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Abstract. Y. Eliashberg and N. Mishachev introduced the notion of wrinkled embedding to show
that any tangential homotopy can be approximated by a homotopy of topological embeddings with

mild singularities. This concept plays an important role in Contact Topology: The loose legendrian

h-principle of E. Murphy relies on wrinkled embeddings to manipulate the legendrian front. Simi-

larly, the simplification of legendrian front singularities was proven by D. Álvarez-Gavela by defining

the notion of wrinkled legendrian.

This paper generalises these ideas to general jet spaces. Our main theorem proves the analogue
of the result by Eliashberg and Mishachev: Any homotopy of the r–order differential information of

an embedding can be approximated by a homotopy of embeddings with wrinkle-type singularities
(of order r).

Our first application deals with submanifolds of jet spaces tangent to the canonical distribution.

Outside of the contact case, we show that there is a complete h-principle as long as the submanifolds
have singularities of tangency with respect to the vertical of corank at most 1 (which we dub Whitney

singularities of order r). The motto is that, for spaces of jets other than contact, global topological

questions can be tackled with h-principle methods, but the local geometry of the singularities with
the vertical is non-trivial.

Our second application considers once again tangent submanifolds in jet spaces, but with pre-

scribed corank-1 singularities. We then prove that a complete h-principle holds as long as the
submanifold has a concrete local model that we call the loose chart, following Murphy. In the

front projection, the model is indeed a stabilised zig-zag (of order r) contained in a sufficiently big

neighbourhood.
As a corollary of the previous result we obtain an h-principle for singular legendrians with

prescribed singularities (modelled on the Whitney singularities of order r). This follows by projecting
down from r-jet space.
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PAPER I:

1. Introduction

1.1. Wrinkled embeddings. Let M Ă N be manifolds of dimensions m and n, respectively. In
many geometrically meaningful situations, we are interested in producing isotopies of M that simplify
its position with respect to some geometric structure in N . For instance, N may be endowed with a
foliation F and we want to isotope M so that it becomes transverse.

In general, such a process is obstructed. The tangent space of M defines a section GrpMq : M Ñ

GrpTN,mq|M into the Grassmannian of m-planes of N . If we want to make M transverse to F
by an isotopy, it is certainly necessary that GrpMq can be homotoped to be transverse to F . This
obstruction is purely algebraic topological in nature and can be analysed using obstruction theory.
One may then ponder whether the vanishing of these obstructions (that we call formal) is sufficient
for the existence of the desired isotopy. The answer is, in general, no. For instance, if N is a fibration
over R and F is the foliation by fibres, making M transverse to F would produce a function on M
with no critical points, which is impossible if M is closed. This obstruction is geometric and not
algebraic.

In situations where singularities may be unavoidable due to geometric reasons, we may attempt to
make them as mild as possible instead. This was proven, in the aforementioned setting, by Eliashberg
and Mishachev [21]: They showed that, if no formal obstruction exists, M can be isotoped to have
simple singularities of tangency (i.e double folds, see Subsection ??) with respect to F . The idea of
the proof is as follows: Since no formal obstruction exists, we are given a homotopy Grs starting at
G0 “ GrpMq and finishing at a bundle G1 transverse to F . Then, instead of isotoping M , we produce a
homotopy Ms of topological submanifolds that may have cuspidal singularities (or so-called wrinkles).
Despite being singular, the Ms admit well-defined Grassmannian maps GrpMsq and the heart of the
argument is that it is possible to choose Ms so that GrpMsq approximates Grs; here the flexibility
provided by the cuspidal singularities/wrinkles is key. The proof concludes by smoothing out Ms;
when we do so, M1 becomes a smooth submanifold and the cusps/wrinkles are traded for (simple!)
singularities of tangency with F .

1.2. Wrinkled embeddings of higher order. The starting point of the present article is that the
result of Eliashberg-Mishachev is a first order statement. That is: GrpMq is the first derivative of M ,
and their theorem states that any homotopy Grs of this first derivative can be approximated by a
homotopy Ms of M , as long as we allow for simple singularities in the process. Our main result says
that this can be done for higher order data as well:
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Theorem 1.1. Fix an integer r. Any homotopy of the r–order information of an embedding can
be approximated by a homotopy of topological embeddings with A2r-zig-zags. Similar statements hold
parametrically and relatively by allowing zig-zags to appear and disappear.

Generalising the first order case requires us to replace the standard cusps by singularities of higher
order; an A2r-zig-zag is precisely a pair of r-order cusps. This statement will be stated more formally
and proven, as Theorem 9.1, in Section 9.

1.3. Holonomic approximation. One can succinctly state Theorem 1.1 by saying that holonomic
approximation holds for submanifolds with zig-zags. To put this into perspective, let us recall the
standard setup for h-principle and geometric PDEs.

Given a smooth bundle Y Ñ X, we can define the bundle of r-jets JrpY Ñ Xq Ñ X. Its fibres consist
of r-order Taylor polynomials of sections of Y . Given any section f : X Ñ Y , we can consider its
r-order differential data jrf : X Ñ JrpY Ñ Xq; such a section of jet space is said to be holonomic.
Most sections F : X Ñ JrpY Ñ Xq are not holonomic and, to emphasise this, we call them formal
sections.

This provides a very convenient setup to discuss partial differential relations (PDRs). Indeed, we can
define a PDR of order r to be a subset R Ă JrpY Ñ Xq. It readily follows that a solution of R is a
section f : X Ñ Y whose r-order Taylor polynomial jrf takes values in R. More generally, we can
define formal solutions of R to be sections F : X Ñ R. The existence of formal solutions is thus a
necessary condition for the existence of solutions. One can then compare the spaces of solutions and
formal solutions and ask, in particular, whether the two are weakly homotopy equivalent. If this is
the case, R is said to satisfy the h-principle.

If the relation R we consider is open (as is sometimes the case with relations of geometric origin like
those describing contact or symplectic structures), we could attempt to find solutions of R using the
following idea: We start with a formal solution F and we find f : X Ñ Y such that jrf approximates
F . If this approximation is good enough, jrf will land in R and f will be a solution. This idea is
called, quite descriptively, holonomic approximation.

It turns out that this does not work and, indeed, many open relations do not satisfy the h-principle
(for instance, symplectic structures). However, using his method of flexible sheaves, M. Gromov []
proved that holonomic approximation does hold if we try to approximate only over a subset K Ă X
of positive codimension (in fact, one needs to approximate not quite over the given K but over a
C0-close copy of K that is more “wiggly”). Due to the fact that open manifolds can be retracted
to the skeleton (which is a positive codimension CW-complex), this can then be used to prove that
the h-principle applies for any R open and Diff-invariant (i.e. invariant under the action of the
diffeomorphism group of X), as long as M is open. This result applies to “generic”/“non-degenerate”
geometric structures (like contact or symplectic) and generalises prior results about immersions (due
to Hirsch-Smale []) and submersions (due to Phillips []).

One can then pose the question: “what can we do for closed manifolds?” We henceforth assume that
X is indeed closed.

1.4. Holonomic approximation for multiply-valued sections. At each point in JrpY Ñ Xq,
we are given a collection of tautological equations encoding the fact that certain fibre directions
should be derivatives of some others. These equations are pointwise linear and define the so-called
Cartan distribution ξcan in jet space. From its construction, it follows that holonomic sections can be
characterised as those sections tangent to ξcan. This led R. Thom [?] to define generalised solutions
of R as maps X Ñ JrpY Ñ Xq (not necessarily sections!) tangent to ξcan and taking values in R.
To emphasise the fact that these are not sections, one may note that it also makes sense to consider
general tangent maps LÑ pJrpY Ñ Xq, ξcanq, where L is some other manifold of the same dimension
as X.

Recall that holonomic sections jrf : X Ñ JrpY Ñ Xq are in correspondence with their underlying
sections f : X Ñ Y . This is (almost) true for generalised solutions as well: φ : LÑ pJrpY Ñ Xq, ξcanq
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can be uniquely recovered from its front projection πf ˝ φ : L Ñ Y whenever the base projection
πb ˝ φ : L Ñ X is a immersion. It follows that, as long as φ is graphical over X in a dense set, it
will be uniquely recovered from πf ˝ φ. However, the fibre over a point x P X will often intersect
the image of πf ˝ φ in a number of points different than one. Due to this, we will sometimes refer to
generalised solutions as multi-sections.

We can then ask whether it is possible to approximate any formal section by a generalised section. We
phrase this as “holonomic approximation holds, even over closed manifolds, if we allow for generalised
sections”. Remarkably, Thom, preceding Gromov’s work, proved this in [?], using ideas that seem to
be a precursor of the pleating/wrinkling approaches to h-principles [?]. However, Thom’s argument
is somewhat incomplete (particularly regarding higher jets) and, more importantly for us, his method
produces generalised solutions with uncontrolled singularities. Later, Gromov provided an argument
[], based on microflexibility/pleating, to construct generalised solutions whose only singularities are
folds. His approach applies to more general manifolds endowed with bracket-generating distributions,
as long as certain dimensional constraints hold1.

Our result produces generalised solutions that are smooth and embedded. To do so, we use pleating
in the front projection, instead of in jet space itself. In particular, our generalised solutions will have
topologically embedded front projections with A2r-zig-zags (i.e. cusps of order r in the front, that
project to the base manifold M as double folds, and are smooth when lifted to r-jet space). Our
second result reads:

Theorem 1.2. Let F : X Ñ JrpXq be an arbitrary section. Then, for any ε ą 0, there exists a map
f : X Ñ JrpXq satisfying:

‚ f is a section with zig-zags;
‚ |jrf ´ F |C0 ă ε.

I.e. holonomic approximation holds when we consider multi-valued sections instead of just sections.
It then follows immediately:

Corollary 1.3. Let R Ă JrpXq be an open differential relation admitting a formal solution F . Then,
R admits a generalised solution f with jrf C0-close to F .

That is, even though the h-principle does not hold for arbitrary open differential relations, it does
hold when we allow generalised solutions. As before, both these statements can be extended to the
parametric (in which F varies in a family Fs) and relative settings (where all the Fs are already
holonomic in some part of the domain, and some of them are everywhere holonomic). These versions
are stated and proven in Section 8.

The reader may wonder what is the relation between Theorems 1.1 and 1.2. The answer is that the
latter is the local version of the former. That is: when trying to isotope a submanifold M Ă N , we
work in its tubular neighbourhood OppMq, which we identify with the normal bundle νpMq Ñ M .
Then, sufficiently small homotopies of M as a submanifold with zig-zags correspond to homotopies
of the zero section as a multi-section with zig-zags. I.e. Theorem 1.2 implies Theorem 1.1; this is
carried out in detail in Section 9.

1.5. Method of proof. The proof of Theorem 1.2 has three parts: First we triangulate M very finely
and choose holonomic approximations over each top-cell. Secondly, we apply standard holonomic
approximation along the codimension-1 skeleton, reducing the statement to the top-dimensional cells.
In the last step we are thus working on a ball and we must introduce zig-zags to interpolate between
the two holonomic approximations (one coming from the cell and the other one from its boundary).

1A distribution ξ can be endowed with a fibrewise inner product gξ. Under the bracket-generating assumption,

infimising the length of all tangent paths (with respect to gξ) produces a metric structure on its ambient manifold
Y , known as the Carnot-Carathéodory metric. Lipschitz maps from a Riemannian manifold pN, gN q into pY, ξ, gξq are
then Lipschitz generalisations of maps tangent to ξ. A result of Gromov [], also in the setting of general distributions,

explains how to construct Lipschitz maps using pleating (also under suitable dimensional assumptions). This result was
made more explicit, in the setting of jet spaces, by .... in [].
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The zig-zags will appear forming concentric spheres close to the boundary. The reader is invited to
visualise this as an “accordion” appearing in each top-cell; see Figure ??.

The overall structure of the proof is quite common in h-principle. The first two steps are often called
reduction (and they rely on standard techniques) and the last one is called extension (which requires
more work). This last step boils down to a careful application of holonomic approximation, similar
to an idea that appeared first in the contact setting [9]. It differs somewhat significantly from the
strategy in the original wrinkled embeddings paper [21], which strongly relies on the fact that one
works with first order data. We believe that the parallels between wrinkling and wiggling are more
transparent using our viewpoint.

1.6. Submanifolds tangent to distributions. As we explained earlier, JrpY Ñ Xq is endowed
with the Cartan distribution ξcan, which is bracket-generating (i.e. iterated Lie brackets of vector
fields tangent to ξcan span the tangent space of JrpY Ñ Xq). The main motivation behind this article
was to understand better the space of embeddings L Ñ pJrpY Ñ Xq, ξcanq tangent to ξcan. This is
extremely natural: Recall that the first jet space of functions pJ1pX ˆ R Ñ Xq, ξcanq is a contact
manifold and therefore tangent embeddings are precisely legendrians. The study of legendrians is
a driving force in Contact Topology, where h-principle results provide flexibility (i.e. classification
results) and generating functions/pseudoholomorphic curves/sheaves provide rigidity (in the form of
obstructions/invariants).

There are two results on legendrians that we can highlight as inspiration of the present work: The
first is the celebrated classification of loose legendrians due to E. Murphy [37], where it is shown that
a certain subfamily of legendrians in higher dimensions satisfy the h-principle. The second is the
simplification of legendrian singularities of tangency due to D. Álvarez-Gavela [1]; this generalises the
work of Eliashberg and Mishachev on wrinkled submanifolds to the contact setting.

However, similar results are not available for higher order jets (or for bundles with larger fibre).
One exception is the case of curves tangent to Engel structures (which are locally modelled on
pJ2pR,Rq, ξcanq), and which was treated in [13, 12].

To put this article into context, let us provide a brief comparison of the contact setting within the
general framework of jet spaces. Along the way we state our results about integral submanifolds.

1.6.1. The failure of the Legendre transform. The main theme is that contact jet spaces are quite
distinct from all other spaces of jets. The reason behind this is that contact structures have plenty of
symmetries. Contact transformations, like the Legendre transform, may interexchange variables and
derivatives in J1pX ˆ RÑ Xq.

However, this is not true anymore in any other jet space. This is easy to see by dimension counting:
in all other jet spaces, there are more the directions corresponding to derivatives than directions
corresponding to base variables. One may actually prove that any transformation of JrpY Ñ Xq is a
lift of a contact transformation in J1pY Ñ Xq.

1.6.2. Most projections are intrinsic. In a contact manifold, we have thus plenty of freedom in choosing
how to parametrise our Darboux balls. In particular, we can fix different local front projections by
changing the charts we use. This is useful in manipulating legendrians, since we can pick charts
adapted to them (often just making them graphical).

From the previous item, it can be deduced that this is not the case for other jet spaces. Namely,
the behaviour of ξcan as a distribution defines intrinsically the fibres of the projection JrpY Ñ Xq Ñ
Jr´1pY Ñ Xq, r ą 1. Further, if the fibres of Y Ñ X have dimension at least 2, the fibres of the
front projection are similarly intrinsic.

It follows that, if we want to manipulate a tangent submanifold, we may not be able to find “nice”
projections adapted to it.
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1.6.3. The geometry of tangent submanifolds is difficult. Following with the previous remark: The
fibre JrpY Ñ Xq Ñ Jr´1pY Ñ Xq is tangent to ξcan but is often larger in dimension than X. In that
case, it cannot be homotoped, as a tangent submanifold, to become graphical almost everywhere (i.e.
a multi-section).

This issue is also problematic even if we consider a tangent submanifold L Ñ JrpY Ñ Xq with
dimpLq “ dimpXq. Its singularities with respect to the fibre could be quite complicated and, since
we are not allowed to change our projection to make them better, it is unclear how to perturb L to
make them “generic” from a formal point of view. In particular, even if no formal obstructions exist,
it is unclear how to simplify the singularities using h-principle arguments.

We bypass this issue by ignoring it: We focus on the subclass of tangent submanifolds whose singu-
larities are of Whitney type. These we are able to deal with using the front projection. Classification
results for general submanifolds (with arbitrary singularities) are left as an intriguing open question.

1.6.4. The topology of tangent submanifolds is flexible. Non-contact jet spaces have “more room” than
contact ones. Namely, the distribution ξcan has codimension larger than 1. This extra room can be
used to prove a complete h-principle for tangent submanifolds with Whitney singularities.

For instance, it is possible to manipulate a given submanifold to introduce (through a homotopy
of tangent submanifolds) various local models that one may interpret as incarnations of the usual
stabilisation of legendrians. This is the main ingredient behind our h-principles.

This is explained in Section 12. The proof requires some auxiliary results on prescription of singular-
ities for smooth manifolds (not necessarily integral), which we review in Appendix 15.

1.6.5. Odd vs. even. Jet spaces behave differently depending on the parity of r. In the odd case, the
standard tangent homotopy analogous to the Reidemeister I move, does resemble a Reidemeister I
move in the front. In the even case, it instead resembles a stabilisation (i.e. a zig-zag).

