, for some £ € N|
so that each ¢; corresponds to a point 7;(t;) where ; intersects the fold locus of f. By the preceding
remark

Fhittotns - and, Flyi(ees e

are equivalent to a double fold. Depending on the Maslov coorientation of the fold at v;(¢1) we use
Lemma 13.5 or Lemma 13.6 to “pass By through the fold at 7;(¢1) ”. In terms of the above partition
this means that f, ([, ,]) becomes equivalent to a double fold. Continuing like this we end up with
a modified f for which fl,, ([te_1,t¢]) are both equivalent to double folds, and the
latter lies on the wrinkle B;.

[te—3,te—2]

By applying Lemma 13.9 we can absorb the latter wrinkle into the double fold. Finally we can undo
the modifications we made using Lemma 13.5 and Lemma 13.6 so that f|,,((+,.+,]) are again paired as
a double fold. Note that the last step is essential as it removes the extra wrinkles indroduced when
applying Lemma 13.6.

13.4. Flexible double-folds. Recall that Theorem 13.3 tells us that any multi-section can be sim-
plified to have a single wrinkle. In this section we aim to prove a similar simplification result for
(double) fold singularities. This result will play a key role in proving a general h-principle for integral
submanifolds (with simple singularities) of jet space, given in Section 77, generalizing the main result
from [?].

Let us start by observing that the proof of Theorem 13.3 never uses the whole wrinkle, only a small
piece of it consisting of a double fold. However, being part of a wrinkle, this region can be chosen close



66 ALVARO DEL PINO AND LAURAN TOUSSAINT

to the birth/death singularities, so that the double fold is arbitrarily small (see the proof of Lemma
13.9). Ultimately, this is the reason that allows the homotopy of Theorem 13.3 to be C%-small. In
turn this avoids any potential problems with self-intersections of the perturbed map.

In general an integral submanifold might have large double folds so that we cannot expect to simplify
the fold locus by a C%-small perturbation. In fact, sometimes the fold locus cannot be simplified at all.
Do we have a simple/explicit example of this?To deal with these problems we follow the approach of
[?], and define a model double-fold whose existence allows us to simplify the fold locus. As indicated
by the above observations, the main property of this model is that it has the correct “size ”, which
will be made precise below.

Recall that the jet bundle J"(R — R™) can be trivialized using a trivialization R ~ R xR. Explicitely,
given coordinates (z,y) € R” x R let 2/, I = (i1,...,1,) denote induced holonomic coordinates
(Definition 3.1). We define the following subsets in jetspace:

Cy={(z,y,2) e JR—R) | |z| <1, |y <1, |2| <1, Vi <r}.
The corresponding subset of the base is denoted by
By :=mp(Cf) = [-1,1].
Let N(n,r) := dim J"(R — R") then for any p > 0 we also define
Ch = Cf x [—p, plN )TN < YR — R™).
As before we denote the projection to the base by:
B, i= m(Ch) = [<1,1] x [=p. p" .
Note that a point (z,y,2) € J"(R — R™) is contained in C} if and only if z € [~1,1] x [—p, p]"~ !, all

the pure derivatives in x; are in [—1,] and all other derivatives in [—p, p]. Note that if n = 1 then
Cg and CF coincide.

Let ¢ : By — J"(R — By) be a multi-section with the following properties:

(i) ¢, is constant equal to 0 around z = —1 and constant equal to 1 around z = 1;
(ii) the image of its lift j"¢, is contained in C{;
(iii) ¢, is equivalent to an Ag,-double fold.

Lastly we define
Prp: By > J(R — By),

as the [p, p]"~! stabilization of ¢, (i.e. extending ¢, to be constant in the [—p, p
The pair (C’;, ¢r,p) is called an Ay,.-double fold chart.

"~ !-coordinates).

We emphasize that it is not only the map @, ,, but the pair (¢, ,, C;) that is important for our discus-
sion. Indeed, as a map ¢, , is equivalent to any As,-double fold, and hence any integral submanifold
with a double-fold contains it. However, the definition of equivalence requires only the germ (around
the image) of ¢, , to be contained. Here, we ask the whole cube C} to be contained.

Going back to the proof of Theorem 13.3, we used that double folds can be homotoped to inside
out wrinkles. The key point is that this homotopy cannot always be contained inside C7, unless p is
sufficiently large. Hence we make the following definition:

Definition 13.10. The double fold ¢y, is said to be flexible if it is homotopic, within C7, to a
spherical inside-out wrinkle (Definition 13.8). In this case the pair (C}, ¢y ,) is called a flexible
double fold chart.

Of course we still need to understand for which p the above model is flexible. For small r this can be
computed explicitely while for general r we have a (non sharp) bound given by the following lemma:

Lemma 13.11. The minimal length p for which the As,.-double fold chart (C};7 ®r,p) 1s flexible, denoted

by pr, satisfies:
3

pr=1 p=5, p=2 p<3"
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Proof. As shown by Equation 13.2.4, it is possible to homotope a double fold to an inside out wrinkle.
Furthermore, it is not hard to see that if the starting double fold is sufficiently small (with respect to
the C°-norm on the r-th order jet bundle) then the homotopy stays inside Cp. To see why this is true
first observe that, by compactness and continuity, the r-th order lift of Sws, ; is bounded. Hence, we
can apply a “scaling trick ”to make the lift arbitrarily close to the zero section as follows.

Let (z,y,2!), I = (i,...,i,) denote the usual coordinates on J"(R — R™). In these coordinates we
define a scaling diffeomorphism of the front of J"(R — R™) by:
Hx K_’Rn_’g_’an (xvy)'_)(Ax1a$27"~7mnvAr+ly)a

for any A > 0. Recall that any diffeomorphism of the front can be lifted to a contact transformation
(Definition 3.6). We still denote the lift by uy : J"(R — R") — J"(R — R") which in coordinates is
given by

(13.4.1) px(z,y, 21) = ()\xl,:cg, e T, ATy A”lfilzl) , I =(i1,...,ipn).

Since 0 < 71 < r it follows that uy, for A — 0, contracts C7 into an arbitrarily small neighborhood of
the zero section in J"(R — R™). Therefore, if A is sufficiently small, we can homotope p o ¢y, to an
inside out wrinkle within C7.