In practice, this means that one needs to treat each case separately. Namely, for r even, we can simply
introduce many of these zig-zags to obtain flexibility. For r odd (and not contact), we introduce
standard-looking Reidemeister Is and we then pass one of the resulting cusps to the other side of the
original strand (this can only be done through embeddings because we are not contact). This yields
a picture of a zig-zag that has one of its cusps stabilised.

To treat both cases in a more streamlined manner, we actually introduce zig-zags for r both even and
odd and then, we apply surgery of singularities in the odd case to obtain instead zig-zags with one
stabilised cusp.

1.6.6. The issue of isotopies. In the contact setting, a homotopy of embedded legendrians yields an
isotopy. This is not true anymore for other jet spaces. This follows from the fact that, since the
fibres of JrpY Ñ Xq Ñ Jr´1pY Ñ Xq are intrinsic, the tangencies of generalised solution with
respect to them are intrinsic as well. In particular, they will be preserved by isotopies. That is, even
though we prove flexibility for tangent submanifolds under homotopies, it is still meaningful to ask
for classification statements up to isotopy.

We remark that, assuming that the fibres of Y Ñ X are 1-dimensional, this is related to the classifi-
cation of legendrians with singularities. Indeed, tangent submanifolds of pJrpY Ñ Xq, ξcanq project
to tangent submanifolds of pJ1pY Ñ Xq, ξcanq and all isotopies upstairs are uniquely determined by
contact transformations downstairs. It may thus be possible to tackle this problem, from the rigid
viewpoint, using the machinery of generating functions/sheaves/holomorphic curves. This is an open
question beyond the scope of this article.

1.6.7. Flexibility for isotopies. Assume that we have a tangent submanifold L Ă pJrpY Ñ Xq, ξcanq,
of dimension at least 2, and with Whitney singularities of tangency with respect to the fibre. Under
isotopies, we are not allowed to add new singularities of tangency, but we may assume from the get-go
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that there is a region in L containing a “sufficiently big” zig-zag. This zig-zag can be spread out,
through isotopies, to the whole manifold, providing us with flexibility.

That is, as long as there is some special model, we can prove an h-principle for tangent submanifolds
up to isotopy. This, of course, resembles the h-principle of Murphy for legendrians with a loose chart.
In fact, our result recovers [37] when particularised to the contact setting. Our argument is similar
to hers in spirit but differs in its implementation in one key aspect: Since we cannot change the front
projection, we need to describe how to pass our “loose zig-zag” across the other singularities of the
submanifold.

By projecting to J1pY Ñ Xq, this can be interpreted as an h-principle for legendrians with singularities
of given complexity (namely, singularities arising as projections of tangencies in JrpY Ñ Xq) and
having a loose chart (of the same complexity).

This is explained in Section 14. The surgery arguments needed for the proof appear in Section 13.

Acknowledgments:

2. Distributions

In this Section we review the basics of distributions. They will reappear in the next Section, when we
look at the Cartan distribution in jet space. The reader may want to refer to the standard references
[34, Chapters 2 and 4], [10], and [23].

2.1. The Lie flag. Fix a manifold M endowed with a distribution ξ Ă TM . The vector fields Γpξq
tangent to ξ are a C8-submodule of the space of all vector fields. It is natural to analyse to what
extent this subspace fails to be a Lie subalgebra (with respect to the Lie bracket of vector fields):

Definition 2.1. The Lie flag associated to ξ is the sequence of C8-modules of vector fields defined
by the inductive formula:

Γpξp1qq :“ Γpξq, Γpξpi`1qq :“ rΓpξq,Γpξpiqqs,

where the rightmost expression denotes taking the C8-span of all Lie brackets with entries in Γpξq
and Γpξpiqq.

In this article we always assume that Γpξpiqq is the module of sections of a distribution ξpiq. Do note
that, in general, this need not be the case. Due to this, we sometimes say that the Lie flag is instead
the filtration:

ξp1q :“ ξ Ă ξp2q Ă ξp3q Ă ¨ ¨ ¨

2.2. Involutive vs. bracket-generating. By definition, Γpξq is a Lie subalgebra if and only if
Γpξp2qq “ Γpξq. That is, if and only if the associated Lie flag is constant. Such a ξ is said to be
involutive. Frobenius’ theorem states that involutivity of a distribution is equivalent to integrability.
The Lie flag is, therefore, a measure of the non-integrability of ξ.

For us, the more interesting case is the complete opposite: ξ is said to be bracket-generating if,
for some integer r, it holds that ξprq “ TM ; i.e. Γpξq generates, as an algebra, the space of all
vector fields. A well-known theorem of Chow states that any two points in M can be connected by
a path tangent to ξ if ξ is bracket-generating. This can be regarded as the first result showing that
submanifolds tangent to bracket-generating distributions behave flexibly.

2.3. Curvature and nilpotentisation. We can define more refined invariants measuring the non-
integrability of ξ. By construction, there is a map between sections

Γpξpiqq ˆ Γpξpjqq Ñ Γpξpi`jq{ξpi`j´1qq

induced by Lie bracket. It can be checked that this map is C8-linear, allowing us to write:
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Definition 2.2. The (i,j)-curvature of ξ is the tensor:

Ωi,jpξq : ξpiq{ξpi´1q ˆ ξpjq{ξpj´1q Ñ ξpi`jq{ξpi`j´1q.

We can then endow the graded vector bundle

Lpξq :“ ‘ri“1Lpξqi :“ ‘ri“1pξ
piq{ξpi´1qq “ ξ ‘ pξp2q{ξp1qq ‘ ¨ ¨ ¨ ‘ pξprq{ξpr´1qq

with a fibrewise Lie bracket Ωpξq “ ‘i,jΩi,jpξq that respects the grading. Then, the pair pLpξq,Ωpξqq
is a bundle of graded Lie algebras; we call it the nilpotentisation of ξ. Do note that the different
fibres may not be isomorphic to one other as Lie algebras (although this will be the case for the
Cartan distribution in jet space).

The nilpotentisation should be thought as a linearisation of ξ packaging its infinitesimal behaviour
under Lie bracket. From an h-principle viewpoint, once we identify Lpξq – TM , the nilpotentisation
plays the role of the formal data associated to ξ.

2.4. Integral elements and submanifolds. Maps and submanifolds tangent to ξ are said to be
integral. It is immediate that the first curvature Ω1,1pξq vanishes when restricted to an integral
submanifold. This leads us to restrict our attention to those subspaces of ξ that might potentially be
tangent to them:

Definition 2.3. An integral element is a linear subspace W Ă ξp Ă TpM , p P M , satisfying
Ω1,1pξqp|W “ 0.

The collection of all integral elements Grintegralpξ, lq Ă Grpξ, lq Ă GrpTM, lq of a given dimension l
is called the integral Grassmannian bundle. Its fibres are algebraic subvarieties that may not be
smooth nor vary smoothly.

Given an integral element W Ă ξp we define its polar space as:

W ξ :“ tv P ξp | Ω1,1pξqppw, vq “ 0, @w PW u.

That is, the linear subspace vectors that pair trivially with W using the curvature. Since W is integral,
W ξ contains W . Tautologically, extensions of W to an integral element of dimension dimpW q ` 1 are
in correspondence with lines in the quotient W ξ{W . An element is said to be maximal if W “W ξ,
i.e. if it is not contained in a larger integral element.

Definition 2.4. A vector w P ξp satisfying xwyξ “ ξp is called a Cauchy characteristic. The linear
subspace kerpξpq spanned by all the Cauchy characteristics is an integral element.

If the dimension of kerpξpq does not vary with p P M , then their union is an involutive distribution
kerpξq Ă ξ that we call the characteristic foliation of ξ. Its leaves are integral submanifolds.

It is immediate that any local diffeomorphism preserving ξ must preserve kerpξq. Similarly, its differ-
ential can identify two vectors tangent to ξ only if their polar spaces have the same dimension.

Example 2.5. Let pM, ξq be a contact manifold. Then the curvature Ω1,1pξq is a nondegenerate
2-form on ξ with values on TM{ξ. Indeed, if kerpαq “ ξ, then we have α ˝ Ω0,0pξq “ ´dα.

A subspace W Ă ξp is isotropic if and only if it is integral; maximal integral elements are precisely
lagrangians. The polar space W ξ is the usual symplectic orthogonal. Integral Grassmannians are
thus the same as the Grassmannians of isotropic subspaces. 4

3. Jet spaces

In this Section we recall some elementary notions about jet spaces, putting particular emphasis on
their tautological distribution, which is bracket-generating. We go over standard material in order to
set up notation.

A standard reference in the Geometry of PDEs literature is [27, Chapter IV], but we also recommend
[43, Section 2]. The two standard h-principle references also treat jet spaces, namely [25, Section
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1.1] and [20, Chapter 1]. Lastly, the reader may want to look at [26, Section 4.1], whose ideas have
certainly inspired parts of this work.

3.1. Jet spaces of sections. Let X be an n-dimensional manifold and let π : Y Ñ X be a smooth
fibre bundle with k-dimensional fibres. We write JrpY Ñ Xq for the space of all r-jets of sections
X Ñ Y . When Y is the trivial Rk-bundle over X we often denote it by JrpX,Rkq :“ JrpY Ñ Xq.

The spaces of r-jets, for varying r, fit in a tower of affine bundles:

(3.1.1) JrpY Ñ Xq Jr´1pY Ñ Xq . . . J0pY Ñ Xq “ Y.
πr,r´1 πr´1,r´2 π1,0

that map holonomic sections to holonomic sections. For notational convenience, we single out the
front projection and the base projection which are given, respectively, by the forgetful maps:

πf :“ πr,0 : JrpY Ñ Xq Ñ Y, πb : JrpY Ñ Xq Ñ X.

3.1.1. Local coordinates. By working locally we may assume that X is a n-dimensional vector space,
denoted by B, and that the fibre of Y is a k-dimensional vector space, denoted by F . In this local
setting the jet space JrpY Ñ Xq can be identified with JrpB,F q. To be explicit, we choose coordinates
x :“ px1, ¨ ¨ ¨ , xnq in B and coordinates y :“ py1, ¨ ¨ ¨ , ykq in F . We use px, yq to endow JrpB,F q with
coordinates, as we now explain.

A point p P JrpB,F q is uniquely represented by an r-order Taylor polynomial based at πbppq P X.
Now, the r-order Taylor polynomial of a map f : B Ñ F at x reads:

fpx` hq –
ÿ

0ď|I|ďr

pBIfpxqq
dxdI

I!
ph, . . . , hq,

where I “ pi1, . . . , inq ranges over all multi-indices of length at most r. Here d denotes the symmetric
tensor product and we use the notation

dxdI :“ dxi1 d ¨ ¨ ¨ d dxin , I “ pi1, . . . , inq.

This tells us that JrpB,F q Ñ B is a vector bundle and that, formally, we can use the monomials

dxdI

I!
b ej , 0 ď |I| ď r1 1 ď j ď k

as a framing; here teju1ďjďk is the standard basis of F in the pyq-coordinates. We can write z
pIq
j for

the coordinate dual to the vector dxdI

I! b ej P Sym|I|pB˚, F q. This definition depends only on the
choice of coordinates px, yq : Y Ñ B ˆ F . We give these coordinates a name:

Definition 3.1. The coordinates

px, y, zq :“ px, y “ z0, z1, . . . , zrq, zr
1

:“ tz
pIq
j | |I| “ r1, 1 ď j ď ku,

in JrpY Ñ Xq are said to be holonomic.

The monomials above with |I| “ r1 form a basis of Symr1
pB˚, F q, the space of a symmetric tensors

with r1 entries in B and values in F . This leads us to write, in more conceptual terms:

Lemma 3.2. JrpB,F q “ B ˆ F ˆ HompB,F q ˆ Sym2
pB˚, F q ˆ ¨ ¨ ¨ ˆ Symr

pB˚, F q. In particular,
πr,r´1 is an affine bundle with fibres modelled on Symr

pB˚, F q.

3.2. The Cartan distribution. The tautological/Cartan distribution ξcan in JrpY Ñ Xq is uniquely
defined by the following universal property: a section of JrpY Ñ Xq is tangent to ξcan if and only if
it is holonomic. The subbundle Vcan :“ kerpdπr,r´1q Ă ξcan is called the vertical distribution.

Images of holonomic sections correspond to integral submanifolds that are everywhere transverse to
Vcan. Integral submanifolds and elements transverse to Vcan are said to be horizontal.
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3.2.1. Local coordinates. In terms of the holonomic coordinates px, y, zq P JrpB,F q defined above, the
holonomic lift of a map f : B Ñ F reads:

jrf : B Ñ JrpB,F q “ B ˆ F ˆHompB,F q ˆ Sym2
pB˚, F q ˆ ¨ ¨ ¨ ˆ Symr

pB˚, F q,

x Ñ jrfpxq “ px, y “ fpxq, z1 “ pBfqpxq, z2 “ pB2fqpxq, . . . , zr “ pBrfqpxqq.

That is, a holonomic section satisfies the relations

z
pIq
j pxq “ pBIyjqpxq, I “ pi1, . . . , inq, 0 ď |I| ď r, 1 ď j ď k.

Equivalently, the tautological distribution ξcan is the simultaneous kernel of the Cartan 1-forms:

(3.2.1) αIj “ dz
pIq
j ´

n
ÿ

a“1

z
pi1,¨¨¨ ,ia`1,¨¨¨ ,inq
j dxa, I “ pi1, . . . , inq, 0 ď |I| ă r, 1 ď j ď k.

3.2.2. Associated distributions. From this it can be deduced that the Lie flag associated to pJrpY Ñ
Xq, ξcanq is given by the expression:

ξpiqcan “ dπ´1
r,r´ipξcanq,

where the right hand side is the preimage of the Cartan distribution on Jr´ipY Ñ Xq. In particular,
ξcan bracket-generates in r ` 1 steps. Furthermore:

Lemma 3.3. The following statements hold:

‚ If r ą 1, the vertical distribution Vcan is the characteristic foliation kerpξcanq.

‚ Inductively, kerpξ
piq
canq “ kerpdπr,r´iq for every 0 ă i ă r.

‚ Assume r ą 1 and k “ dimpYxq ą 1. Then, the polar space of a horizontal vector is smaller
in dimension than the polar space of a vertical one.

That is: If we regard pJrpY Ñ Xq, ξcanq as an abstract manifold endowed with a distribution (i.e. we
forget that projections πr,r1), the Lemma tells us that we can recover the fibres of πr,r1 intrinsically,
as long as we are not in the contact case.

We say that kerpξ
piq
canq is the ith characteristic foliation. If k “ dimpYxq ą 1, we say that the fibres

of πf are the polar foliation associated to ξcan.

3.3. The nilpotentisation. According to the computations in the previous Subsections, the nilpo-
tentisation of ξcan at any point is isomorphic to the graded Lie algebra:

Definition 3.4. Let B and F be real vector spaces of dimensions n and k, respectively.

The jet Lie algebra (depending on n, r, and k) is:

‚ The graded vector space g :“
Àr`1

i“1 gi with

g1 :“ B ‘ Symr
pB˚, F q, gi :“ Symr´i

pB˚, F q.

‚ Endowed with the Lie bracket defined by the contraction of vectors with tensors

rv, βs “ ιvβ, v P B, β P Symj
pB˚, F q.

All other brackets are either defined by the antisymmetry or zero.

We will often abuse notation and use g to denote the graded Lie algebra as a whole.

The degree one part g0 is the direct sum B‘Symr
pB˚, F q. When identified with ξcan at a point p, the

first part corresponds to a lift of TpX (in a canonical manner once we choose local coordinates). The
second term corresponds to the vertical distribution. We will henceforth say that B is the horizontal
component and Symr

pB˚, F q is the vertical component.

Integral elements of ξcan correspond to vector subspaces W Ă g0 which are, additionally, Lie sub-
algebras. Similarly, horizontal elements correspond to Lie subalgebras transverse to the vertical
component.
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3.4. Distributions modelled on jet spaces. Much like contact manifolds look locally like first jet
spaces of functions, we can, more generally, consider manifolds with distributions locally modelled on
some other jet space.

Definition 3.5. We say that pM, ξq is modelled on pJrpB,F q, ξcanq if, for each p P M , there are
local coordinates px, y, zq around p, with domain a subset of JrpB,F q, so that ξ “ ξcan.

In particular, the numbers n “ dimpBq, k “ dimpF q, and r are invariants of ξ. It follows that ξ
bracket-generates in r steps and M is endowed with a flag tkerpξpiqqui“1,...,r´1 of characteristic
foliations. Similarly, when k ą 1, we also have a well-defined polar foliation. In local coordinates
these correspond to the fibres of the various projections.

3.4.1. Automorphisms.

Definition 3.6. Let pM, ξq be a distribution modelled on a jet space. A (contact) transformation
of pM, ξq is a ξ-preserving diffeomorphism.

A more restrictive notion of symmetry, which only makes sense for jet spaces, is the following:

Definition 3.7. Let Ψ : Y Ñ Y be a fibre-preserving diffeomorphism lifting a diffeomorphism ψ :
X Ñ X. The point symmetry lifting Ψ is defined as:

jrΨ : pJrpY Ñ Xq, ξcanq Ñ pJrpY Ñ Xq, ξcanq

jrfpxq Ñ pjrΨqpjrfpxqq :“ jrpΨ ˝ f ˝ ψ´1qpψpxqq.

Point symmetries form a subgroup of the group of contact transformations. It is well-known in Contact
Geometry that the space of contact transformations of J1pX,Rq is strictly larger than the space of
point symmetries. From the existence of the polar and characteristic foliations we deduce:

Lemma 3.8. Assume r ą 1 or k “ dimpYxq ą 1. Any contact transformation of JrpY Ñ Xq is the
lift of a contact transformation of Jr´1pY Ñ Xq.

3.4.2. Jet spaces of submanifolds. Let Y be a smooth manifold and fix an integer n ă dimpY q. We
say that two n-submanifolds have the same r-jet at p P Y if they are tangent at p with multiplicity r.
We denote the space of r-jets of n-submanifolds as JrpY, nq. We have, just like in the case of sections,
a sequence of forgetful projections

πr,r1 : JrpY, nq Ñ Jr
1

pY, nq,

with πf :“ πr,0 the front projection.

The holonomic lift of an n-submanifold X Ă Y is the submanifold jrX Ă JrpY, nq consisting of
all the r-jets of N at each of its points. The Cartan distribution ξcan in JrpY, nq is the smallest
distribution which is tangent to every holonomic lift.

Given X Ă Y , we can restrict our attention to its tubular neighbourhood and to those submanifolds
graphical over X. It follows that pJrpY, nq, ξcanq is locally modelled on a jet space.

Remark 3.9. If n “ dimpY q ´ 1 and r “ 1, the structure we just constructed is precisely the space
of contact elements. In general, if r “ 1, the space J1pY, nq is the Grassmannian of n-planes
GrpTY, nq. 4

3.5. The foliated setting. Due to the parametric nature of the statements we want to prove, we will
need to phrase our constructions in a foliated setting. An alternate (seemingly weaker but ultimately
equivalent way) would be to use the fibered setting [20, 6.2.E].

Let Y Ñ pM,Fq be a smooth fiber bundle over a foliated manifold. We write k for the dimension of the
fibres and n for the dimension of the leaves. We define the bundle of foliated r-jets JrpY Ñ pM,Fqq
to be the space of equivalence classes of leafwise sections that are r-tangent to one another. The
fibres of JrpY Ñ pM,Fqq Ñ M are again modelled on r-order Taylor polynomials of k functions
in n variables. Given a global section f : M Ñ Y , we can consider its corresponding leafwise r-jet
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jrFf : M Ñ JrpY Ñ pM,Fqq. Such a section of the space of foliated jets is said to be holonomic.
Note that jrFf encodes no information about the derivatives of f along the normal bundle of F .

Given manifolds X and K, where the latter is thought of as a parameter space, we may consider the
foliated manifold

pM “ X ˆK,F “
ź

aPK

X ˆ tauq.

If Y Ñ X is a fibre bundle, we can pull it back to X ˆ K using the obvious projection. The
corresponding space of foliated r-jets JrpY Ñ pM,Fqq is the natural place to carry out parametric
arguments for K-families of sections of Y Ñ X.

4. Singularities

The central theme of the wrinkling philosophy is that, sometimes, it is enough to consider maps whose
only singularities are simple. We will review some results in this direction in the next Section. For
now, we set the stage by introducing the “mild singularities” that we need.

4.1. The Thom-Boardman stratification theorem. Let N be endowed with a foliation F of rank
k, and let f : L Ñ N be an immersion. A point p P L is a singularity of tangency with respect
to F if dpfpTLq and Ffppq are not transverse to one another. In our concrete case, N will be a jet
space, F will be Vcan Ă ξcan and L will be an integral submanifold.

We define the locus of singularities of corank j

Σjpf,Fq :“ tp P N | dimpdfpTpLq X Fpq ´maxpk ` n´m, 0q “ ju

as the set of points where the dimension of the intersection dfpTpLq X Fp surpasses the transverse
case by j.

Assuming that Σjpf,Fq is a submanifold, one can recursively define higher tangency loci of corank
J “ j0, . . . , jl by setting

ΣJpf,Fq :“ Σjlpf |Σj0j1¨¨¨jl´1 pf,Fq,Fq.
Thom [39] and Boardman [8] proved that one may perturb f so that all the ΣJpf,Fq are smooth sub-
manifolds forming a stratification. One should think of it as the pullback of the universal stratification
of GrpTN, nq Ñ N defined by F .

Given an arbitrary smooth map g : L Ñ M , one can similarly consider the locus of singularities of
mapping

Σjpfq :“ tp P N | corankpdpgq “ ju,

as well as higher singularities. It is immediate to see that singularities of tangency of an immersion
f : L Ñ pN,Fq correspond (in a foliation chart) to singularities of mapping of the quotient map
g : LÑ N{F .

4.2. Morin-Whitney singularities. We now focus on singularities of mapping between equidimen-
sional manifolds. One can provide similar definitions when the source is larger than the target, but
this is unnecessary for our purposes.

Write pxq “ px1, ¨ ¨ ¨ , xn´1q for the coordinates in Rn´1 and px, qq for the coordinates in Rn. Consider
the following family of corank-1 singularities of mapping:

Definition 4.1. The n-th Whitney singularity is the germ at the origin of the map:

Whitn : Rn Ñ Rn

px, qq Ñ px, qn`1 ` x1q
n´1 ` ¨ ¨ ¨ ` xn´1qq.

(4.2.1)

For n “ 1, 2, these maps are referred to as the fold and the pleat, respectively.

We may think of Whitn as the Rn´1-family of maps R Ñ R that unfolds the singularity q Ñ qn`1.
This proves that Σ2pWhitnq is indeed empty. We can obtain further corank-1 singularities as follows:
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Definition 4.2. The i-fold stabilisation of Whitn is the map:

Rn`i Ñ Rn`i

ps, x, qq Ñ ps,Whitnpx, qqq,

where s P Ri and px, qq P Rn.

H. Whitney proved in [44] that Whitn is a stable map and then Morin proved the converse [36]: The
germ at p P Σ1pfq of a stable map f : M Ñ N , between manifolds of the same dimension, is left-right
equivalent to the germ at the origin of a stabilisation of a Whitney map. Here left and right actions
on germs need not to fix the origin (otherwise, the orbit of the Whitney map of index l would have
codimension l in the space of all germs).

Whenever we encounter a singularity of mapping, we will say that it is Whitney, a fold, or a pleat, if
it is equivalent to the model. We will use the same naming convention if we encounter a singularity
of tangency f : L Ñ pN,Fq whose quotient is one of these; do note that this implies that dimpLq “
corankpFq.

4.3. The equidimensional wrinkle. The fold and its stabilisations are the simplest (non-trivial)
singularities of equidimensional maps. Ideally, we would work in the category of folded maps. However,
this is not possible when we consider families of maps: we must, at the very least, allow folds to appear
and disappear in birth/death events, i.e. pleats. This leads to the definition:

Definition 4.3. The (equidimensional) wrinkle is the map

Wrinn : OppDnq Ñ Rn

px, qq ÞÑ

ˆ

x,wpx, qq “
q3

3
` p|x|2 ´ 1qq

˙

.
(4.3.1)

The region bounded by the singular locus, i.e. the interior of the disc Dn in the domain, is called the
membrane of the wrinkle.

4.3.1. Singularity locus. We see that Wrinn is a map fibered over Rn´1. Its singularities (which are
of corank 1) correspond to the vanishing of Bw

Bq “ q2 ` |x|2 ´ 1, i.e. the unit sphere ΣpWrinnq “ Sn´1

bounding the membrane. If we further restrict Wrinn to ΣpWrinnq we observe that its singularities
live in tq “ 0u, i.e. the equator Σ11pWrinnq “ Sn´2. The map Wrinn|Σ11pWrinnq is non-singular so

ΣpWrinnq “ Σ10pWrinnq Y Σ11pWrinnq.

Thus, the equator is a codimension-2 sphere of pleats and the two open hemispheres consist of folds.
Each two points in Σ10pWrinnq sharing the same q–coordinate are a local maximum and a local

minimum of the corresponding function x Ñ q3

3 ` p|x|
2 ´ 1qq. As we move in q towards the equator

Σ11pWrinnq, these two points collapse in a birth/death event. Hence, the singularities of the wrinkle
are seemingly in cancelling position, but not really: the domain of definition of Wrinn is not the whole
of Rn (in which the cancellation is possible) but a small neighbourhood of the unit ball Dn.

4.3.2. Formal desingularisation. Nonetheless, the singularities of the wrinkle are homotopically inessen-
tial from the point of view of obstruction theory: consider the homotopy of functions

Wspx, qq “ pq
2 ` |x|2 ´ 1q ` sρpx, qq, s P r0, 1s,

where ρ : OppDnq Ñ r0,8q is a non-negative function which is greater than 1 over Dn and identically
zero in a neighbourhood of the boundary of its domain. It provides a compactly-supported homotopy
between W0 “

Bw
Bq and a strictly positive function. We can use Ws to construct a compactly-supported

homotopy between the differential TWrinn and a bundle monomorphism. Indeed, we keep the formal
derivatives of Wrinn with respect to the x-coordinates fixed, and we homotope the formal derivative
with respect to q using Ws. We call this the formal desingularisation. Its existence implies that
the wrinkle, as a singularity, represents a trivial class (relative to the boundary of the model).
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4.3.3. The fibered nature of a wrinkle. Let us regard the wrinkle Wrinn`k as a fibered over Rk map.
Explicitly, we write psq for the coordinates in Rk and px, qq for the coordinates in Rn. The restriction
of Wrinn`k to the fibre over a fixed s is left-right equivalent to Wrinn if |s| ă 1, non-singular if |s| ą 1,
and left-right equivalent to:

Oppt0uq Ñ Rn

px, qq ÞÑ px,
q3

3
` |x|2qq,

(4.3.2)

if |s| “ 1. This singularity is called the embryo. It is precisely the event in which a wrinkle Wrinn
is born. It follows similarly that the embryo can be formally desingularised in a unique manner up to
homotopy.

4.4. Double folds, wrinkles, and surgery. A wrinkle has non-empty Σ11-locus. Sometimes, it is
useful to work with maps whose singularity locus is just Σ10; we call such maps, folded. A key idea in
wrinkling is that one may produce a folded map out of a wrinkled map using surgery of singularities
[15, 21]. Conversely, one can pass from a map having double folds, defined below, to a wrinkled map
by a procedure called wrinkle chopping. Hence, wrinkles and double folds are essentially equivalent.

4.4.1. The definition.

Definition 4.4. We define the double fold to be the map:

f : OppSn´1 ˆ r´1, 1sq Ñ Rn

px, qq ÞÑ px,
q3

3
´ qq.

(4.4.1)

The region bounded by the singular locus, i.e. the open annulus Sm´1 ˆ p´1, 1q in the domain, is
called the membrane of f .

The singularity locus Σpfq “ Σ10pfq is the union of the spheres bounding the membrane
"

Bf

Bq
“ q2 ´ 1

*

“ pSn´1 ˆ t´1uq Y pSn´1 ˆ t`1uq.

At each sphere the singularity is modelled on (a stabilisation of) the usual fold. Like the wrinkle, the
two fold points sharing the same q-coordinate seem to be in cancelling position, but they are not due
to the size of the domain.

We often speak of the spheres Sn´1 ˆ t˘1u as being the double fold, leaving the existence of the
membrane bounding them implicit. We could also define the folds to take place along hypersurfaces
other than spheres, but for our purposes this is unnecessary.

4.4.2. Embryos. Just like wrinkles are born in an embryo event, we may define the analogous birth/death
singularity for double folds. It is given by the following expression:

f : OppSn´1 ˆ t0uq Ñ Rn

px, qq ÞÑ px, q3q,
(4.4.2)

which we call the (double fold) embryo. It is simply a parametric version, along a codimension-1
sphere, of the 1-dimensional birth/death critical point.

4.5. The (first order) wrinkle in positive codimension. The central idea behind the wrinkled
embeddings [21] of Eliashberg and Mishachev is that it is sometimes preferable to replace singularities
of tangency by singularities of mapping. Namely, we could eliminate a tangency fold by introducing
a cusp along the tangency locus. Motivated by this, we introduce:

Definition 4.5. The wrinkle (of dimension m into n ą m, and of order 1) is the map

Wrinm,n : OppDmq Ñ Rn

px, qq Ñ px, q3 ` 3p|x|2 ´ 1qq,

ż q

0

pt2 ` |x|2 ´ 1q2dt, 0, . . . , 0q.
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Its projection to Rm is precisely the wrinkle Wrinm.

4.5.1. Singularity locus. The pm ` 1qth coordinate of Wrinm,n is a function that has exactly the
same singularity locus as Wrinm. Therefore, the singularity locus ΣpWrinm,nq is the unit sphere
Σ1pWrinm,nq “ Sm´1. It is the union of the equator Σ11pWrinm,nq “ Sm´2 and its complement
Σ10pWrinm,nq. The singularity along Σ10pWrinm,nq is a stabilisation of the usual planar semicubic
cusp. The families of cusps in each hemisphere approach each other at the equator Σ11pWrinm,nq,
cancelling in a sphere of open semicubic swallowtails.

4.5.2. Regularisation. Unlike Wrinn, the wrinkle Wrinm,n is not stable as soon as m ă n. Indeed, the
small perturbation:

px, qq Ñ px, q3 ` 3p|x|2 ´ 1qq, εq `

ż q

0

pt2 ` |x|2 ´ 1q2dt, 0, . . . , 0q

is a smooth embedding. A cut-off may be applied to make this perturbation compactly supported.
This smoothing process is unique up to isotopy (which may also be assumed to be compactly sup-
ported); we call it the regularisation.

4.5.3. The Gauss map. Despite being singular, Wrinm,n has a well-defined lift GrpWrinm,nq to the
space of 1-jets of submanifolds; see Subsection 3.4.2. This is clear along the cusp locus Σ10pWrinm,nq,
because the planar cusp has a well-defined tangent line at every point. We claim that the same is
true along the swallowtail region Σ11pWrinm,nq. This is a simple computation, but we will justify it,
in the setting of integral submanifolds of general jet spaces, in Subsection 7.1.

4.5.4. Embryos. Just as in the equidimensional setting, we may think of the wrinkle Wrink`m,k`n
as a fibered over Rk map. We write psq for the coordinates in Rk and px, qq for those in Rm. For
|s| ă 1 given, the restriction of Wrink`m,k`n to the fibre over s is left-right equivalent to Wrinm,n.
For |s| ą 1, it has no singularities. Lastly, for |s| “ 1 the map is equivalent to:

px, qq Ñ px, q3 ` 3|x|2q,

ż q

0

pt2 ` |x|2q2dt, 0, . . . , 0q.

whose only singularity is the origin. This is exactly the birth/death phenomenon for Wrinm,n, which
we also call embryo. It can be regularised as above.

5. The h-principle

The h-principle is a collection of techniques and heuristic approaches whose purpose is to describe
the spaces of solutions of partial differential relations. This Section provides a quick overview, and
readers familiar with h-principles are invited to skip ahead.

We first review some of the necessary language (Subsections 3.1 and 5.1). Then we go over some
classic techniques: holonomic approximation in Subsection 5.3, triangulations in general position in
Subsection 5.4, and wrinkling in Subsection 5.5.

For a panoramic view of h-principles we refer the reader to the two standard texts [20] and [25] (which
we suggest to check in that order). Wrinkling techniques were introduced first in the wrinkling saga
[17, 19, 18, 22, 21].

5.1. Differential relations. Let Y Ñ X be a smooth fibre bundle. A partial differential relation
(PDR) of order r is a subset R Ă JrpY Ñ Xq. This provides a framework for PDRs of sections, but
one can define PDRs of n-submanifolds of Y as subsets of JrpY, nq as well.

Endow ΓpJrpY Ñ Xqq with the C0-topology. We may use the inclusion

jr : ΓpY Ñ Xq Ñ ΓpJrpY Ñ Xqq,

to pull it back and endow the domain with its usual Whitney Cr-topology. This makes jr a continuous
map. We write Solf pRq for the subspace of sections in ΓpJrpY Ñ Xqq whose image lies in R, i.e. the
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space of formal solutions. Similarly, we write SolpRq for the space of solutions, which is a subspace
of ΓpY q.

Definition 5.1. We say that the (complete) h-principle holds for R if the inclusion

ιR : SolpRq Ñ Solf pRq
f Ñ ιRpfq :“ jrf

is a weak homotopy equivalence.

5.2. Flavours of h-principle. Sometimes, ιR fails to be a weak homotopy equivalence, but partial
results hold. For instance, if ιR is surjective at the level of connected components, we say that the
existence h-principle holds. Similarly, if ιR is a bijection of connected components, we may say
that the h-principle holds in π0; analogous statements hold for higher homotopy groups.