Of course, we want our homotopy to be relative to the boundary of B,. Thus, it remains to find
an interpolation between py o ¢, , and ¢, ,, and this is where the size of p becomes crucial. Let
A [=p,p|"t — [0,1] be a function which is 1 around the boundary of the domain, and equal € to
around the origin. Then, denote 7 := (x,...,2,) € R*! and consider the map

brp: By = J(R—=R"), = pyz) o ¢rp(T).
Observe that ¢, , does not depend on the Z coordinates. Together with Equation 13.4.1 this implies

that the image of ¢, , is contained in C} provided the derivatives of A satisfy

d

To find A it suffices to find a function f; : [0, p] — [0, 1] satisfying:

dk
(1342) fr(o) =0, fr(p) =1, |@fr‘ <1, YO<k<m,

and which can be smoothly extended as the constant function. In fact, since scaling by a constant
preserves the above conditions, it is enough to find a function satisfying f,.(p) > 1. Then, taking

A@) i= fr(lzal) - - fr(n]),
yields the desired function. Therefore, p, is the minimal number such that for any p > p, there exists

a function as above.

For r = 1, 2, 3 explicitely define the corresponding piecewise smooth function as in Figure ??7. If p > p,
these functions satisfy f,.(p) > 1. Hence, a smoothening of f will satisfy the required conditions.

For the general case we can use the following inductive algorithm. Suppose f, satisfies the properties
above, then we define f,.;1 in the following way:

fr(x) x € [O,pr]
F(z):=11 z € [pr, pr + 1]
frlpr +0—2) we[p,+1,2p, +1].

Observe that the (piecewise smooth) function

Fron(a) = fo Fly)dy,

satisfies the conditions in Equation 13.4.2. Hence a suitable smoothing and rescaling yields the desired
function. Furthermore, since p, > 1 for all r, we obtain the bound p, < 3" (Il

Lemma 13.12. If a multi-section contains a birth/death singularity then it contains a flexible double-

fold.
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13.4.1. Fishes: an alternative approach.

13.4.2. The parametric case.

14. Y2-FREE INTEGRAL SUBMANIFOLDS WITH PRESCRIBED SINGULARITIES

14.1. Setup and statement of the theorem. We consider now integral submanifolds whose locus
of tangencies with respect to the vertical foliation is fixed. As before, we impose for the singularities
to be of Whitney type.

Our goal is to prove an h-principle. For this, we need a certain local model to provide sufficient
flexibility. This is reminiscent of the existence of a zig-zag in the study of S-immersions [|, the
existence of an “overtwisted disk” in the study of contact structures [9] and Engel structures [14], or
the existence “loose chart” in the study of Legendrians [37].

In our setting we need a flexible doublefold chart as in Definition 13.10. Given a ball D < N we
denote by Embsy, (N, (M, €); D, A) (resp. FEmby2 (N, (M, €); D, A)) the space of all ¥2-free integral
submanifolds (resp. the space %%-free formal integral submanifolds) whose singularity locus is A and
have D as a flexible doublefold chart. The precise nature of A, as a stratified subset, and D, as a
chart, has to be explained.

Theorem 14.1. The canonical inclusion map
Embs: (N, (M, €); D, A) < FEmbs: (N, (M, §); D, A),

is a weak homotopy equivalence.

The above theorem follows immediately from the following more detailed (and technical) statement.
Furthermore, it shows that the above h-principle is in fact C-close and relative both in domain
and parameter. The theorem states that any (K-parametric) family of formal ¥2-free integral free
embeddings can be connected by a C%-small path (of such K-parametric families) to a family of %2-
free integral embeddings. Furthermore, if the family is already holonomic (in domain or parameter)
then the path can be chosen constant.

Theorem 14.2. Let the following data be given:

o A Cartan-Goursat distribution & on a manifold pair (M, M"), and a manifold N containing
a ball D;

o A connected and compact manifold pair (K, K'), with K' possibly empty, playing the role of
parameter space;

o A K-parametric family (fx, Fr,s) € FEmby2 (N, (M, §); D, A) which is holonomic when x € M’
orke K';

o A constant € > 0.

Then there exists a family of formal $2-free integral submanifolds (fx.i, Fi.t.s) € FEmbse (N, (M, €); D, A)
indexed by K x [0, 1] satisfying;

(1) (fr,00Fr0,5) = (fr, Fr,s) and (fr.1, Fr,1,s) is holonomic;
(ii) |fr,e — frolco <e;
(111) (fr.ts Frs) = (fi, Fi,s) whenever ke K' or x € M'.

15. APPENDIX. SMOOTH EMBEDDINGS WITH PRESCRIBED SINGULARITIES

15.1. Setup and statement of the result. The simplest case of Theorem 9.1 (when r = 1) states
that any formal deformation of a submanifold can be CY-approximated by an isotopy. That is, given
an embedding f : N — M and a tangential rotation Fs : TN — TM|y, for any € we can find an
isotopy fs : N — M such that

|fs = fleo <&, |dfs = Filco <e.
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In many interesting cases M comes equipped with a distribution &, and we would like to additionally
control the singularities of tangency of fs with respect to &.

Throughout this section we fix distribution £ of rank < k& on a manifold M of dimension n + k, and
we consider embeddings f : N — (M, &) where dim N = n.

Definition 15.1. A formally X2-free submanifold of (M,¢) is a pair (f, Fs) consisting of:

(1) An embedding f : N — M;
(2) A homotopy of injective bundle maps Fs : TN — TM covering f such that Fy = df and
S FL6) = O

If we can take Fy = Fy = df then we say that f is X2-free or that (f, F) is holonomic.

The following h-principle is the main result of this section. It states that, up to additional folds, any
formally %2-free submanifold is isotopic to a holonomic ¥2-free submanifold with the same singularity
locus.

Theorem 15.2. Let (f,Fy) : N — (M,€) be a formally ¥2-free submanifolds. Then, for any e > 0
there exists an isotopies fs : N — M satisfying:

(i) fo=f and
|fs = folco <&
(i) On Op(X(F1,€) we have
‘dfl — FS|CO < g;
(iii) the singularity locus satisfies
S(f1,€) = S(FL 9 u S,
iel
where {S;}ier is a finite collection of (nested) codimension-one spheres along which fi has sin-
gularities of fold type. Here the equality is as stratified sets.

15.2. Proof of the result. To explain the idea of the proof, first suppose that Fs;h¢ for all s € [0,1].
In this case we can arrange that ¢ is contained in the fibers of the normal bundle 7 : NV — N.
Therefore, F, can be interpreted as a section of J'A/ — N and we can use holonomic approximation
to isotope N to follow F; along its codimension-one skeleton (containing ). Then, we modify f in the
normal direction to X so that it has the correct singularities of tangency with &. Finally, appealing to
Theorem 8.8, we can extend the isotopy over the top dimensional cells of N, at the cost of introducing
additional (double) fold singularities.

In general both f and F; (for s < 1) can have extremely bad singularities of tangency with £&. However,
knowing that f is formally ¥.2-free, we can replace £ with a family of distributions &, such that F,h2&,
for all 5. To be precise, since Fy : TN — T'M|(yy is an injective bundle map we can find a family of

bundle isomorphisms Z—'\S : TM — TM such that
FyoFy=F,: TN — TM|;y, Vse[0,1].
Using this map define a family of distributions &, s € [0,1] on M by:
€ :=F, 0 F7'(9).

We observe that & = &, and Fyh2¢, for all s € [0,1]. In particular £gh2df. Indeed, transversality is
preserved by isomorphisms, and since F; h2¢ we obtain

F, = (Fyo FiY o Fyh?(Fy 0 FY)E =&,
Recall that singularities of tangency of F, with £, are encoded by the stratified submanifold
S(Fy, &) =2t ontt.. ot 5 g

where ¥ has codimension-i in N. Note that (by construction of &) the singularity locus does not
depend on s. Furthermore, along ¥ we have a splitting

(15.2.1) Els = & DV,
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where Vi € TN|y; satisfies

(i) F;YTN n &) = Span(v);
(ii) Orientation determined by maslov coorientation.

Probably fine to just say that Fs maps v to V. Don’t need to fix orientations so that V is defining
the orientation or not.

Notation got mixed up? There is a difference between v and V' := Fj(v). The splitting of £ is with
respect to V not v.

Next we isotope N to have the correct singularities around Y. This done using a double induction
argument. First choose a partition tg = 1 <ty < --- <ty = 1 of the interval [0, 1]. If the partition is
sufficiently fine then Fy, s € [¢;,t;41] is graphical over F;, for each 1 < ¢ < k — 1. Moreover we can
arrange the maximal angle between Fs and F}, to be as small as we want. Then the first induction
statement is as follows:

Induction on time: Suppose there exists an isotopy fs, s € [0,¢;] satisfying the conditions in the
statement of Theorem 15.2. Furthermore, suppose that Fy, for s € [¢;,t;41] is graphical over F}, on
Op(X). Then there is an extension fs, for s € [0, ¢;41] with the same properties.

To prove the induction statement it suffices to construct the extension satisfying |df,,, — Fi,,,|co <€
on Op(X). Since the angle between Fy,, , and Fy, s € [ti11,t;42], is small the graphically condition
then follows. The extension is constructed inductively on the strata of 3. To be precise we prove:

For the induction step its important that |df; — Fi|co < € on a neighborhood of Op(X?). This follows
from the proof. Away from ¥ this is not true at all.

Lemma 15.3. Consider (f, Fy): N — (M, &) be a formally ¥2-free submanifold such that:

(i) X3(Fy,€) = & for all s € [0,1];
(ii) Fs, s €]0,1] is graphical over N.

Suppose that E(f|op(21i+1)) = X(F1,&). Then for any e > 0 there exist an isotopy fs : N —> M
satisfying:

(Z) fO = f; ‘fs - f0|co <E;

(ii) fs=f on Op(="")
(iii) |dfs — Fi|co < & on Op(Z*);
(iv) S(f1) n Op(3") = B

Before proving the lemma let us see how to complete the proof of the theorem. By the double induction
procedure (and Lemma 11.3) we obtain a homotopy of formally %:2-free submanifolds (f;, F}s), s,t €
[0,1] such that (fo, Fo,s) = (f, Fs) and

E(fl ‘Op(Z)a g) = E(Fl,lag)'
We apply Theorem 9.1 to (f1, F1,s), relative to Op(X). This yields another isotopy, fs satisfying:
(i) = f1, and fs = f1, for all s on Op(2);

0
(11) fs — f1|CO < E.
(iii) f is a folded embedding (with respect to &) away from X.

Observe that since we apply Theorem 9.1 in the smooth case, the condition |d fl — Fi11|co < € does
not hold close to the fold locus. Instead we have that F; ¢ so that by the moreover part of Theorem

9.1 we can arrange the folds of fto be tangent to £&. Moreover, away from the folds, |dj?f Fiq|<e
which implies that f; is transverse to £&. Thus, up to additional fold singularities, the singularity loci
of f; and f; agree, concluding the proof.
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Proof of Lemma 15.3. Using F; obtain a splitting

€y = £ v,
as in Equation 15.2.1. We can extend this splitting to an open neighborhood U of ¥ in M. Further-

more, since EAN we may assume that it is contained in the fibers of the normal bundle 7 : N' —» N
to N in M.

Recall that v is transverse to Eli\El&l. Hence we can thicken X! to a hypersurface SV U
transverse to v. A neighborhood of £'" can be identified with the total space of the bundle

7 Ngui xR—»ilixR

in which v is identified with the unit vector field on the R-factor. Furthermore, these coordinates f is
identified with a section (which by slight abuse of notation we still denote by) f : £ x R — Newi xR.

Having the correct singularity should be made into a precise statement (in a lemma?). This should
mean that you have a fold singularity wrt a fixed vector field direction and the correct corientation.
Because this is already enough (by stability of folds etc) to conclude that the interpolation is through
fold singularities. We dont need to actually have coordinates where the map looks like the standard
model. Also for the parametric case this is better since obtaining models parametrically is prob-
lematic; there can be some noise which is small enough so that the interpolation is through folds.
Approximating Fy: By the graphicallity assymption F; defines a section o of the bundle J*(NV]¢.i xR).

Furthermore, we may assume that o = j1 f on the neighborhood U := Op(S'""") where f is assumed
to have the correct singularities. Indeed, let p: N — [0,1] be a bump function supported in U and
equal to one on a smaller open V < U containing n1 Then,

~

FS = F(l_p)s,
agrees with F outside U, and proving the lemma for Fj is equivalent to proving it for ﬁ’s.