Furthermore, we may ask whether the h-principle holds over each open set U Ă X in a way that is
coherent with respect to the sheaf structure of SolpRq. This can be phrased as follows. The h-principle
is relative in the domain when: any family of formal solutions of R|U , which are already honest
solutions in a neighbourhood of a closed set A Ă U , can be homotoped to become solutions over the
whole of U while remaining unchanged over OppAq.

Similarly, the h-principle is relative in the parameter when: any family of formal solutions tFkukPK ,
parametrised by a closed manifold K, and with Fk1 holonomic for every k1 in an open neighbourhood
of a fixed closed subset K 1 Ă K, can be homotoped to be holonomic relative to OppK 1q.

5.3. Holonomic approximation. One of the cornerstones of the classical theory of h-principles
is the holonomic approximation theorem. It states that any formal section of a jet bundle can be
approximated by a holonomic one in a neighbourhood of a perturbed CW-complex of codimension at
least 1. The precise statement reads as follows:

Theorem 5.2 ([20]). Let Y Ñ X be a fiber bundle, K a compact manifold, A Ă M a polyhedron of
positive codimension, and pFk,0qkPK : X Ñ JrpY Ñ Xq a family of formal sections. Then, for any
ε ą 0 there exists

‚ a family of isotopies pφk,tqtPr0,1s : X Ñ X,
‚ a homotopy of formal sections pFk,tqkPK,tPr0,1s : X Ñ Y ,

satisfying:

‚ Fk,1 is holonomic in Oppφk,1pAqq,
‚ |φk,t ´ id|C0 ă ε and is supported in a ε-neighbourhood of A,
‚ |Fk,t ´ Fk,0|C0 ă ε.

Moreover the following hold:

‚ If V P XpOppAqq is a vector field transverse to A, then we can arrange that φk,tpAq is trans-
verse to V for all t and k.

‚ If the Fk,t are already holonomic in a neighborhood of a subcomplex B Ă A, then we can take
Fk,t “ Fk,0 and φk,t “ id on OppBq, for all k.

‚ If Fk,t is everywhere holonomic for every k in a neighbourhood of a CW-complex K 1 Ă K,
then we can take Fk,t “ Fk,0 and φk,t “ id for k P OppK 1q.

Remark 5.3. Note that in the above statement, the inequalities

|φk,t ´ id|C0 ă ε, |Fk,t ´ Fk,0|C0 ă ε,

depend on a choice of Riemannian metric on X and Y . 4

For the proof and a much longer account of its history, we refer the reader to [20]. Essentially, this
theorem recasts the method of flexible sheaves due to M. Gromov (itself a generalisation of the methods



WRINKLING h-PRINCIPLES FOR INTEGRAL SUBMANIFOLDS OF JET SPACES 17

used by S. Smale in his proof of the sphere eversion and the general h-principle for immersions) in a
different light. Let us go over the statement.

The starting point is the family of formal sections Fk,0, which we want to homotope until they become
holonomic. This is not possible, but the theorem tells us that at least we can achieve holonomicity
in a neighbourhood of a set of positive codimension. We are not allowed to fix this set. Instead,
we begin with a polyhedron A, which we deform in a C0 small way to yield an isotopic polyhedron
φk,1pAq. This isotopy occurs in the normal directions of A (which we may prefix by taking a transverse
vector field V ), and essentially produces a copy φk,1pAq of A of greater length. This process is called,
descriptively, wiggling. The room we gain by wiggling is what allows us to achieve holonomicity: the
main idea is that, at each point p P A, we approximate Fk,0 by the corresponding Taylor polynomial
Fk,0ppq and then we use the directions normal to A to interpolate between these polynomials keeping
control of the derivatives. Hence, we can take the Fk,t to be arbitrarily close to our initial data, and
the wiggling to be C0-small. However, if we desire better C0-bounds, we will be forced to wiggle more
aggressively, i.e. the isotopies φk,t will become C1-large.

5.4. Thurston’s triangulations. An important step in the application of many h-principles (includ-
ing ours), is the reduction of the global statement (global in the manifold M), to a local statement
taking place in a small ball. These reductions allow us not to worry about (global) topological con-
siderations, making the geometric nature of the arguments involved more transparent. Working on
small balls (i.e. “zooming-in”) usually has the added advantage of making the geometric structures
we consider seem “almost constant”; this will play a role later on.

A possible approach to achieve this is to triangulate the ambient manifold M and then work locally
simplex by simplex. A small neighbourhood of a simplex is a smooth ball which can be assumed to
be arbitrarily small if the subdivision is sufficiently fine; thus, this achieves our intended goal. When
we deal with parametric results (phrased using the foliated setup, see subsection 3.5), we want to
zoom-in in the parameter space too. This requires us to triangulate in parameter directions as well.
For us, this means that we must triangulate a foliated manifold in a manner that is nicely adapted
to the foliation.

Let pM,Fq be a manifold of dimension n endowed with a foliation of rank k . Given a triangulation
T , we write T piq for the collection of i-simplices, where i “ 0, . . . ,dimpMq “ n. We think of each
i-simplex σ P T piq as being parametrised σ : ∆i Ñ M , where the domain is the standard simplex
in Ri. The parametrisation σ allows us to pull-back data from M to ∆i. In particular, if σ is a
top-dimensional simplex, it is a diffeomorphism with its image and we may assume that σ extends to
an embedding Opp∆nq ÑM of a ball.

If the image of σ is sufficiently small, we would expect that the parametrisation σ can be chosen to
be reasonable enough so that σ˚F is almost constant. This can be phrased as follows:

Definition 5.4. A top-dimensional simplex σ is in general position with respect to the foliation F
if the linear projection (identifying TpRn “ Rn)

∆n{pσ˚Fqp Ñ Rn´k

restricts to a map of maximal rank over each subsimplex of σ. In particular, σ˚F is transverse to
each subsimplex.

The triangulation T is in general position with respect to F if all of its top-simplices are in general
position.

Theorem 5.5. Let pM,Fq be a foliated manifold. Then, there exists a triangulation T of M which
is in general position with respect to F .

This statement was first stated and proven by W. Thurston in [40, 41], playing a central role in
his h-principles for foliations. A sketch of the argument goes roughly as follows: we start with a
triangulation T 1. We then subdivide it (in a controlled fashion called crystalline subdivision, which
ensures that angles remain controlled and that the cardinality of the star of a vertex is uniformly
bounded). As we subdivide, the foliation seems progressively flatter from the perspective of each
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simplex. In particular, the measure of the set of planes that intersect the foliation non-transversally
goes to zero. This allows us to apply Thurston’s jiggling : we tilt slightly the vertices, yielding simplices
that are transverse to F .

5.5. Wrinkling. Wrinkling is an h-principle method whose goal is constructing mildly singular so-
lutions of partial differential relations. It was used by Y. Eliashberg and M. Mishachev to prove
flexibility results for submersions [17], equidimensional immersions with prescribed folds [22], folia-
tions [18], and fibrations [16]. It entered the world of Contact Topology with [21], which would then

lead to the works of E. Murphy on loose legendrians [37] and D. Álvarez-Gavela on the simplification
of front singularities of legendrians [2, 1]. It is also one of the central ingredients in the construc-
tion and classification of overtwisted contact structures in all dimensions [9] due to M.S. Borman, Y.
Eliashberg, and E. Murphy. More recently, it has been used in Engel Geometry to classify overtwisted
Engel structures [14] and integral knots in Engel manifolds [12].

For the reader to have a somewhat complete picture, let us provide a list of sample theorems on
wrinkling.

5.5.1. Wrinkled submersions. Let M and N be n-dimensional manifolds (we assume equidimension-
ality for simplicity). It is well-known that the space of submersions M Ñ N may not be homotopy
equivalent to the space of formal submersions if M is closed. The first wrinkling result of Y. Eliash-
berg and M. Mishachev [17] says that one may salvage the h-principle by relaxing the submersion
condition:

Definition 5.6. A wrinkled submersion is:

‚ a map f : N ÑM between n-dimensional manifolds,
‚ a finite collection of disjoint open balls tBiu,

such that:

‚ f is a submersion in the complement of the Bi.
‚ f |Bi is left-right equivalent to Wrinn (Definition 4.3).

A wrinkled submersion with embryos has an additional collection of balls in which f is modelled
by the embryo (Equation 4.3.2).

Using the formal desingularisation of wrinkles and embryos we dedyce that there is a map, well-
defined up to homotopy, from the space of wrinkled submersions with embryos to the space of formal
submersions. Then:

Theorem 5.7 (Eliashberg and Mishachev [17]). The space of wrinkled submersions with embryos is
homotopy equivalent to the space of formal submersions. This h-principle is, additionally, C0-close.

We can similarly define submersions with double folds to be maps which are submersions in the
complement of a finite collection of disjoint annuli in which they are modelled by a double fold. They
may additionally have finitely many spheres in which they are modelled by a double fold embryo.
Using surgery of singularities one can deduce the equivalent statement:

Corollary 5.8. The space of submersions with double folds and embryos is homotopy equivalent to
the space of formal submersions. This h-principle is, additionally, C0-close.

5.5.2. Wrinkled embeddings. Let M Ă N be smooth manifolds with dimpMq ă dimpNq. In [21], Y.
Eliashberg and M. Mishachev study the problem of isotoping M , as an embedded submanifold of N ,
to approximate a given tangential homotopy in a holonomic manner. This problem is solvable if we
relax the embedding condition:

Definition 5.9. A smooth map f : M Ñ N is a wrinkled embedding if:

‚ it is a topological embedding,
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‚ it is a smooth embedding away from a collection of disjoint embedded codimension-1 spheres
Si,

‚ f |OppSiq is left-right equivalent to WrindimpMq,dimpNq.

A map f : M Ñ N is a wrinkled embedding with embryos if it is a wrinkled embedding in the
complement of a finite collection tpiu of points and it is left-right equivalent to an embryo in each
neighbourhood Opppiq.

Theorem 5.10 (Eliashberg and Mishachev [21]). Let N and K be smooth manifolds. Let pMkqkPK Ă

N be a K-family of submanifolds of N . Assume that there is a family of tangential homotopies
pνk,sqkPK,sPr0,1s starting at νk,0 “ TMk.

Then, there is a Kˆr0, 1s-family of wrinkled submanifolds with embryos pMk,sqkPK,sPr0,1s, starting at

Mk,0 “Mk, such that TMk,s is C0-close to νk,s.

Furthermore:

‚ Assume there is a closed submanifold K 1 Ă K such that νk,s “ TMk for every k P K 1. Then,
we may assume that Mk,s “Mk for all k P K 1.

‚ Assume there are closed submanifolds M 1
k Ă Mk such that νk,spxq “ TxMk for all x P M 1

k.
Then we may assume that Mk,s agrees with Mk in OppM 1

kq.

An equivalent result can be proven using double cusps instead of wrinkles.

6. Generating functions and metasymplectic projections

In this Section we introduce local methods to construct and manipulate Σ2-free integral submanifolds.
Before we get there, we will introduce some notation regarding Grassmannians of integral elements.

In Subsection 6.2 we introduce the formalism of generating functions in jet space. We will review
constructions due to Lychagin and Givental using the lens of reduction.

In Subsection 6.3, we introduce the metasymplectic formalism. Namely, we will be able to deal
with Σ2-free integral submanifolds by projecting them down to so-called metasymplectic space. This
generalises the standard lagrangian projection used in Contact Geometry to the setting of jet spaces.

We denote dimpXq “ n and dimpY q “ k, where JrpY Ñ Xq is the jet space of interest. We will
quickly pass to local coordinates, and we will replace X by a vector space B and the fibres of Y by a
vector space F .

6.1. Grassmannian bundles. Recall the notation Grintegralpξcan, lq for the Grassmannian bundle
of l-dimensional integral elements of ξcan. According to Proposition ?? we can identify each fibre
pTpJ

rpY Ñ Xq, ξcanq with the jet Lie algebra g (uniquely up to point symmetries). From this, it
follows that the fibres of Grintegralpξcan, lq correspond to Grassmannians of Lie subalgebras of g.

We can further denote the horizontal Grassmannian by

GrΣ0pξcan, lq Ă Grintegralpξcan, lq.

We will be interested in integral submanifolds that are horizontal over a dense set. From this it follows
that their tangent spaces will take values in the multi-section Grassmannian

GrΣ0pξcan, lq.

We remark (even though this is not the case in the contact setting) that there may be, in general,
integral elements not contained in this closure. This can be checked by dimension counting, noting
that Vcan, which is an integral element, is often larger than X in dimension.

More generally, we can write:

GrΣipξcan, lq :“ tW P Grintegralpξcan, lq | dimpW X Vcanq “ iu
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and, since we want to restrict our attention to Whitney singularities, we introduce the Σ2-free
Grassmannian

GrΣ2´freepξcan, lq :“ GrΣ0pξcan, lq YGrΣ1pξcan, lq.

We will prove in the sequel [?] that its fibres are smooth manifolds; this will play no role in the present

paper. It is unclear to the authors whether the fibres of GrΣ0pξcan, lq are smooth.

6.2. Generating functions. V. Arnold proved in [4, 5] that front singularities of embedded legen-
drians/lagrangians can always be (locally) described by generating functions. This is not true for
arbitrary integral submanifolds of jet spaces [38, p. 14] [45], but it nonetheless holds that front singu-
larities are rather special compared to the singularities of a general map. This was first explored by
V. Lychagin [29] for 1-jet spaces in more than one variable, and later by A. Givental [24] for general
jet spaces.

Our goal in this Section is to define what a generating function is for a general jet space. We do
this using reduction, which we introduce in Subsection 6.2.1. This allows us, in subsection 6.2.4,
to provide a recipe for corank-1 front singularities admitting a generating function description. We
will see in subsection 7.1.1 that this recipe can be particularised to recover Givental’s description of
integral submanifolds that have Whitney type front singularities.

6.2.1. Reduction. The main idea behind generating functions is that we can follow a two step process
when constructing non-horizontal integral submanifolds: first, we produce a horizontal submanifold
over a base of greater dimension. Then, we use a “reduction” procedure to go down to the actual jet
space we want to work in. It is in this latter step in which the horizontality condition is lost.

The “enlarged base” will be the total space of a fibration π : E Ñ X, endowed with the foliation F by
fibres. We pullback Y to E and we denote it by YE ; tautologically, there is fibrewise flat connection
over each fibre of E that identifies the fibres of YE .

We denote by C8pE, YEq the space of smooth sections E Ñ YE . Using the pullback of π, we have a
natural inclusion π˚ : C8pX,Y q Ñ C8pE, YEq, whose image we denote by C8F pE, YEq. A function in
C8F pE, YEq is said to be basic. We collect all the r-jets of basic functions to yield:

Definition 6.1. The space of basic r-jets is defined as:

JrF pE, YEq :“ tjref P J
rpE, YEq | e P E, f P C

8
F pE, YEqu.

The canonical projection map

π̃ : JrF pE, YEq ÞÑ JrpX,Y q

jre pf ˝ πq ÞÑ jrπpeqf,

is called the reduction map.

In this general setting, the familiar properties of the contact reduction process still hold. We leave
the proof to the reader:

Lemma 6.2. The following statements hold:

‚ JrF pE, YEq is a smooth submanifold of JrpE, YEq.
‚ The restriction

ξFcan :“ ξcan X TJ
r
F pE, YEq

has a rankpFq-dimensional characteristic foliation kerpξFcanq. It is the lift of F to the fibrewise
connection of YE.

‚ The reduction map π̃ preserves the Cartan distribution.
‚ Leaves of the characteristic foliation kerpξFcanq correspond to fibres of π̃.

We say that JrpX,Y q is the reduction of JrpE, YEq with respect to kerpξFcanq. We may study next
how integral submanifolds interact with the reduction process:
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Definition 6.3. Let L Ă JrpE, YEq be an integral submanifold. Its reduction is the set

L{F :“ π̃pLX JrF pE, YEqq Ă JrpX,Y q.

We say that f : E Ñ YE is the generating function for

Lf :“ Imagepjrfq{F .

As suggested by the definition, even if the intersection L X JrF pE, YEq is a smooth submanifold, it
may have singularities of tangency with kerpξFcanq. Therefore, the reduction L{F is often not smooth.
However, it is integral (in the sense that it is the image of an integral map).

6.2.2. Reduction in concrete terms. We now describe the local situation. Fix vector spaces B and A
and endow their product B ˆ A with coordinates px, qq. Similarly, take the fibre of Y to be a vector
space F . In this manner, the reduced space is JrpB,F q.

Lemma 6.4. A function G : B ˆAÑ F generates the subset:

(6.2.1) LG “ tpx,Gpx, qq, BxGpx, qq, ¨ ¨ ¨ , B
r
xGpx, qqq | @px, qq s.t. BtxB

s
qGpx, qq “ 0 @s ‰ 0, tu.

Proof. The lift of G is given by the expression:

jrGpx, qq “ px, q,Gpx, qq, BxGpx, qq, BqGpx, qq, B
2
xGpx, qq, BxBqGpx, qq, . . . , B

r
qGpx, qqq.