Thus we can apply holonomic approximation (T heorem 5.2) to o along the hypersurface S relative
to U. This provides a homotopy of sections o, : 2* x R — J* (N

s X R) whose front projection we
denote by f;, as well as a family of isotopies ¢; : 21 x R — 21" x R satisfying:

(i) o1 is holonomic on Op(¢1(SY), ice. o1 = jLf1;

(i) [fe = fleo <& |dfi = File, fo = f and f; = f on Op(st);
(iii) ¢¢(X'" x {0}) is transverse to v.

To extend ft to IV, note that we can make the identification
Op(¢s1(E) = 651 (EY) x (=6,6) = BV xR,

for § > 0 sufficiently small. Choose a smooth bump function p : (—=4,d) — [0, 1] which is 1 around
zero and 0 near the boundary. Then the desired extension is given by:

fs = .]?,;)s-

Placing singularities: By the previous step, we can assume that N has the correct singularities on
Op(Li*1) and that X! is transverse to £. It remains to place the correct singularities around X%

Recall from Section 4, that X' can be realized by the Whitney singularities. More precisely write
(z,q) = (1,...,2n-1,q) for the coordinates on R™ and consider the embedding:

Whit,, : R® — R™ x R

g A+ 21, 9).

(@,q) = (z,q
This map expresses the n-th Whitney singularity Whit,, : R” — R™ (see Section 4) as the singularity
of tangency with respect to the fibers of the projection 7 : R**! — R". Recall from Remark ??that
Whit,, describes the birth/death of two copies of Whit,,_;. In particular, away from the origin Whit,,
is equivalent to the R-stabilization of Whit,, ;.
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Next we look for the correct coordinates in M to place the singularities. First observe that normal
bundle of each connected component of 211\211+1 inside N is trivial. Indeed, this follows inductively
since v is transverse to ' inside X' (and since we can can always slightly extend the trivialization

over a connected component of L\S1" over ©1'7). Thus a neighborhood of %% in N can be
identified with

Y x R x RP4L
with coordinates (p, ¢, z), where the ¢ coordinate corresponds to the flow lines of v. In these coordi-
nates we have X! = {q = 0}.

Similarly, inside M we know that X is transverse to V = Fy(v). By assumption V is graphical over
N (although we cannot assume it to be tangent). Hence we can choose the normal bundle N of N to
be transverse to V. Thus we identify a neighborhood of ¥¢ in M with the total space of the bundle

(15.2.2) T Ng xR—> 3 xR, (p,q) — (7(p).q),

where 7 : N' — N is the usual projection, and the R factor in the total space (resp. the base)
corresponds to integral curves of V' (resp. v). As such we think of v as the projection of V' onto N.

In these coordinates N is identified with the image of a section f, as constructed in the previous step.
Moreover, we can choose a splitting N = A @R such that f is identified with a map into the R-factor.
Now consider the section

fiDixR xR 5 A

(p7 q, x) = (O’ Whltl(Qv J?)),p, q, Jf)
Note that this is just the ¥ stabilization of \mz By the construction in the previous step, fi agrees
with f on Op(ZlHl) (possibly after a fiberwise change of coordinates of the bundle in Equation 15.2.2).

Since both f and f; are sections, we can simply interpolate between them to obtain the desired isotopy
of N. O

5 @R x X x R x R1!

OTHER SECTIONS:
16. THE INTEGRAL GRASSMANNIAN

Let B and F be vector spaces of dimensions n = dim(B) and k¥ = dim(F). We are interested in
I-dimensional integral submanifolds of (J"(B, F),{can). Our goal in this Section is to understand
their linear counterpart, i.e. the corresponding integral elements.

We will do this step by step, looking first at the horizontal elements (Subsection 16.2), then at the
elements that intersect the vertical distribution in a given dimension (Subsection 16.3), and finally at
how these different pieces glue together (Subsections 16.4 and 16.5).

Let us provide some context about integral manifolds and integral elements: the first to regard
general integral submanifolds of jet space as “generalised solutions” seems to have been R. Thom in
[11], where he sketched the proof of his famous “homological h-principle”. Later, A.M. Vinogradov
brought attention to them, in the context of Geometry of PDEs, in [12]. Several works have followed
in this direction [0, 7, 43].

It is within the Geometry of PDEs literature [27, 28] that the integral Grassmannian has been studied.
As far as the we are aware, the majority of what is currently known can be found in the works of V.
Lychagin [30, 29, 31, 32]. Despite containing beautiful results, these articles follow an announcement
format and proofs are often missing or just outlined. One of our goals in this Section is to provide a
detailed account of Lychagin’s work. We will not attempt to discuss the relation with commutative
algebras; this will be done in future work.

We note that our homotopy type computations for the integral Grassmannian in Subsection 16.5 seem
to be new.
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16.1. Decomposing the integral Grassmannian. Following subsection 77, we identify the tangent
space of J"(B, F') at any point with the vector space

g=B®F@®Hom(B,F)®Sym?(B* F)®---®Sym"(B*, F).

In Definition 3.4 we endowed g with a natural graded Lie algebra structure given by the contraction
of vectors with tensors. We called this the jet Lie algebra with parameters n, k, and r. It was then
proven in Proposition 7?7 that g models the nilpotentisation of £.,,. Under this isomorphism, integral
elements (of a given dimension ) correspond to Lie subalgebras lying in the zero degree part

go = B® Sym” (B*, F).

The space of integral elements is denoted by Grintegral(g,!). It decomposes into several pieces, de-
pending on how integral elements intersect the vertical component. We define:

Gryi(g,1) := {W € Grintegrai(9,1) | dim(W n Sym"(B*, F')) = i},

where the subscript 3 is inspired by the Thom-Boardman notation.

The piece Gry,(g,!) is precisely the horizontal Grassmannian, as introduced in subsection 3.3. We
also call it the regular cell even though it is, in general, not dense in Grintegrai(g,?). This is shown
in subsection 16.3.3 below. We will describe the spaces Gry:(g,!) in Subsections 16.2 and 16.3.