The intersection of jrG with the space of basic r-jets is the subset of jrG in which all derivatives of G
involving q at least once are zero. Do note that this set is contained in the locus of fibrewise critical
points of G and the two agree if r “ 1. �

6.2.3. Remark: dimension counting. In the contact case the collection of leafwise critical points on a
given fibre txu ˆ A is, generically, a finite collection of points and, for most fibres, the points are of
Morse type. In particular, the reduction LG is a legendrian, that can be regarded as the 1-jet of a
multiply-valued function B Ñ R.

For mr ą 1, having derivative purely in the q-directions is an overdetermined condition. The expected
dimension of LG may be computed to be:

pn`mq ´ k
r
ÿ

l“1

ˆˆ

n`m` l ´ 1

l

˙

´

ˆ

n` l ´ 1

l

˙˙

.

The expected dimension is n only in the contact setting, and it is non-negative only if r “ 1 and
n ě pk ´ 1qm. Otherwise, and in particular for all higher jet spaces, the expected dimension is
negative.

This tells us that any generating function theory for higher jet spaces would not rely on generic
functions, but rather on a subclass of functions (of positive codimension given by the formula above)
with prescribed singularities. We will look at one particularly manageable example next. Developing
a general theory is left as an open question.

6.2.4. Integral expressions. Consider now the situation where E “ XˆR. Being a rank-1 bundle over
M , any integral manifold we produce by reduction will be Σ2-free. We work in the product case and
assume the target is the vector space F .

Given a submersion H : E Ñ R, we define:

G : X ˆ R Ñ F

px, qq Ñ

ˆ

G1px, qq :“

ż q

0

Hpx, tqrdt, 0, . . . , 0

˙

.

The only relevant entry is G1, since the other pk´1q entries are zero and therefore singular everywhere.
We see that BqG1px, qq “ Hpx, qqr. Furthermore, using induction one may show that:
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Lemma 6.5. Let t ě 0 and s ą 0 be integers. Then, there are functions Ψl : X ˆ RÑ R such that

BtxB
s
qG1px, qq “

s`t´1
ÿ

l“0

Hr´lpx, qqΨlpx, qq.

That is, all the derivatives (up to order r) involving q at least once vanish at the fibrewise critical
points of G. Therefore:

Lemma 6.6. The reduction LG is parametrised by the locus of zeroes of H:

LG “ tpx,Gpx, qq, BxGpx, qq, ¨ ¨ ¨ , B
r
qGpx, qqq | @px, qq s.t. Hpx, qq “ 0u.

In particular:

‚ LG is an Σ2-free integral submanifold in JrpX,F q.
‚ Its singularities of tangency with the vertical distribution correspond to the singularities of

tangency of H´1p0q with F .

Proof. The concrete expression for LG follows from the previous Lemma. The integrality condition is
automatic since we are using generating functions. The Σ2-free condition follows because the fibres of
E are 1-dimensional. All we have to do is check that LG is smooth and then describe its singularities.

Due to the submersion condition, the locus of zeroes H´1p0q is a smooth hypersurface in E, which we
can use to parametrise LG. In each branch of H´1p0q graphical over the x-coordinates, the variable q
can be regarded as a function of x. Hence, branches of H´1p0q are mapped to branches of LG simply
by taking the graph jrpGpx, qpxqq, which is thus smooth.

We focus then on the tangencies of H´1 with F . Fix px̃, q̃q P ΣpH´1p0q,Fq. Since H is a submersion,
we have that BxiHpx̃, q̃q ‰ 0, for some i. We may then compute:

BqB
r
xiG1px̃, q̃q “ r!rBxiHpx̃, q̃qs

r ‰ 0

because all other terms involve H and are zero. Therefore, the map q Ñ BrxiG1px, qq is a local
diffeomorphism of R. This implies that px1, . . . , xi´1, xi`1, . . . , xn, qq locally parametrises LG as a
smooth embedded manifold, concluding the proof. �

We can define additional Σ2-free integral subvarieties, for every 0 ď l ă r, as follows:

πr,lpLGq “ tpx,Gpx, qq, BxGpx, qq, ¨ ¨ ¨ , B
l
xGpx, qqq | @px, qq s.t. BqGpx, qq “ 0u Ă J lpX,F q,

which are none other than the usual projections of LG to lower jet spaces. All of them are generated
by G and have a well-defined Gauss map into the horizontal Grassmannian. They have singularities
of mapping corresponding to the front tangencies of LG.

6.3. Metasymplectic projections and lifts. In Contact Topology it is fruitful to manipulate leg-
endrian knots using their lagrangian projection. In this Subsection we describe the analogue of this
process for general jet spaces. We work locally in JrpB,F q, with B and F vector spaces. We fix
holonomic coordinates px, y, zq.

We will project JrpB,F q to the so-called standard metasympletic space. Morally speaking, this
amounts to projecting to ξcan endowed with its curvature (seen as a vector-valued 2-form). In this
manner, integral submanifolds will project to isotropics. This is explained in Subsection 6.3.1.

In Subsection 6.3.2 we prove Theorem 6.14: isotropic submanifolds in standard metasympletic space
can be lifted to JrpB,F q. This is sufficient to manipulate 1-dimensional integral submanifolds; see
Subsection 6.3.3.

For higher-dimensional integral submanifolds the story is more complicated, because it is non-trivial
to manipulate their metasymplectic projections directly. To address this, we work “one direction at
a time”, effectively thinking about them as parametric families of curves. This is done in Subsection
6.3.4.
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6.3.1. Standard metasymplectic space. Recall the Cartan 1-forms defining ξcan, as introduced in Sub-
section 3.2.1:

αIj “ dz
pIq
j ´

n
ÿ

a“1

z
pi1,¨¨¨ ,ia`1,¨¨¨ ,inq
j dxa, I “ pi1, . . . , inq, |I| “ r ´ 1, 1 ď j ď k,

which only depend on the coordinates zr. Their differentials are the 2-forms:

ΩIj “
n
ÿ

a“1

dxa ^ z
pi1,¨¨¨ ,ia`1,¨¨¨ ,inq
j , I “ pi1, . . . , inq, |I| “ r ´ 1, 1 ď j ď k,

which, by construction, are pullbacks of forms in the product B‘Symr
pB˚, F q (which have the same

coordinate expression, so we abuse notation and denote them the same). We can package them in the
following intrinsic manner:

Definition 6.7. The canonical metasymplectic structure in B ‘ Symr
pB˚, F q is the 2-form:

Ωcan :“ pΩIj q|I|“r´1, 1ďjďk : ^2pB ‘ Symr
pB˚, F qq Ñ Symr´1

pB˚, F q.

The pair pB ‘ Symr
pB˚, F q,Ωcanq is called standard metasymplectic space.

We remark that we can regard standard metasymplectic space as a vector space endowed with a
(vector-valued) linear 2-form, or as a manifold endowed with a smooth 2-form. The tangent fibres of
the latter are, of course, isomorphic to the former. We can readily check:

Lemma 6.8. Given a point p P B ‘ Symr
pB˚, F q and vectors vi ` Ai P TppB ‘ Symr

pB˚, F qq –
B ‘ Symr

pB˚, F q:

Ωcanpv0 `A0, v1 `A1q “ ιv0A1 ´ ιv1A0.

I.e. the canonical metasymplectic structure is precisely the contraction map of tensors with vectors.
When r “ k “ 1, the standard metasymplectic space pB ‘B˚,Ωcanq is simply R2n endowed with its
linear symplectic form. We then generalise the lagrangian projection:

Definition 6.9. The metasymplectic projection is the map

πL : JrpB,F q Ñ B ‘ Symr
pB˚, F q

px, y, zq Ñ πLpx, y, zq :“ px, zrq.

By construction, the differential at each point

dpπL : TpJ
rpB,F q Ñ TπLppqpB ‘ Symr

pB˚, F qq

is an epimorphism that restricts to an isomorphism pξcanqp Ñ TπLppqpB‘Symr
pB˚, F qq. Furthermore,

using the duality between distributions and their annihilators, it readily follows that:

Lemma 6.10. The differential is an isomorphism of metasymplectic linear spaces:

dpπL : ppξcanqp,Ωpξcanqq Ñ pTπLppqpB ‘ Symr
pB˚, F qq,Ωcanq,

where Ωpξcanq is the curvature of ξcan.

It is convenient to define: A vector subspace V of the standard metasymplectic (linear) space is said
to be an isotropic element if pΩcanq|V “ 0. An isotropic element is maximal if it is not contained in
a larger isotropic subspace. Similarly, a submanifold of standard metasymplectic space is isotropic
if all its tangent subspaces are isotropic elements. Then, it readily follows:

Corollary 6.11. Let f : N Ñ JrpB,F q be a map. Then:

‚ f is integral if and only if πL ˝ f is isotropic.
‚ If f is integral then f is an immersion if and only if πL ˝ f is an immersion.
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6.3.2. Integral lift of an isotropic. Our next goal is proving the converse: every isotropic submanifold
can be lifted to an integral one. First we need an auxiliary concept:

Definition 6.12. The standard Liouville form

λcan P Ω1pB ‘ Symr
pB˚, F q; Symr´1

pB˚, F qq

is defined, at a point pv,Aq in standard metasymplectic space, by the following tautological expression:

λcanpv,Aqpw,Bq :“ ´ιwA.

The computations in Subsection 6.3.1 imply that:

Lemma 6.13. Then following statements hold:

‚ The Liouville form can be explicitly written as:

λcanpx, z
rq “

˜

´

n
ÿ

a“1

z
pi1,¨¨¨ ,ia`1,¨¨¨ ,inq
j dxa

¸

|pi1,¨¨¨ ,ia,¨¨¨ ,inq|“r´1

.

‚ The Cartan 1-forms αr P Ω1pJrpB,F q; Symr´1
pB˚, F qq are given by the expression

αrpx, y, zq “ dzr´1 ` λcanpx, z
rq.

‚ In particular, dλcan “ Ωcan.

That is, the familiar properties for the Liouville form in the symplectic/contact setting hold as well
in more general jet spaces. Then:

Theorem 6.14. Let N be a disc. Given an isotropic map

g : N Ñ pB ‘ Symr
pB˚, F q,Ωcanq

there exists an integral map
Liftpgq : N Ñ JrpB,F q

satisfying πL ˝ Liftpgq “ g. The lift Liftpgq is unique once we fix Liftpgqpxq for some x P N .

Proof. Write gppq “ pxppq, zrppqq. By construction, g˚Ωcan “ 0. We deduce that each component of
g˚λcan is closed and thus exact. We choose primitives, which we denote suggestively by zr´1 : N Ñ

Symr´1
pB˚, F q. These functions are unique up to a shift by an element of Symr´1

pB˚, F q.

We put together g with the chosen primitives to produce a map

h :“ px, zr, zr´1q : N Ñ B ‘ Symr
pB˚, F q ‘ Symr´1

pB˚, F q.

We can readily check, using Lemma 6.13, that

h˚αr “ dzr´1 ` g˚λcan “ 0.

Furthermore, consider the 2-form with values in Symr´2
pB˚, F q:

Ωr´1
can “

˜

n
ÿ

a“1

dxa ^ dz
pi1,¨¨¨ ,ia`1,¨¨¨ ,inq
j

¸

|pi1,¨¨¨ ,ia,¨¨¨ ,inq|“r´2

.

It corresponds to the curvature of ξ
p1q
can, which depends only on the coordinates px, zr´1q. We can

compute:

h˚Ωr´1
can “ h˚

˜

´

n
ÿ

a,b“1

z
pi1,¨¨¨ ,ia`1,¨¨¨ ,ib`1,¨¨¨ ,inq
j dxa ^ dxb

¸

“ p0q.

In the last step we get zero because cross derivatives agree. This computation tells us that the map

px, zr´1q : N Ñ B ‘ Symr´1
pB˚, F q

is isotropic. Therefore, the argument can be iterated for decreasing r to produce a lift. �

The contractibility assumption on N is used in the proof to ensure that the restriction of the Liouville
form at each step is exact.
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6.3.3. Lifting curves. Let us particularise now to the case dimpBq “ 1. Then, in holonomic coordinates
px, y “ z0, zq the Cartan 1-forms read

αl “ dzl ´ zl`1dx, l “ 0, . . . , r ´ 1.

The particular flexibility of curves (compared to higher dimensional integral submanifolds) stems from
the fact that any

gptq “ pxptq, zrptqq : r0, 1s Ñ B ‘ Symr
pB˚, F q

is automatically isotropic. Then, following the recipe outlined in the proof of Theorem 6.14, we solve
for the zr´1 coordinates using αr:

g˚αr “ zr´1ptqdt´ zrptqx
1ptqdt

leading to the integral expression

zr´1ptq “ zr´1p0q `

ż t

0

zrpsqx
1psqds

which uniquely recovers zr´1 up to the choice of lift zr´1p0q. Proceeding decreasingly in l we can
solve for all the zlptq, effectively lifting g to an integral curve Liftpgq : r0, 1s Ñ JrpB,F q.

According to Lemma 6.11, the lift Liftpgq is immersed if and only if g was immersed. Assuming g
is immersed, the front tangencies ΣpLiftpgq, πf q correspond precisely to the singularities of tangency
Σpg, πbq. This implies that to control the singularities of an integral curve it is sufficient to control
the singularities of its metasymplectic projection, which is a smooth curve with no constraints.

6.3.4. Restricted metasymplectic projection. Unlike curves, higher-dimensional isotropic/integral sub-
manifolds cannot be deformed freely. To get rid of differential constraints we consider instead:

Definition 6.15. The principal metasymplectic projection with respect to the principal direction
determined by the coordinate xn is the map:

πnL : JrpB,F q Ñ B ‘ Symr
pR˚, F q

px, y, zq Ñ px, zp0,...,0,rqq.

That is, we only remember the pure r-order derivatives associated to xn. We then work with Σ2-free
maps whose rank drops along the xn-directions. We think of them as pn ´ 1q-families of curves,
allowing us to prove:

Lemma 6.16. Given a smooth map:

g : B Ñ B ‘ Symr
pR˚, F q

ptq “ pt̃, tnq “ pt1, . . . , tnq Ñ pt̃, xnptq, z
p0,...,0,rqptqq,

there exists an integral map Liftpgq : B Ñ JrpB,F q satisfying πnL ˝ Liftpgq “ g.

The map Liftpgq is unique up to the choice of Liftpgq|ttn“0u.

Proof. The integral lift Liftpgq is given by the formula:

ptq ÞÑ pt̃, xn;

y “ zp0,...,0,0q;

Bt̃y, z
p0,...,0,1q;

B2
t̃ y, Bt̃z

p0,...,0,1q, zp0,...,0,2q;

. . . ;

Brt̃ y, . . . , Bt̃z
p0,...,0,r´1q, zp0,...,0,rqq.

All the terms on the right hand side depend only on t. Let us explain how the other functions are
obtained from t, xn and zp0,...,0,rq.
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The term zp0,...,0,lq is the (formal) pure derivative of order l in the direction of xn and it is defined
(for decreasing l) by the integral expression:

zp0,...,0,lqptq :“ zp0,...,0,lqpt̃, 0q `

ż tn

0

zp0,...,0,l`1qpt̃, sqx1npỹ, sqds,

following what we did in the previous Subsection for curves. In particular, the coordinate y “ zp0,...,0,0q

is recovered by integrating r times. At every step we can choose the value of zp0,...,0,lqpt̃, 0q.

All other functions are derivatives of the form Bi
t̃
zp0,...,0,jq, for some integers i and j. Hence, we obtain

them, uniquely, by differentiation. �

Note that the polar space of a pn ´ 1q-dimensional horizontal element is pn ` kq-dimensional and it
consists of the pn ´ 1q original directions, the additional missing direction from the base, and the
corresponding k pure derivative directions along the fibre. This indicates that any Σ2-free integral
map can be reconstructed by the lifting method we just used.

Most of the key properties of the lift can be read from the projected map:

Corollary 6.17. Let g be a map into a principal metasymplectic projection. Then:

‚ The map Liftpgq is well-defined, smooth, integral and Σ2-free.
‚ The singularities of mapping ΣpLiftpgqq are in correspondence with Σpgq.
‚ The singularities of tangency ΣpLiftpgq, Vcanq wtih respect to the vertical are in correspondence

with Σpg,Symr
pB˚, F qq.

7. Singularities of integral submanifolds

In this Section we introduce the models of integral Σ2-free singularities needed for our h-principles.

Remark 7.1. Our naming conventions for singularities reflect the behaviour of the integral maps
themselves, not their front projections. In particular, the names we use often refer to their singularities
of tangency with the vertical distribution. When singularities of mapping are present, we point it out
explicitly. 4

In Section 7.1 we describe singularities of tangency of Whitney type. In Subsection 7.2 we use these to
define models of singularities of tangency along submanifolds (as opposed to germs at points). Lastly,
in Subsection 7.3 we look at singularities of mapping.