16.1.1. The grassmannian of multi-sections. In Section 6 we will introduce multi-sections, i.e. inte-
gral submanifolds that are horizontal in a dense set. These are submanifolds that one can manipulate
through their front projection. Any integral element tangent to a multi-section must be in the clo-
sure Grso(g,n) of the horizontal elements; we call this space the Grassmannian of multi-section
elements.

Furthermore, we are interested in multi-sections with mild singularities of tangency, which will be, in
particular, of corank 1. Therefore, we content ourselves with describing how the two strata Grso(g, n)
and Grs:(g,n) glue together.

Definition 16.1. The X2-free integral Grassmannian, is the union

Grzszree(g7 n) = GTZO (ga n) Y Grzl (g’ n)

We will study its topology in Subsection 16.5.

We will study Grintegrai(9,!) as a whole in the future. In particular, in the present work we do not
look at the closures Gry:(g,n) with ¢ > 1.

16.2. Horizontal elements. We now prove Lemma 16.3: the Grassmannians of horizontal elements
are vector bundles with (standard) Grassmannian base. This description appeared already in the
recent work [7].

16.2.1. Maximal horizontal elements. A maximal horizontal element W is graphical over B. We can
represent it (uniquely) as the graph of a homomorphism A € Hom(B, Sym" (B*, F')). Then:

Lemma 16.2. Let W = graph(A) be a n-dimensional subspace of go graphical over B. Then, W is
integral if and only if A € Sym" T (B*, F).

Proof. The Lie subalgebra condition for W means that for any pair wg + A(wo), w1 + A(w1) € W we
have:
0 = [wo + A(wp), w1 + A(w1)] = twe A(w1) — tw, A(wp)

which implies that A is symmetric with respect to the first variable as well. The claim follows. O

This Lemma realises the correspondence between horizontal elements at a point p € J"(Y — X) and
points in the fibre of J"™1 (Y — X) over p.
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16.2.2. General dimension. More generally, if W is horizontal and of dimension [ < n, it projects
down to some [-dimensional subspace H ¢ B, defining a map

m : Grso(g, 1) — Gr(B,1)

to the [-Grassmannian of the base. We claim that this is a vector bundle which can be explicitly
described in terms of the tautological bundle v over Gr(B,1).

Lemma 16.3. There is a canonical isomorphism of vector bundles over Gr(B,1):

Sym"t!(B* F
Grso(g, 1) = W:

where Y& is the annihilator of the tautological bundle .

Proof. We look at all the graphical [-subspaces in go, not necessarily integral: given H < B, its
possible lifts correspond to the elements of Hom(H, Sym” (B*, F')). Packaged all together, for varying
H, they are elements of the total space of the vector bundle:

Hom(y, Sym" (B*, F)) — Gr(B,1).
We want to determine which of these are horizontal.

To do so, we use the auxiliary trivial vector bundle Sym” ™! (B*, F) — Gr(B,1). We look at the bundle
map given by evaluation on each [-subspace:

ev, : Sym"t(B*, F) ¢ Hom(V,Sym" (B*, F)) — Hom(v, Sym" (B*, F)).

The image of this map is necessarily contained in Grso(g,1). We claim that the map is an epimorphism:
this follows from the fact that any horizontal W, projecting to H — B, may be extended to a maximal
horizontal element by direct summing with the complement of H in B.

The kernel of ev, is, by definition, the subspace of those elements of Sym” ' (B*, F') which vanish
when a vector in 7 is plugged in. By symmetry, we deduce that there is a exact sequence
0 — Sym" " (vt F) — Sym" ™ (B*, F) — Gryo(g,l) — 0

of vector bundles, proving the claim. ([

16.2.3. The subspace filtration. Let H < B be a linear subspace. In the proof above we looked at
those elements in Sym”™!(B*, F') which vanish when an element of H is plugged in. One can, more
generally, consider those tensors that vanish when a collection of elements in H is used. This leads
us to define the following filtration:

Sym" ™ (B*, F)H9) .= {A e Sym™  (B*, F) | ty, -+ 1o, A = 0, for any v; € H},
oo Sym™ (B, )9 < Sym™H(B*, )i
By the discussion in the previous subsection, we have that

SymT+1(B*7F)(H,1) _ Symr+1(HJ_’F).

In general, by choosing a direct summand of H, we can identify:
Sym"* (B*, F)#7)
Sym' ! (B*, F)(H.j=1)

~ Sym’ Y (H*, F)® Sym" "2~ (HL, F).
yielding the dimension formula:
di Sym"*!(B*, F)(Ha) \ L(hrim 2\ (nAr o]
Sym”l(B*,F)(H,j*l) N n—1 n—1 '

In Subsection 16.4 we will study the principal cone in Sym™ ™! (B*, F), i.e. the space of tensors A of
the form A € Sym" ™' (H*, F), for some H c B.
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16.2.4. Aside: the conormal. We finish this Subsection presenting the conormal construction. Given
a horizontal submanifold of J"(Y — X), it produces a maximal integral submanifold containing it.
This will not be needed later on, but it helps us emphasise that maximal integral submanifolds are
often exotic looking (compared to those integral submanifolds that are almost everywhere horizontal).

We first present the linear analogue of this phenomenon:

Definition 16.4. Let W < gg be l-dimensional and horizontal. Denoting its projection to B by H,
we define the conormal of W to be the subspace:

conormal(W) := W @ Sym" (H*, F) < go.

The space Sym”(H*, F) is the intersection of the polar space of H with the vertical component.
Hence, the conormal is a maximal integral element.

In the contact case, conormal(W) is middle-dimensional and therefore a lagrangian subspace of &cap.

In the general case, Sym” (H*, ') has dimension k((";lf)lﬁfl) which is often (much) larger than n—1.
For instance:

o If I = n — 1, we have dim(Sym" (H*, F)) = k.

e If | =n — 2, we have dim(Sym" (H*, F)) = k(r + 1).

e If [ = n — 3, we have dim(Sym" (H*, F)) = k(HQ (r+1)

Therefore, the conormal construction produces integral elements which are tangent to the fibre along
a large subspace, and whose dimension is often much larger than n.

Now for the manifold version:

Definition 16.5. Let N < J"(Y — X) be a l-dimensional, integral submanifold with immersed
projection my,(N) < X. We define its conormal to be the manifold:

conormal(N) :={pe J"(Y — X) | mr—1(p) € Tr,p—1(N), p 2 Trr, () Trr—1 (V) }-

In the last inclusion we think of p € J"(Y — X) as a mazimal horizontal element in m,,_1(p) €
JHY - X).