Recall our notation: We work on JrpY Ñ Xq, where X is n-dimensional and k is the dimension of
the fibres of Y . Sometimes we pass to local coordinates, in which case we write B for the base and F
for the fibre.

7.1. Whitney singularities in jet spaces. We introduced smooth Whitney singularities in Defini-
tion 4.1. We now discuss their integral analogues in jet space:

Definition 7.2. Let f : N Ñ pJrpY Ñ Xq, ξcanq be a Σ2-free integral mapping. The germ of f at a
point p is a Whitney singularity (of tangency with respect to the vertical Vcan) if:

‚ f is an immersion at p, and
‚ the base map πb ˝ f has a Whitney singularity (Definition 4.1) at p.

In particular, a germ of integral immersion f is said to be a fold/pleat if πb ˝ f is a fold/pleat.

The stability of Whitney singularities due to Morin generalises to jet spaces through Givental’s sta-
bility theorem [24]:

Theorem 7.3 (A. Givental). Assume k “ 1. Then, up to point symmetries, integral Whitney singu-
larities have no moduli.
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The statement for general k is not addressed in [32, 24] and, to our knowledge, it remains open.

This potential lack of uniqueness will not play a role in our arguments. We will always rely on concrete
models produced using either generating functions or metasymplectic lifts. Every time a singularity
appears, we will always mean one of these concrete local models, and not a general singularity given
by Definition 7.2. By construction, these models will only make use of “one direction” in F and, as
such, we will be able to pass between them invoking Givental’s result.

7.1.1. Generating functions. Recall the notation from Subsections 4.2 and 6.2.4: Endow BˆR with co-
ordinates px1, . . . , xn, qq and denote x “ px̃, xnq “ px1, . . . , xnq and pxl :“ px1, . . . , xl´1, xl`1, . . . , xnq.
Consider the fibration π : B ˆ RÑ B defined by px, qq ÞÑ x. We set

Hlpx, qq : B ˆ R Ñ R,

px, qq ÞÑ ql`1 ` x1q
l´1 ` ¨ ¨ ¨ ` xl,

and we let Γl :“ H´1
l p0q be the locus of roots of q Ñ Hlpx, qq. The coordinates ppxl, qq parametrise

Γl, and we denote the parametrisation by

sl : Rn Ñ B ˆ R,

ppxl, qq ÞÑ px1, . . . , Xlppxl, xq :“ ´ql`1 ´ x1q
l´1 ´ ¨ ¨ ¨ ´ xl´1q, . . . , xn, qq.

Define the generating functions:

(7.1.1)

Gr,l : B ˆ RÑ F

px, qq ÞÑ

ˆ
ż q

0

pHlpx, tqq
rdt, 0, . . . , 0

˙

,

where r is the order of the jet space and l ď n.

The function Hl a submersion, as required in Subsection 6.2.4. Therefore, the loci LGr,l are smooth
integral manifolds which are parametrised by the locus of roots Γl – Rnppxl, qq. This is shown as the
dashed diagonal arrow in the following diagram:

Rnppxl, qq Γl Ă B ˆ R JrpB ˆ R, F q

B LGr,l Ă JrpB,F q

sl

π

jrGr,l

πb

where LGr,l, is the reduction of JrGr,l along the fibers of π, as in Definition 6.3. The diagram provides
a parametrisation Rnppxl, xq Ñ LGr,l . The composition of the parametrisation with the base projection
πb : JrpB,F q Ñ B is precisely the pn´ lq-fold stabilisation of the l-th Whitney map.

We now provide further details on folds and pleats.

7.1.2. Folds. Fix holonomic coordinates px, y, zq in JrpB,F q. We use the restricted metasymplectic
projection px, zp0,...,rqq defined by the first pn´ 1q-coordinates. The following map

gr : B Ñ B ˆ Symr
pR˚, F q

px1, ¨ ¨ ¨ , xnq Ñ

ˆ

x1, ¨ ¨ ¨ , xn´1, Xnpxq “
x2
n

2
, z
p0,¨¨¨ ,0,rq
1 pxq “ xn, 0, . . . , 0

˙

has a fold singularity with respect to the vertical Symr
pR˚, F q along the hyperplane

ΣpA2rq “ Σ10pA2rq “ txn “ 0u.
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We can integrate z
p0,¨¨¨ ,0,rq
1 with respect to Xn r times, yielding the integral lift:

px1, ¨ ¨ ¨ , xnq Ñ

ˆ

x1, ¨ ¨ ¨ , xn´1, Xnpxq “
x2
n

2
, y1pxq “

x2r`1
n

p2r ` 1qp2r ´ 1q . . . 1
, 0, . . .

z
p0,¨¨¨ ,0,iq
1 pxq “

x2r´2i`1
n

p2r ´ 2i` 1qp2r ´ 2i´ 1q . . . 1
, 0, . . .

z
p0,¨¨¨ ,0,rq
1 pxq “ xn, 0, . . . , 0

¯

.

This integral mapping can be recovered, using differentiation, from its front projection:

Definition 7.4. The A2r-cusp is the germ at the origin of the map:

A2r : B Ñ B ˆ F

px1, ¨ ¨ ¨ , xnq Ñ

ˆ

x1, ¨ ¨ ¨ , xn´1, Xnpxq “
x2
n

2
, y1pxq “

x2r`1
n

p2r ` 1qp2r ´ 1q ¨ ¨ ¨
, 0, . . . , 0

˙

.

That is, the front projection is described by multivalued function whose only non-zero entry is y1.
Invoking Theorem 7.3] we deduce that that the integral map we started with is equivalent to LGr,1,
the fold we obtained using generating functions.

7.1.3. Pleats. We continue using the same setup. The following singularity of tangency with respect
to the vertical is a pleat:

B Ñ B ˆ Symr
pR˚, F q

px1, ¨ ¨ ¨ , xnq Ñ

´

x1, ¨ ¨ ¨ , xn´1, Xnpxq “ x3
n{3´ x1xn, z

p0,¨¨¨ ,0,rq
1 pxq “ xn, 0, . . . , 0

¯

.

This restricted metasymplectic projection can then be lifted to produce a formula for the pleat in
JrpB,F q. To avoid cluttering the text, we write only the formula for the front:

Definition 7.5. The A2r-swallowtail is the germ at the origin of the mapping:

Sw2r : B Ñ B ˆ F

pxq Ñ

˜

x1, ¨ ¨ ¨ , xn´1, Xnpxq “ x3
n{3´ x1xn, y1pxq “

ż xn

0

ż s1

0

. . .

ż sr´1

0

sr
ź

j

ps2
j ´ x1qdsr . . . ds1, . . .

¸

.

Its singularity locus reads:

Σ1pSw2rq “ tx
2
n ´ x1 “ 0u, Σ11pSw2rq “ txn, x1 “ 0u.

Givental’s theorem tells us once more that this is equivalent to LGr,2. We leave it to the reader to
produce similar formulas for the higher Whitney singularities using lifting.

7.1.4. The Reidemeister I move. The A2r-swallowtail has a fibered nature. Consider a vector space K,
serving as parameter space. Endow KˆB with coordinates ps, xq and consider the fronts B Ñ BˆF
obtained from

Sw2rpk, xq : K ˆB Ñ K ˆB ˆ F

by freezing the coordinates psq.

If s ą 0, the map has no singularities and is graphical over the base. If s ă 0, the map has a pair of
A2r-cusps. At |s| “ 0, the following birth/death phenomenon takes place:

pxl`1, . . . , xn´1, xq ÞÑ

ˆ

xl`1, . . . , xn´1,
x3
n

3
,

x3r`1
n

p3r ` 1qp3r ´ 2q . . . 1
, 0, . . . , 0

˙

,

its lift to r-jet space is an embedded integral manifold whose tangency with respect to the vertical is
a cubic singularity. In particular, it is not of Whitney type.

Definition 7.6. The family of integral maps, obtained from Sw2rps, xq by lifting to JrpB,F q, para-
metrically in s, is called the first Reidemeister move.

One can define similar homotopies for integral mappings by lifting the higher Whitney singularities
(as fibered maps over some of their coordinates).
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7.2. Semi-local singularities of tangency. We go on describing singularities of tangency for Σ2-
free integral embeddings. The singularities we present are semi-local in the sense that they are not
germs at points but germs along higher dimensional submanifolds.

The singularities we go through are: the double fold (Subsection 7.2.1), the regularised wrinkle (Sub-
section 7.2.3) and the stabilisation (Subsection 7.2.5). We also discuss their birth/death phenomena.

7.2.1. The double fold. Regard D “ Sn´1ˆR as a fibration over Sn´1 and endow it with coordinates
px̃, xnq. We make use of the restricted metasymplectic projection in JrpD,F q associated to the
foliation by spheres.

The following map has two consecutive folds along the xn direction:

σ : D Ñ D ‘ Symr
pR˚, F q

px̃, xnq Ñ px̃, Xnpxq “ x3
n{3´ xn; z

p0,...,rq
1 pxq “ xn, 0, . . . 0q.

WHhen k “ 1, the two folds have opposite orientations. The reader should think of this as having
opposite Maslov coorientations once we lift. This will play no role in the present paper and we refer
to the sequel [?] for further details.

Definition 7.7. We say that an integral embedding

f : N Ñ pJrpY Ñ Xq, ξcanq

has a double fold in an annulus A Ă N if

f |OppBAq – Liftrpσq|OppSn´1ˆr´1,1sq

up to point symmetry. The interior of A is often called the membrane.

Do note that we do not require for the identification with the model to extend to the membrane,
but the membrane is still part of the data of a double fold. The reason behind this is that, in our
arguments, we will allow for double folds to appear nested inside one another, but we still want to
remember how they are paired up.

The front of a double fold is equivalent to the map:

(7.2.1) pxq Ñ

˜

x̃, x3
n{3´ xn;

ż xn

0

ż s1

0

. . .

ż sr´1

0

sr
ź

j

ps2
j ´ 1qdsr . . . ds1, 0 . . . , 0

¸

,

whose singularity locus is comprised of two spheres t|xn| “ 1u of A2r-cusps.

7.2.2. Fibered double folds. We now describe how a double fold may appear in a family. Denote still
D :“ Sn´1 ˆ R and fix additionally coordinates s in the parameter space K :“ Rm. Then, consider
the family of maps:

σ : K ˆD Ñ K ˆD ‘ Symr
pR˚, F q

ps, x̃, xnq Ñ px̃, Xnpxq “ x3
n{3` p|s|

2 ´ 1qxn; z
p0,...,rq
1 pxq “ xn, 0, . . . 0q.

For |s| ă 1 fixed, the singularities are double folds of tangency with the vertical. When |s| “ 1, the
double folds merge into a Sn´1 of cubic singularities. If |s| ą 1, there are no singularities. Looking at
σ as a single function, its singularities appear along:

Σ “ tx2
n ` |s|

2 “ 1u “ Dm ˆ pSn´1 ˆ t˘p1´ |s|2qu – Sm ˆ Sn´1.

and the cubical ones correspond to Sm´1 ˆ Sn´1 Ă K ˆX.

Lifting σ, parametrically in s, we obtain the fibered double fold. Using Givental’s theorem we
readily see that, for |s| ă 1, the resulting lift is indeed a double fold in r-jet space (in the sense of
Definition 7.7).
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Definition 7.8. A family of integral maps fibered over K

f : K ˆN Ñ K ˆ pJrpY Ñ Xq, ξcanq

has a fibered double fold if there is a fibered over K embedding of Σ Ă K ˆN such that

f |OppΣq – Liftrpσq|OppΣq

up to fibrewise point symmetry.

7.2.3. Wrinkles of tangency. We now define singularities of tangency of wrinkle type. The reader
should compare with the smooth Definition 4.3.

Consider now the restricted metasymplectic projection associated to the first pn ´ 1q-coordinates of
B. The following map has wrinkle-type singularities of tangency with respect to the vertical:

σ : B Ñ X ‘ Symr
pR˚, F q(7.2.2)

px̃, xnq Ñ px̃, x3
n{3` p|x̃|

2 ´ 1qxn; z
p0,...,rq
1 “ xn, 0, . . . 0q.

Definition 7.9. An integral embedding of a ball D is a tangency wrinkle if its germ along BD is
equivalent to Liftrpσq|OppSn´1q.

The interior of D is called the membrane. A wrinkle may have further singularities in its membrane.

The front projection of a wrinkle reads:

px̃, xnq ÞÑ

˜

x̃, x3
n{3` p|x̃|

2 ´ 1qxn;

ż xn

0

ż s1

0

. . .

ż sr´1

0

sr
ź

j

ps2
j ` |x̃|

2 ` 1qdsr . . . s1, 0, . . . , 0

¸

.

7.2.4. Fibered tangency wrinkles. Usual smooth wrinkles are fibered, as explained in Subsection 4.3.3.
The same is true for the tangency wrinkle in r-jet space. We let D “ Rm`n´1, where the first m-
coordinates pqq are regarded as parameters and the last pn´1q-coordinates px̃q are domain coordinates.
We fix X “ Rn, with coordinates pxq “ px̃, xnq.

A particular incarnation of the embryo is given by lifting the map:

pxq ÞÑ px̃, x3
n{3` |x̃|

2xn, ; z
p0,...,rq
1 “ xn, 0, . . . 0q.

7.2.5. The stabilisation.

Definition 7.10. Set D “ Sn´1. A fibered over D integral embedding

f : D ˆOppr0, 1sq Ñ JrpX,F q

is a stabilisation if

Σpf, Vcanq “ D ˆ t0u YD ˆ t1u

and these are folds with the same Maslov coorientation. The image fpD ˆ p0, 1qq is called the mem-
brane of the stabilisation.

For a model we may consider the lift Liftrpσq of the map:

σ : D ˆOppr0, 1sq Ñ X ‘ Symr
pR˚, F q(7.2.3)

px̃, xnq Ñ px̃, x3
n{3´ xn; z

p0,...,rq
1 “ x2

n, 0, . . . 0q.
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7.2.6. Zig-zags. In the proof of Lemma ?? we see one of the incarnations of a phenomenon we call
open/closed switching. It was first observed by A. Givental in [24]. Let us explain what it is.

Let us recall Equation 7.2.1, which defines the front projection of a double fold:

fpx̃, tq “

˜

x̃, xn “ t3{3´ t; y1 “

ż t

0

ż s1

0

. . .

ż sr´1

0

sr
ź

j

ps2
j ´ 1qdsr . . . ds1, 0 . . . , 0

¸

.

The term y1 is defined by an iterated integral, as explained in Lemma 6.16. The way in which we
obtained it was as follows: let jrfpx̃, tq be the holonomic lift of f to a multi-section. Consider one of
its components, the odd function

pz
p0,...,0,rq
1 ˝ jrfqpx̃, tq “ t.

We then multiply it by t2 ´ 1, so it remains odd, and then we integrate it once to yield the even
function

pz
p0,...,0,r´1q
1 ˝ jrfqpx̃, tq “

ż t

0

srps
2
r ´ 1qdsr.

Inductively we see that:

Lemma 7.11. The function z
p0,...,0,r´lq
1 ˝ jrf is:

‚ odd if l is even,
‚ even if l is odd.

This alternation between even and odd is precisely what we call open/closed switching. It can be
rephrased using Maslov coorientations in each pr ´ lq-jet space, but we leave this for the reader. We
can interpret it geometrically:

Lemma 7.12. The following statements hold:

‚ If r is even, the function y1 increases at a fold point if and only if it increases at the other.
‚ If r is odd, the function y1 increases at a fold point if and only if decreases at the other.

Proof. Being critical points, when we say increase/decrease we mean as continuous functions, without
considerations on the derivative. Note that the model at each fold point tells us that y1 must be
either increasing or decreasing.

If r is even, the function y1 is odd. This is equivalent to the first statement. Similarly, if r is odd, the
function y1 is even, so the second statement follows. �

We can reason in exactly the same manner for the stabilisation and prove that the situation is exactly
the opposite.

Lemma 7.13. Let g be a stabilisation:

‚ If r is odd, the function y1 ˝ g increases at a fold point if and only if it increases at the other.
‚ If r is even, the function y1 ˝ g increases at a fold point if and only if decreases at the other.

What this means is that if we want to have two A2r-singularities in the front projection forming a
“zig-zag” shape, we must use a double fold if r is even and a stabilisation if r is odd. We define:

Definition 7.14. Set D “ Sn´1. A fibered over D integral embedding

f : D ˆOppr0, 1sq Ñ JrpX,F q

is a zig-zag if:

‚ r is even and f is a double fold,
‚ r is odd and f is a stabilisation.
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The front of the zig-zag is what we would call an open shape, and the other two situations (double
fold with r odd, stabilisation with r even) we would call them closed. The importance of zig-zags is
that they can be stacked on top of each other keeping the front projection embedded. This will be
central in our h-principle in Section 8.

7.3. Singularities of mapping. The singularities we have presented so far are all of tangency, i.e.
the integral maps themselves are non-singular. We will now look at singularities of mapping having
well-defined Gauss map taking values in GrΣ2´freepξcan, nq.

The main source of examples of singularities of mapping are projections of singularities of tangency
(from a higher jet space). We make some remarks in this direction in subsection 7.3.1. We then
define several germs: the cusp in its two incarnations (subsections 7.3.2 and ??) and the swallowtail
(subsection 7.3.3). These are the pieces we need to then define some semi-local singularities: the
wrinkly stabilisation (subsection 7.3.4), the double cusp (subsection 7.3.6), and the wrinkle (subsection
7.3.7).

We continue using the notation from the previous Subsection 7.2.

7.3.1. Projecting singularities. Let f : N Ñ JrpB,F q be an integral map. Then the projection
πr,r´1 ˝ f : N Ñ Jr´1pB,F q is integral as well. In Lemma ?? we additionally showed that if f is
a multi-section then πr,r´1 ˝ f is a multi-section with a well-defined Gauss map Grpπr,r´1 ˝ fq “ f
into the horizontal elements (where we use the identification between horizontal elements and lifts to
JrpB,F q). Hence, when we project, singularities of tangency become singularities of mapping.

Some of the singularities we will describe below are obtained by projecting an r-times differentiable
Whitney singularity. For instance, in subsections 7.1.2 and 7.1.3 we already saw that the front
projection of the fold and the pleat are the A2r cusp and swallowtail, respectively.

One important observation is:

Lemma 7.15. Assume dimpF q “ 1. Let f : N Ñ JrpB,F q be a topologically embedded multi-section
of the form f “ πr`l,r ˝ g, with

g : N Ñ Jr`lpB,F q

an embedded multi-section with Whitney singularities.

Then f is stable among multi-sections lifting to Jr`lpB,F q.

Proof. Let pfsqsPr0,1s be a deformation of f0 :“ f and let pgsqsPr0,1s be the corresponding deformation
of g0 :“ g lifting it. Observe that the lifts, when they exist, are uniquely defined (by lifting on each
branch).

According to Corollary ??, the map g is stable up to contact transformation germs. Higher contact
transformations are lifts of contact transformations in JrpB,F q (Lemma 3.8). This implies that the
isotopy of contact transformations identifying gs with g is a lift of an isotopy taking fs to f , proving
the claim. �

Remark 7.16. We will encounter below singularities of mapping that have a well-defined Gauss map
taking values in GrΣ1pξcan, nq. Therefore, none of those singularities can admit a lift to Jr`1pB,F q.
However, one may instead look the total space of

GrΣ2´freepξcan, nq Ñ JrpB,F q

and endow it with its tautological distribution. This partially compactifies Jr`1pB,F q and, by defini-
tion, the singularities we describe admit a lift to GrΣ2´freepξcan, nq.

For dimpBq “ dimpF q, iterating this construction yields the Monster tower, as introduced by R.
Montgomery and M. Zhitomirskii in the treatise [35]. They show that there is a correspondence
between points in the tower and singularities of fronts. Their results should partly translate to our
context of Σ2-free singularities, but we point out some difficulties in Remark 7.22 below.
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An intriguing question is whether the whole Grassmannian of multi-section elements GrΣ0pξcan, nq is
smooth. If this were true, the natural next step would be to construct the analogue of the Monster
tower.

7.3.2. The horizontal cusp. As we prove below, projecting a fold down one level yields:

Definition 7.17. An integral map (Definition ??)

f : Oppt0uq Ñ JrpX,F q

is a horizontal cusp if:

‚ The singularities of πnL ˝ f form a hypersurface of semicubic cusps.
‚ Grpfq takes values in GrΣ0pξcan, nq.

A explicit fibered model can be obtained by lifting

px̃, xnq ÞÑ px̃, x2
n; z

p0,...,0,rq
1 “ x3

n, 0, . . . , 0q.

Lemma 7.18. Let dimpF q “ 1. Then any horizontal cusp is equivalent to the model (using point
symmetries in the target, and diffeomorphisms in the domain).

Proof. By assumption f can be lifted to an integral map Grpfq : N Ñ Jr`1pX,F q. Since its meta-
symplectic projection has semicubic cusps, this lift is an embedding. The singularities of mapping of
f correspond to fold singularities of tangency of Grpfq. The claim follows from Lemma 7.15. �

In particular, a horizontal cusp f is a topological embedding, even if it is not an immersion. Its front
singularities are A2r`2-cusps.

7.3.3. The swallowtail. In subsection 4.5.1 we defined the smooth the open semicubic swallowtail
within the context of the wrinkle in positive codimension (Subsection 4.5). Now we define its jet
space analogue:

Definition 7.19. An integral map (Definition ??)

f : Oppt0uq Ñ JrpX,F q

is a horizontal swallowtail if:

‚ πnL ˝ f has a open semi-cubic swallowtail at the origin.
‚ Grpfq takes values in GrΣ0pξcan, nq.

It is yet again a topological embedding because that is the case for πnL ˝ f .

We can produce a model by lifting the following map into a principal metasymplectic projection:

px̃, xnq ÞÑ px̃,

ż xn

0

ps2 ´ x1qds; z
p0,...,0,rq
1 “

ż xn

0

ps2 ´ x1q
2ds, 0, . . . , 0q.

Its singularity locus Γ consists of the parabola tx2
n “ x1u, which is tangent to the xn-lines along the

codimension-2 linear subspace A “ txn “ x1 “ 0u. A is the locus of swallowtails, and its complement
in Γ consists of horizontal cusps. Hence, the swallowtail serves as a birth/death of cusps (as is the
case in the smooth setting).

Lemma 7.20. Let dimpF q “ 1. Then any horizontal swallowtail is equivalent (using point symmetries
in the target, and diffeomorphisms in the domain) to the model.

Proof. We lift f to Grpfq : Oppt0uq Ñ Jr`1pX,F q, which is smooth, embedded, and has a pleat at
the origin. Lemma 7.15 applies. �

One can also consider vertical swallowtails or swallowtails with singularity locus becoming vertical
over a submanifold. We will not study this.
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7.3.4. The wrinkly stabilisation. We explained in subsection ?? that there is a correspondence between
smooth wrinkles and double folds by performing surgeries. We will not provide a justification of this,
but the same is true in jet spaces. For instance, the double fold (subsection 7.2.1) and the regularised
wrinkle (subsection 7.2.3) are, up to surgery, equivalent. Similarly, there is a “wrinkle” analogue of
the stabilisation, and one can pass between them through surgeries. It is defined as follows:

Definition 7.21. Set D “ Rn´1. An integral map (Definition ??) fibered over D

f : OppSn´1q Ñ JrpX,F q

is a wrinkly stabilisation if:

‚ Σ10pfq “ Sn´2 is a locus of vertical cusps,
‚ Σ10pf, Vcanq “ Sn´1,
‚ The hemispheres Sn´1zSn´2 are folds with the same Maslov coorientation.
‚ It is a topological embeddeding and has no other singularities.

Note that along Sn´2 there is discontinuity in the Gauss map. Hence, the wrinkly stabilisation is not
a multi-section in the sense of Definition ??.

Remark 7.22. This is a continuation of Remark 7.16 above. The wrinkly stabilisation shows the
first difficulty with the Monster tower approach for higher dimensional manifolds: some singularities
do not admit a continuous Gauss map.

If we look at the maps induced by f on each fibre, we see that if |x̃| ă 1 then they are curves with
two folds, if |x̃| ą 1 they are curves graphical over the zero section, and if |x̃| “ 1, they are vertical
cusps. That is, it corresponds to the standard unfolding of the cusp. Thus, not admitting a continuous
Gauss map corresponds to a phenomenon already observed in [35, Section 9.1]: the lifting procedure
to the Monster tower is not continuous in the unfolding parameter. This is something to be explored
in future work.

Lemma 7.23. The topological embedding condition is implied, in the vicinity of its cusp locus, from
the first three items.

Proof. For |x̃| smaller than but close to one, the curve πnL ˝ fptx̃u ˆ Rq is an unfolding of the cusp.

It describes a little loop when projected to pxn, z
p0,...,0,rq
1 q. In particular, it has a self-intersection

point. However, according to the subsection 6.3.3, the two intersection points have different lifts by
integration. �

A model we may consider is the lift of

px̃, xq ÞÑ px̃, x3
n{3` p|x̃|

2 ´ 1qxn; z
p0,...,0,rq
1 “ x2

n, 0, . . . , 0q.

The principal metasymplectic projection of any wrinkly stabilisation is equivalent, as a smooth map,
to this model. However, it is unclear whether the model is unique up to point symmetries.

7.3.5. The wrinkled zig-zag.

Definition 7.24. An integral embedding

f : OppSn´1q Ñ JrpX,F q

is a wrinkled zig-zag if:

‚ r is odd and f is a regularized wrinkle (Definition ??),
‚ r is even and f is a wrinkled stabilization (Definition 7.21).
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7.3.6. The double (horizontal) cusp. Now we consider two spheres of horizontal cusps bounding an
annulus:

Definition 7.25. Set D “ Sn´1. A fibered over D integral map (Definition ??)

f : D ˆOppr0, 1sq Ñ JrpX,F q

is a double cusp if

‚ f is a topological embedding.
‚ Grpfq : D ˆOppr0, 1sq Ñ Jr`1pX,F q is a stabilisation.

The image fpD ˆ p0, 1qq is called the membrane of f .

In particular, we are requiring that

Σpfq “ D ˆ t0u YD ˆ t1u

are horizontal cusps. If that is the case, the lift Grpfq exists and is an immersion with two folds.
Hence, it may be a double fold or a stabilisation. We require that it is the latter.

The key property here is:

Lemma 7.26. The front singularities of the double cusp are two A2r`2-cusps in an open configuration
(i.e. a zig-zag).

This follows from the open/closed switching from Lemma 7.13, see subsection 7.2.6.

7.3.7. The wrinkle. The “wrinkly” analogue of the double cusp is precisely:

Definition 7.27. Set D “ Rn´1. An integral map (Definition ??), fibered over D,

f : OppSn´1q Ñ JrpX,F q

is a wrinkle if

‚ Grpfq : D ˆOppr0, 1sq Ñ Jr`1pX,F q is a wrinkly stabilisation (Definition ??).
‚ f is a topological embedding.

The image fpD ˆ p0, 1qq is called the membrane.

A possible model is the lift of the wrinkled map of positive codimension (see Subsection 4.5):

F px̃, xnq “ px̃,

ż xn

0

ps2 ` |x̃|2 ´ 1qds; z
p0,...,0,rq
1 “

ż x

0

ps2 ` |x̃|2 ´ 1q2ds, 0, . . . , 0q.

We do not know if LiftpF q is the only possible model. However, the principal metasymplectic projec-
tion of a wrinkle is equivalent to F if we let left equivalences be diffeomorphisms preserving the base
projection. From this we deduce:

Lemma 7.28. Equivalently, a wrinkle is an integral topological embedding

f : OppSn´1q Ñ JrpX,F q

with singularity locus Σpfq “ Sn´1 satisfying:

‚ The equator Sn´2 consists of semicubic swallowtails.
‚ The hemispheres are horizontal cusps.

Remark 7.29. The wrinkle is unique for smooth maps (i.e. r “ 0). Uniqueness for r ą 0, as we
stated, is unknown. In the contact case (i.e. r “ 1 and dimpF q “ 1), wrinkles for legendrians were

defined by D. Álvarez-Gavela in [1], providing a explicit model. Although not stated explicitly in his
paper, it seems like uniqueness follows from the constructions he provides.
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7.3.8. Fibered wrinkles. Let us present the fibered version. We fix coordinates pqq in Rm and pxq in
X “ Rn.

Definition 7.30. A fibered over Rm wrinkle is a map

f : OppSm`n´1q Ñ Rm ˆ JrpX,F q,
which we regard as a m-parameter family of integral topological embeddings fqpxq “ fpq, xq with
singularity locus Sm`n´1 satisfying:

‚ Σ110pπnL ˝ fqq “ Sm`n´2 are open semicubic swallowtails,
‚ Σ10pπnL ˝ fqq “ Sm`n´1zSm`n´2 are horizontal cusps.

The maps with |q| “ 1 are called (wrinkle) embryos.

A possible model for the principal metasymplectic projection of an embryo reads:

px̃, xnq Ñ px̃,

ż xn

0

ps2 ` |x̃|2qds; z
p0,...,0,rq
1 “

ż x

0

ps2 ` |x̃|2q2ds, 0, . . . , 0q.

However, we do not know whether this model is unique.

8. Holonomic approximation by multi-sections

The main result of this Section is an h-principle with PDE flavour. It states that the holonomic
approximation Theorem 5.2 applies to closed manifolds as long as we are willing to be flexible and
allow for multi-sections. A particular consequence is that any open partial differential relation admits
a solution in the class of multi-sections.

The interesting part of the result is that it is sufficient to work with multi-sections with simple
singularities. Namely, they will satisfy that:

‚ Their only singularities are folds in a zig-zag configuration.
‚ Their front projection is topologically embedded.

In Subsection 8.1 we formulate this formally. In Subsection 8.2 we present the key geometric insight
needed for our arguments. Lastly, in Subsection 8.3 we provide the proof.

As in previous Sections, we fix a smooth fibre bundle Y Ñ X, with X compact. We work on the jet
space JrpY Ñ Xq. In order to quantify how close two sections of JrpY Ñ Xq are, we fix a metric.

8.1. Statement of the result. Recall the notion of zig-zag from subsection 7.2.6. We are interested
in multi-sections of the form:

Definition 8.1. A section with zig-zags is:

‚ an embedded multi-section f : X Ñ JrpY Ñ Xq,
‚ a finite collection of disjoint annuli tAj Ă Xu,

satisfying:

‚ πf ˝ f is a topological embedding,
‚ f |XzpYjAjq is horizontal,
‚ f |Aj is a zig-zag.

Our main result is the natural multi-section version of the holonomic approximation Theorem 5.2:

Theorem 8.2. Let σ : X Ñ JrpY Ñ Xq an arbitrary section. Then, for any ε ą 0, there exists a
map f : X Ñ JrpY Ñ Xq satisfying:

‚ f is a section with zig-zags;
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‚ |f ´ σ|C0 ă ε.

It should be immediate to the reader experienced in h-principles, after inspecting the proof, that a
parametric and relative (in the domain and the parameter) version also holds. The parametric version
is stated and proven later in this Section.

Furthermore, the Theorem is the graphical case of the analogous result about approximating r-jets
of submanifolds through submanifolds with zig-zags (that is, the generalisation to higher jets of the
wrinkled embeddings Theorem 5.10). This will be addresed in the next Section.

8.2. The key ingredient of the proof. We now present the simple observation that constitutes
the basis of our work:

Definition 8.3. Let I “ ra, bs be an interval. An asymptotically flat sequence of zig-zag bump
functions is a sequence of maps

pρN qNPN : ra, bs Ñ J0pra, bs,Rq

satisfying

‚ their holonomic lifts jrρN : ra, bs Ñ Jrpra, bs,Rq are sections with zig-zags,
‚ ρN |Oppaqptq “ px “ t, y “ 0q,
‚ ρN |Oppbqptq “ px “ t, y “ 1q,

‚ |zpr
1
q ˝ ρN | ă

1
N for all r1 ą 0.

The name follows from the fact that an element ρN , with N sufficiently large, allows us to interpolate
between two given sections without introducing big derivatives (unlike a normal bump function).

Proposition 8.4. An asymptotically flat sequence of zig-zag bump functions exists on any interval.

Before we provide a proof, let us explain a Corollary that showcases this.

Corollary 8.5. Let ε, δ ą 0 be given. Consider sections s0, s1 : Dn Ñ Rk satisfying |s0 ´ s1|Cr ă ε.

Then, there exists a section with zig-zags f : Dn Ñ JrpDn,Rkq satisfying:

‚ pπf ˝ fq|Dn1´δ “ s0,

‚ pπf ˝ fq|OppBDnq “ s1,
‚ |jrs0 ´ f |C0 ă 4ε.

Proof. We write py1, . . . , ykq for the coordinates in the fibre Rk and pxq for the coordinates in the
base. We break down the proof into elementary steps.

The pushing trick. Since |s0 ´ s1|C0 ă ε, we can shift s0 by adding a constant in Rk:

s̃0pxq :“ s0pxq ` p2ε, 0, . . . , 0q.

Replacing s0 by s̃0 guarantees that:

s̃0pxq ‰ s1pxq, for every x P Sn´1 ˆ r1´ δ, 1s,

while retaining a bound |s̃0´s1|Cr ă 3ε. We henceforth restrict the domain of s̃0 and s1 to the region
of interest Sn´1 ˆ r1´ δ, 1s.