To see how this corresponds to the linear version, we choose a trivialisation so we may work with
J"(B, F), where B and F are vector spaces. Then the conormal is precisely the space

{pe J"(B,F) | myr—1(p) € mpr—1(N), p € conormal(T, oo (p) T — 1(N))}.

Here we use the fact that both the base B and the fibre F' are vector spaces to canonically identify
the fibre of r-jet space with Sym"(B*, F') and therefore invoke the linear definition.

16.3. Integral elements of given corank. Having understood the horizontal case (which we will
have to invoke repeatedly), we may look now at more general integral elements. Namely, those
intersecting the vertical component in a subspace of dimension 4.

16.3.1. The setup. The space Grsi(g,!) is endowed with two canonical maps. The first is simply the
restriction of the base projection; we denote it by:
7 Gryi(g,l) — Gr(B,l —1).
The second one intersects an integral element with the vertical component. We write:
NSym" (B*, F) : Grsi(g,!l) — Gr(Sym" (B*, F), ).

Given W € Grsi(g,!), the subspaces H = m,(W) and W,, = W n Sym"(B*, F') must be orthogonal
with respect to the curvature/Lie bracket. This means that W, must be, in fact, an element of
Gr(Sym”(H*, F),i). Reasoning in this fashion for all W simultaneously leads us to look at the total
space of the bundle Gr(Sym” (v, F),i) — Gr(B,l — ). We write v for the tautological bundle over
it.
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The two canonical maps defined above yield a projection 7 : Gry:i(g,1) — Gr(Sym” (y+, F),q). It is
immediate that 7 is a vector bundle in which a natural choice of zero section is:

(16.3.1) (H,W,) > H®W,,
where H € Gr(B,l — i) and W, € Gr(Sym" (H*, F), ).

16.3.2. The result. We may describe Gryi(g,!) explicitly:

Lemma 16.6. There is a canonical isomorphism of vector bundles:

Sym" ™ (B*, F)
Sym" " (y1, F) @ Hom(y, v)

over the total space of Gr(Sym” (v+, F),i) — Gr(B,l —i).

GrEi (ga l)

lle

Proof. As before denote by Sym" ™! (B*, F) — Gr(Sym" (y*, F), ) the trivial vectorbundle, with fiber
Sym” ! (B*, F'). We define a vector bundle epimorphism

®: Sym" " (B* F) — Gryi(g, )
which, at a point W, € Gr(Sym”(H*, F), i), is given by
A — @ w,(A):=graph(Alg) ®W,.

The tensor A is in the kernel of @g 1, (i.e. gets mapped to the zero section from Equation 16.3.1) if
and only if the associated quotient map

A: H — Sym"(B*,F)/W,

is zero. l.e. 1,A € W, for every v € H. Therefore, after choosing a direct summand for H, we can
identify:
ker(®m,w,) = Sym" ' (H*, F) ® Hom(H, W,),

which is a vector subspace of Sym” ™ (B*, F)(#:2) ~ Sym"**(H', F) @ Hom(H,Sym" (H*+, F)). O

16.3.3. Dimension counting. From the previous proof, we deduce that:

Corollary 16.7. The fibre of Gryi(g,1), as a vector bundle over Gr(Sym” (v*, F), i), has dimension

[ R iy | R

Corollary 16.8. The manifold Gryi(g,l) has dimension
dim(Gryi(g,0)) = (=) (n—1+0)+

(0 e

[ et | [

Proof. The space Gr(B,l—i) has dimension (I—14)(n—1+1i). The fibre of Sym” (y*, F') has dimension
(H'(n_lﬂ)_l)7 so it follows that the fibre of Gr(Sym”(y*, F),4) has dimension:

n—Il+i—1
[(r—’—(n_”%)_l)k—i]i.
n—Il+i—1

Putting all these computations together, we deduce the claim. O

Similarly, we deduce:
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We are particularly interested in comparing Grs: (g, 1) with the regular cell Grso(g,!), which we want
to regard as the “generic” ones. To do so with define a number, which we call the codimension, as
follows:

codim(r,n, k,1,4) := dim(Gryo(g,!)) — dim(Gryxi(g,1)).

We particularise to the case n = [ and we compute:

codim(r,n, k,n,i) = i2+kr1_i(r—?—i_1>,
1+r 1—1

codim(r,n, k,n,1) = 1,

codim(r,n,k,n,2) = 4—kr,

codim(r,n, k,n,3) = 9—kr(r+2).

So we deduce:
Corollary 16.9. The space Grsi(g,n) has codimension 1 in Grso(g,n).

In the contact setting k = r = 1, the space Grsi(g,n) has codimension Z(l%l

) in Grspo (g,m).

That is: with the exception of a few cases in which r and k are small, the strata Gryi(g,n), i > 1,
are often larger than the regular cell.

The most interesting component, from a PDE perspective, is the closure Grso(g,!) of the horizontal
cell. We will not attempt to look at it in depth. As pointed out in the introduction, it is enough that
we understand how Grsz_ge0(g,!) sits inside; we will do so in Subsection 16.5.

16.4. Principal subspaces. It is convenient that we introduce some auxiliary concepts before we
look at Grsz_free(g,1) = Gryo(g,!). The main definition of interest in this Subsection is:

Definition 16.10. A horizontal element A € Grso(g,n) = Sym" ™ (B*, F) is principal if
A — frJrl ® a,

for some (unique) f € B* and o € F. The span of a principal element is said to be a principal
subspace.

Any non-zero principal element defines a kernel subspace ker(A) := ker(f) < B which is of codimen-
sion 1, and an image subspace Image(A) c Sym"(B*, F') which is by definition the 1-dimensional
space spanned by f" ® a.

Remark 16.11. As points in (r+1)-jet space, principal elements correspond precisely to pure deriva-
tives (i.e. derivatives of order r + 1 along a single direction in the base).

16.4.1. The principal cone. We claim that the set of all principal subspaces in SymHl(B*, F) is the
cone of an algebraic subvariety in the projectivisation. Let us recall two constructions from classic
algebraic geometry.
Let V and W be vector spaces. We define the Veronese mapping:
P(V) — P(Sym (V)

[v] — [

Similarly, the Segre mapping is defined by the expression:
P(V)xP(W) — PV®W),
(o], [w]) = [v@w].

Both of them are algebraic maps.

In our setting, we can put them together to define the principal mapping:
P(B*) x P(F) +~ P(Sym"™'(B* F)),
([fLla]) = [ ®al
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We are interested in the cone it defines. It is given by the image of the map:
B*x F — Sym""Y(B* F),
(fe) — [f®a

We will abuse notation and still call this map the principal mapping, as long as no confusion may
arise. Its image, which we denote by 1y and we call the principal cone, is an algebraic subvariety.
By construction, a horizontal element is principal if and only if it is contained in V.

16.4.2. The closure of the principal cone. Fix Ag, A; € Sym" ™! (B*, F), with A, principal, and con-
sider the linear combinations (Ag + sA4;)ser. We can see that

(AO + SAl)‘ker(Aﬂ = AO‘ker(Al)a

i.e. the graph over ker(A;) does not depend on s. However, Ay + sA; explodes in the complement of
ker(A1) as s goes to infinity. This implies that the sequence of horizontal elements (Ag + sA1)ser has
well-defined limit in Gry:(g,n): the integral element

graph(A0|ker(A1)) S Image(Al)'
In terms of r-jet space, this phenomenon corresponds to an explosion of a pure derivative of order

r 4+ 1. Any element in Gry:(g,n) may be written as such a limit, so we deduce:

Lemma 16.12. Grxi(g,n) is contained in the closure of Gryo(g,n).

Applying this reasoning with Ag = 0, we are effectively looking at the closure V := V, in Grso(g,n)
of the principal cone:

Lemma 16.13. The principal subvariety V is the union of two pieces Vy and V1. The latter piece
is the zero section of Grsi(g,n) as a bundle over Gr(Sym” (v*+, F),1) — Gr(B,n — 1).

Proof. Any element in the closure of Vy can be realised as the limit of a path (sA)ser, with A
principal. As reasoned above, its limit is then the direct sum ker(A) @ Image(A), where the first term
is a hyperplane in B and the second one is a line in Sym” (ker(A)*, F'). This concludes the claim. O

Lastly, we remark that V; = Gr(Sym” (y*, F), 1), as a bundle over Gr(B,n — 1), is trivial. Indeed, an
element in the fibre is a line in Sym” (v, F), which can be uniquely identified with its image in F,
which is again a line. This shows that:

Corollary 16.14. There is an identification
V) = Gr(B,n — 1) x Gr(F,1) = P(B*) x P(F).

16.4.3. The topology of the principal subvariety. We want to determine the homotopy type of V by
putting its pieces together. This is relevant because, as we will see in Subsection 16.5.2, V is homotopy
equivalent to Grs2_frec(g, ).

Let us make a preliminary remark. We write V for be the blow-up of V at the origin. We denote the
tautological bundles over P(B*) and P(F') by yp+ and g, respectively. We then look at the forgetful
map

V — P(B*) x P(F).
One can check that it is a fibration with RP! fibres and, in fact, it is the fibrewise compactification

of the real line bundle 'y%;H ® vr. From this expression we see that there is a certain asymmetry

depending on the parity of r, so we must tackle each case separately.

Write B* ~ RP" for the compactification of B* by adding P(B*) at infinity. Denote by S(F") the unit
sphere (with respect to some scalar product). Then:

Lemma 16.15. Let r be even. Then, there is a fibration
7y — B* x S(F) — V.
In particular, if k = dim(F') = 1, we have that V is homotopy equivalent to B¥ ~ RP".
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Proof. We define maps
B* xS(F) +— Vo,
(f,a) = oo
P(B*) x S(F) Vi,
([f], @) (Lf1, [ad)-

Their composition defines a continuous map B¥ x S(F') — V, as claimed. For the second claim we
note that the bundle is trivial because S(F') = Zs. O

!

!

Similarly:
Lemma 16.16. Let r be odd. Then V is homotopy equivalent to the quotient

P(B*) x F
P(B*) x 0

Proof. Regard P(B*) as the quotient of the unit sphere (for some scalar product) under the antipodal
map. Consider the map:

P(B*)XF = Vo,
([fla) = fHee,

which is well-defined because r is odd. Together with the identity map P(B*) x P(F) — Vi, this
defines a mapping

P(B*) x F'> V

which is surjective, maps P(B*) x {0} to the origin in V, and is a homeomorphism in the complement;
quotienting we deduce the claim. |

16.4.4. The tangent variety of the principal cone. Lastly, being a subvariety of a vector space, we can
look at the tangent variety TVy < Sym” ™! (B*, F) associated to V.

To determine T'Vy, we look at the map 9(f,a) = f" ! ® a. Its differential at a covector f € B* and
a vector a € F' is readily computed:

dfotp: B¥ x F — Sym" ™Y (B* F),
diatp(9.8) = @@+ B8) +(r+1g- ff®a

Equivalently, if we set H = ker(f) = B, we see that the tangent space to Vo at f7™' ® a # 0 is the
subspace:

Sym"™ ! (H*, F)® H* ® Sym” (H*,{a)) < Sym" ™! (B*, F)#:2),
This identifies the normal fibre to Vy at (f, @) with the quotient

Sym" ! (B*, F)
Sym" "N (HL, F) @ H* ® Sym' (H+,{a))’

as we would expect from our description of Gryi(g,n) as a bundle over V.

16.5. The Y2-free integral Grassmannian. In this last Subsection we state some structural results
about Grsz_geo(g,n) and we provide sketches of proofs. A more comprehensive account will appear
in future work.
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16.5.1. Smoothness. According to Subsections 16.2 and 16.3, the pieces Grso(g,n) and Grs:(g,n)
are smooth manifolds. The first is a vector space. The second one is a vector bundle over a smooth
bundle with grassmannian base and fibre. The computations in subsection 16.3.3 show that the later
has dimension one less than the former. One can put together these facts to show:

Proposition 16.17. Grsz2_ge.(g,n) is a smooth open manifold, embedded in Gr(gg,n). Furthermore,
Grsi(g,n) sits inside as a smooth hypersurface.

Proof. 1t is sufficient to describe, at each point W € Grgi(g,n), a chart that is simultaneously a
submanifold chart of Grsz_g.e0(g, n) inside of Gr(gp,n) and a submanifold chart of Grsi(g,n) inside
Grs2_free(g,m). We will just provide the latter.

Let W be presented as lim,_, +o, graph(Ag+sA;), with Ay, A; € Sym" ™ (B*, F) and A, principal. We
write L for a neighbourhood of Ay within the normal fibre to the principal cone at Ay. Additionally,
we fix a (n+ k — 1)-dimensional family U of rank-1 maps whose projectivisations are a neighbourhood
of [A1] in the space of principal subspaces.

Then, the map
®:LxUx(=0,0) > Gr(g,n)

1
(A, A 5) > At A

is a smooth embedding with image a neighbourhood of W in Grsgz_gec(g,n). Further, the map
|y Lx {0} Parametrises the hypersurface Gry: (g, n). O

We remark that we do not know whether Grso(g,n) is smooth in general. In the contact case it is
known that it is.

16.5.2. Homotopy type. We can put together Proposition 16.17 with the work we did in the previous
Subsection about the principal subvariety to show that:

Proposition 16.18. The X2-free Grassmannian Grsz_geo(g,n) is homotopy equivalent to the prin-
cipal subvariety V.

Proof. We just provide a sketch of proof.

Let us fix a metric in gg making the horizontal and vertical components orthogonal. This immediately
defines a distance function z between lines in gg, given as the sine squared of the angle they make.
We can readily extend this function to Gr(ge,n) as follows:

£(A A7) = max A(LL).

We restrict £ to Gryo(g, n).

Note that the horizontal cell Gryo(g,n) is the set of points at distance strictly less that 1 from the
zero map. Similarly, Grsz_gc.(g,n) is the set at distance strictly less than 1 from V. We may then
define the distance function
d: Gr22—free(ga n) - [07 1)
d(A) := inf X(A, B
(4) == inf £(4, B),

whose zero set is V.

The function d is smooth. It can be seen that its restriction to Grs: (g, n) is Morse-Bott and its critical
set is precisely V. The situation in Grso(g,n) is more delicate because d is not Morse-Bott: its zero
locus is the principal cone, which is singular, and the additional critical points (corresponding to the
cut locus of d) form a conical algebraic subvariety S.

We may then proceed as follows: we modify d by adding a perturbation h(A) = |A|?p; here p :
Gryo(g,n) — R is a bump function supported in the intersection of a neighbourhood of S and
the complement of a ball around zero. In particular, this perturbation is zero in the hypersurface
Grsi(g,n). The effect of this is that minus the gradient flow of d + h retracts everything to a
neighbourhood of V, which itself retracts onto V. O
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16.5.3. The Maslov hypersurface. In the Lagrangian Grassmannian, the complement of the regular
cell is usually called the Maslov cycle. As studied by V. Maslov and V. Arnol’d [33, 3], it is a two-sided
(i.e. cooriented) and non-separating hypersurface and, it defines a first homology class through the
intersection pairing. Let us study this phenomenon in general jet spaces. We will henceforth denote:

Definition 16.19. Grxi(g,n) € Grsz_gee(g,n) is called the Maslov hypersurface.

The Maslov hypersurface is non-separating in general. Furthermore:

Proposition 16.20. The Maslov hypersurface is two-sided if and only if one of the following condi-
tions holds:

o dim(F) =1 and r is odd, or
e dim(B) = dim(F) = 1.

These are not mutually exclusive.

Proof. According to Proposition 16.18, it is sufficient that we prove that V; is coorientable within V.
Then, we refer back to subsection 16.4.3, where it was explained that % (the blow-up at the origin of
V) is the fibrewise compactification of the tautological bundle Y55 ® v over P(B*) x P(F). Here
the zero section corresponds to the blow-up of the origin and the infinity section is precisely V;, but

their roles are symmetric.
Now we observe that *y%fﬁl ® 7 is isomorphic to the normal bundle of V; in ]7, and therefore

isomorphic to the normal bundle of V; in V. Furthermore, this bundle is trivial if and only if the

terms yp and 7%;“ are individually trivial. This proves the claim. U

Furthermore:

Corollary 16.21. Let dim(F) = 1 and r be odd. Then a choice of orientation for F determines a
coorientation for the Maslov hypersurface.

Proof. Indeed, as computed in the proof of Proposition 16.20, the normal bundle to Grs:(g,n) is
precisely vr, which is canonically identified with F'. [l

Similarly:
Corollary 16.22. Let dim(B) = dim(F') = 1 with r even. Then, a choice of orientation for B* ® F
determines a coorientation for the Maslov hypersurface.

Proof. The normal bundle to Gry:(g,n) is yp* ® vr, which is identified with det(B* @ F). O

In both cases, once we have oriented either F' or B* @ F', we will call the resulting coorientation the
Maslov coorientation.

16.5.4. The Maslov class. Under the assumptions of Proposition 16.20, the Maslov hypersurface is
non-separating, cooriented, and closed as a subset. This is enough to have a well-defined cohomology
class using the intersection pairing:

Definition 16.23. Suppose one of the following conditions holds:

e dim(F) =1 andr is odd, or
o dim(B) =dim(F) =1,

and that a Maslov coorientation has been fized.

Then, the Maslov index or Maslov class is the non-zero, non-torsion element

Ind e H* (GrEz—free (gv TL), Z)
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defined by:

Ind([7]) := |y n Grsi(g,n)| €Z
where v is a curve representative intersecting the Maslov hypersurface transversally. The count of
intersection points takes into account signs, comparing the orientation of v with the Maslov coorien-
tation.

16.5.5. The local Maslov class. Even if the Maslov hypersurface is not two-sided, it still makes sense
to talk about a local Maslov coorientation: indeed, let W € Gryi(g,n) and consider a ball
U < Gryz_gree(g, n) containing W. In U, the intersection UnGrg: (g, n) is two-sided, so a coorientation
can be chosen.

Given a local Maslov coorientation for U n Grsi(g,n), we can reason as before to define a local
Maslov class for oriented curves

([0,11,{0,1}) — (U, (QUN\(U n Grs1(g,n)))

using the intersection pairing. It can only take the values {0,1, —1}.

This will play a role in Subsection 7.2.
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