First simplification. We can simplify the setup by applying the fibrewise translation:

J0pSn´1 ˆ r1´ δ, 1s,Rkq Ñ J0pSn´1 ˆ r1´ δ, 1s,Rkq
p Ñ p´ s̃0pπbppqq,

It preserves the Cr–distance and maps s̃0 to the zero section. The section s1 is mapped to s :“ s1´ s̃0.
Consequently, we just need to explain how to interpolate between the zero section and some arbitrary
section s satisfying |s|Cr ă 3ε and spxq ‰ 0 for all x.
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Second simplification. A second symmetry allows us to put s in normal form. Due to the nature of
the shift we performed, we have that

ε ă |y1 ˝ spxq| ă 3ε

for all x. This allows us to define a framing

A : Sn´1 ˆ r1´ δ, 1s Ñ GLpRkq
Apxq “ ps, e2, e3, . . . , ekq,

where tejuj“1,...,k is the framing dual to the coordinates yi in Rk. The framing A defines a fibre-
preserving transformation of the Rk-bundle by left multiplication. By construction Ae1 “ s.

Main construction. Apply Proposition 8.4 to produce an asymptotically flat sequence of zig-zag bump
functions

pρN qNPN : r1´ δ, 1s Ñ J0pr1´ δ, 1s,Rq.
We use it to define a sequence of front projections:

ZN : Sn´1 ˆ r1´ δ, 1s Ñ J0pSn´1 ˆ r1´ δ, 1s,Rkq
px̃, tq Ñ ArρN ptqe1s.

We claim that, for N large enough, the holonomic lift fN :“ jrZN satisfies the properties prescribed.

Checking the claimed properties. We first observe that fN is a section with zigzags. This follows
from the fact that jrpρNe1q is a section with zigzags and fN is obtained from it by applying the point
symmetry jrA. In particular, the singularities of fN are codimension-1 spheres of folds, corresponding
to the values of t in which ρN has an A2r-singularity.

The second and final claim is that |fN |C0 ă 4ε if N is large enough. Equivalently, we have to bound
the Cr-size of:

ApρNe1q “ ρNs.

Note that we can pretend that ρN is an actual function, because this is true over a dense set. Therefore,
for each multi-index I with |I| ď r we compute:

|BIpρNsq|
2 “

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

I1`I2“I

pBI
1

ρN qpB
I2sq

ˇ

ˇ

ˇ

ˇ

ˇ

2

ď
ÿ

I1`I2“I

|BI
1

ρN |
2|BI

2

s|2

Now, each derivative |BI
1

ρN | is smaller than 1{N , with the exception of |ρN | “ 1. Similarly, |BI
2

s| ă 3ε
for all I2.

Let K1 be the maximum number of decompositions I 1 ` I2 “ I that a multi-index |I| ď r in n
variables and k outputs may have. Let K2 be the number of multi-indices |I| ď r. Then:

|BIpρNsq|
2 ă |BIs|2 `

9K1

N2
ε2

|ρNs|
2
Cr ă

ÿ

I

ˆ

|BIs|2 `
9K1

N2
ε2

˙

ă |s|2Cr `
9K1K2

N2
ε2.

Therefore, by setting N2 ą 9K1K2, we conclude:

|fN |C0 “ |ρNs|Cr ă |s|Cr ` ε ă 4ε.

�

Remark 8.6. An interesting feature of the proof is that the sections with zig-zags we construct are
obtained from the “standard” sections with zig-zags jrpρNe1q by applying a point symmetry. The
same argument would work if instead of jrρN we used a particular model of wrinkle (subsection
7.3.7). Hence, we can bypass the potential uniqueness issues for wrinkles pointed out in Remark 7.29.

Now we construct the zig-zag bump functions:
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Proof of Proposition 8.4. Observe that it is sufficient to prove the claim for I “ r0, 1s, since any two
intervals are diffeomorphic by a scaling and a translation. The scaling dilates the fibres of jet space
in a homogeneous manner, so any asymptotically flat sequence is mapped to an asymptotically flat
sequence.

Fix N . We will construct ρN as the holonomic lift ρN “ jrpπf ˝ ρN q of its front projection πf ˝ ρN .

The infinite zig-zag. We first define:

Z : R Ñ J0pr0, 1s,Rq,

ptq Ñ

ˆ

xptq “
1

2

ż t

0

sinpsqds, yptq “

ż t

0

sinpsq2rds

˙

.

We claim that, at each of its critical points tt “ 0, π, 2π, . . . u, the map Z is modelled on the A2r-
singularity. To prove this we compute the Taylor expansion at each of these points:

sinplπ ` hq “
h

2
`Oph3q, sinplπ ` hq2r “ h2r `Oph2r`2q,

xplπ ` hq “
h2

4
`Oph4q, yplπ ` hq “

h2r`1

2r ` 1
`Oph2r`3q.

Which proves the claim because the A2r singularity is stable.

From this computation we deduce that the lift

jrZ : RÑ Jrpr0, 1s,Rq

is an integral mapping with fold singularities. Since its front is topologically embedded, jrZ is
embedded. Lastly, according to the definition in Subsubection 7.2.6, the germ jrZ|Opprp2l´1qπ,2lπsq is
a zig-zag. The section with zig-zags jrZ has infinitely many of them stacked.

A piece of the infinite zig-zag. Next, observe that Z is graphical over r0, 1s in the intervals p2lπ, p2l`
1qπq. In particular, we can flatten Z in Opp0q so that it is identically 0, without introducing self-
intersections of the front. Similarly, for any l, we can flatten Z in the region Oppp2l ` 1qπq so that
it is identically Zpp2l ` 1qπq. Lastly, we can scale this modification of Z, dividing by the constant
Zpp2l` 1qπq. In this manner we obtain a front that is identically 0 and 1 in Opp0q and Oppp2l` 1qπq,
respectively. We denote it by ZN .

We claim that, if l is large enough, then |zpaq ˝ jrZN | ă ε for all a ą 0. This follows immediately from
the scaling we just did: Z was 2π-periodic, so the quantities zpaq ˝ jrZ were bounded. The quantity
Zpp2l` 1qπq goes to infinity as l does, so a sufficiently large choice guarantees that the derivatives of
jrZN are smaller than 1{N .

Lastly, we simply reparametrise

πf ˝ ρN ptq “ ZN ˝ φptq,

where φ : r0, 1s Ñ r0, p2l ` 1qπs is a suitable diffeomorphism. �

8.3. The proof. The proof of Theorem 8.2 follows the standard structure of an h-principle.

In subsection 8.3.2 we prove the reduction step. Its output is a holonomic section g, defined along the
codimension-1 skeleton of X and approximating the given formal section σ.

In subsection 8.3.3 we provide the extension argument : we extend g to the interior of the top dimen-
sional cells. In order to obtain a good approximation of σ, the extension to the interior must be a
multi-section, as presented in Corollary 8.5.

8.3.1. Preliminaries. We must fix some auxiliary data first. Depending on the constant ε ą 0 we fix
a finite collection of pairs tpUi, fiqu such that

‚ tUiu is a covering of X by balls,
‚ fi : Ui Ñ JrpY |Ui Ñ Uiq is a holonomic section satisfying |fi ´ σ|Ui | ă ε.
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The existence of such a collection follows from the standard holonomic approximation Theorem 5.2
applied to each point in X. By compactness of X we get a finite refinement.

We then triangulate X, yielding a triangulation T . We assume that this triangulation is fine enough
to guarantee that each simplex is contained in one of the Ui. Given a top-simplex ∆ P T , we choose
a preferred Ui and we denote the corresponding section fi by f∆.

We remark that Y |Ui is trivial, so we can make the identification JrpY |Ui Ñ Uiq – JrpDn,Rkq. We
can then relate the C0-norm in the former with the standard C0-norm in the latter. By finiteness of
the cover there is a constant bounding one in terms of the other. We assume this constant is 1 to
avoid cluttering the notation.

8.3.2. Reduction. The codimension-1 skeleton of X is a CW-complex of positive codimension. Thus,
according to Theorem 5.2, there exists:

‚ a wiggled version T̃ of T ,
‚ a holonomic section g : OppT̃ q Ñ Y satisfying |σ ´ jrg| ă ε.

The wiggling can be assumed to be C0-small, so each top-simplex ∆ P T̃ is contained in the same
Ui as the original simplex. I.e., we have sections g (defined over OppB∆q) and f∆ (defined over the
whole of ∆), both of them approximating σ.

8.3.3. Extension. We focus on a single top-simplex ∆ P T̃ because the argument is the same for all of
them. We simply observe that Corollary 8.5 applies to g and f∆ over the annulus OppB∆q, producing
the desired multi-section extension f of jrg to the interior of ∆. The Corollary guarantees that:

|f ´ σ| ă |f ´ jrf∆| ` |j
rf∆ ´ σ| ă 5ε.

This concludes the proof of Theorem 8.2. l

We close with an extremely biased remark about the proof: the idea presented (zig-zag bump func-
tions together with the pushing trick) seems simpler than the path followed in [21] (reducing to
simple tangential homotopies and approximating them with a model zig-zag). Additionally, it has a
more transparent connection with holonomic approximation. Therefore, Theorem 8.2 provides a new
understanding even in the classic case r “ 1.

8.4. Parametric and relative version. To state the parametric version of Theorem 8.2 we work in
the foliated setting of Section 3.5. Let X be an n-dimensional manifold endowed with a codimension-k
foliation F . Then, given a fiber bundle Y Ñ X, we consider the leafwise jet bundle JrpY Ñ pX,Fqq.

In parametric families, double folds (Definition 7.7) can appear and disappear. Thus, we need to
extend the notion of a section with zig-zags (Definition 8.1) to include the appropriate birth-death
behavior.

Definition 8.7. A foliated section with zig-zags is:

‚ an embedded multi-section f : pX,Fq Ñ JrpY Ñ pX,Fqq (Definition ??);
‚ a finite collection of disjoint (embedded) cylinders tCj Ă Xu each isomorphic to Sn´k´1 ˆ

Dk`1.

This data is assumed to satisfy:

‚ πf ˝ f is a topological embedding;
‚ f |XzpYjCjq is transverse to the fibers of πb : JrpY Ñ pX,Fqq Ñ X;

‚ F |Cj is equal to the foliation induced by the projection π : Sn´k´1ˆDk`1 Ñ Dk onto the first

k coordinates of Dk`1;
‚ f |Cj is equal to the Sn´k´1 stabilization of a wrinkled zig-zag (Definition 7.24) fibered over

Dk`1 Ñ Dk.
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Thus, the singular locus of a foliated zig-zag equals Σpfq “ Σ10 Y Σ110 where

Σ10pf |Cj q “ SkzSk´1 Σ110pf |Cj q “ Sk´1,

and each cylinder Cj and for leaf L of F , one of the following holds:

‚ Cj X L “ H,
‚ Cj X L “ Sn´k´1, consisting of double fold embryos (Equation 4.4.2),
‚ Cj X L “ Sn´k´1 ˆ I, and the restriction of f to this annulus is a zig-zag (Definition 7.14).

The parametric version of Theorem 8.2 is then stated as follows:

Theorem 8.8. Let σ : X Ñ JrpY Ñ pX,Fqq be an arbitrary section. Then, for any ε ą 0, there
exists a map f : X Ñ Y satisfying:

‚ f is a foliated section with zig-zags,
‚ |f ´ σ|C0 ă ε.

Moreover, if σ is holonomic in a neighborhood of a polyhedron A Ă M , then we can arrange f “ σ
on a neighborhood of A.

8.5. The key ingredient of the proof. The proof closely follows that of Theorem 8.2. The addi-
tional ingredient is a description of the birth/death of zig-zag bump functions as in Definition 8.3.

Definition 8.9. Let r´δ, δs ˆ ra, bs Ă R be a square and fix coordinates ps, tq P r´δ, δs ˆ ra, bs. An
aymptotically flat sequence of zig-zag bump functions with birth/death of order r is a
sequence of maps

pρN qNPN : r´δ, δs ˆ ra, bs Ñ r´δ, δs ˆ J0pra, bs,Rq
satisfying:

(i) their holonomic lifts jrρN : r´δ, δsˆra, bs Ñ r´δ, δsˆJrpra, bs,Rq are multi-sections with zig-zag
birth/deaths, should define this describe the singular locus inside the domain?,

(ii) ρN pδ, tq is an asymptotically flat sequence of zig-zag bump functions as in Definition 8.3,
(iii) ρN p´δ, tq “ px “ t, y “ 0q,
(iv) BtρN ps, tq “ 0 for all t P OppBra, bsq, and ρN ps, tq “ px “ t, y “ 0q for all t P Oppaq.
(v) |zr

1

˝ ρN | ă
1
N for all 0 ă r1 ď r,

´δ

δ a

b

Figure 1. Schematic depiction of the graph of ρN for N “ 2.

Conditions piq ´ piiiq imply that for each N P N the function ρN defines an interpolation between
the bump function of Definition 8.3, and the zero function. The last two conditions say that we can
control the derivatives of the interpolation.
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Proposition 8.10. Asymptotically flat sequences of zig-zag bump functions with birth/death exists
on any interval.

Proof. Throughout the proof we think of ρN as a 1-parameter family of maps ρN,s : ra, bs Ñ
J0pra, bs,Rq. We first construct the bump function and show it satisfies conditions piq ´ pivq of
Definition 8.9. We treat the cases N “ 1 and N ą 1 separately, since the main idea is already
contained in the N “ 1 case. Lastly we show that the derivatives can be controlled proving condition
pvq.

The case N “ 1. Consider the A2r-swallowtail Sw2r : R2 Ñ R3, as in Definition 7.5, and restrict it to
r´δ, δs ˆ ra, bs. We identify this map with its image, which is a topologically embedded submanifold
of J0pR2,Rq » R3. Modifying this submanifold we obtain a map interpolating between ρ1 : ra, bs Ñ
J0pra, bs,Rq from Definition 8.3, and the zero section.

In the coordinates ps, tq, the map Sw2r is given by

ps, tq ÞÑ ps,´t3 ´ st,

ż t

0

px3 ` sx´ t3 ´ stqrdxq,

which we view as a 1-parameter family of maps Sw2r,s. It follows from this formula that

Sw2r,δ{2 : ra, bs Ñ J0pra, bs,Rq

is a zig-zag conform Definition 7.14. Therefore, Proposition ?? provides an isotopy φs : ra, bs Ñ
Diff

`

J0pra, bs,Rq
˘

, s P rδ{2, δs satisfying:

(i) φδ ˝ Sw2r,δ “ ρ1 where ρ1 is as in Definition 8.3 with N “ 1,
(ii) φs “ id for s P r 34δ, δs and φs “ φδ for s P Oppδq,
(iii) φs ˝ Sw2r,s is a zig-zag (Definition 7.14) for all s P rδ{2, δs.

Hence, the map defined by

ρ1,s :“

#

Sw2r,s s P r´δ, δ{2s

φs ˝ Sw2r,s s P rδ{2δs
,

satisfies Conditions piq, piiq of Definition 8.9. A similar argument, modifying Sw2r around t´δu ˆ
ra, bs Y r´δ, δs ˆ Bra, bs, shows that conditions piiiq and pivq can also be satisfied.

The case N ą 1. The proof is virtually the same as that for N “ 1. We choose N disjoint subintervals
of ra, bs by setting:

ra`, b`s :“

„

2`´ 1

2N ` 1
,

2`

2N ` 1



, ` “ 1, . . . , N.

We can assume that the restriction of the bump function ρN : ra, bs Ñ J0pra, bs,Rq, constructed in
Proposition 8.4, to the interval ra`, b`s is equivalent to a zig-zag. Furthermore, the images of these

restrictions are disjoint in J0pra, bs,Rq, and ρN is graphical on the complement ra, bsz
ŤN
`“1ra`, b`s.

Let Sw2r,N : r´δ, δs ˆ ra, bs Ñ J0pr´δ, δs ˆ ra, bs,Rq be a multi-section such that:

(i) The restriction

Sw2r,N |r´δ,δsˆra`,b`s : r´δ, δs ˆ ra`, b`s Ñ J0pr´δ, δs ˆ ra`, b`s,Rq

is equivalent to the A2r-swallowtail Sw2r : R2 Ñ R3 from Definition 7.5.

(ii) Sw2r,N is an honest section on the complement ra, bsz
ŤN
`“1ra`, b`s.

Again, we think of this as a r´δ, δs-family of multi-sections Sw2r,N,s : ra, bs Ñ J0pra, bs,Rq.

By Proposition ?? we find isotopies φs : Op ra, bs Ñ Diff
`

J0pra, bs,Rq
˘

, s P rδ{2, δs satisfying:

(i) φδ ˝ Sw2r,N,δ “ ρN where ρN is as above,
(ii) φs “ φδ for s P r 34δ, δs and φs “ id for s P Oppδ{2q,
(iii) φs ˝ Sw2r,N,s is a zig-zag (Definition 7.14) for all s P rδ{2, δs.
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As before, this means that the map defined by

ρN,s :“

#

Sw2r,N,s s P r´δ, δ{2s

φs ˝ Sw2r,N,s s P rδ{2δs
,

satisfies Conditions piq, piiq and pivq of Definition 8.9. Modifying Sw2r around t´δuˆra, bsYr´δ, δsˆ
Bra, bs, shows that condition piiiq and pivq can also be satisfied.

The flattening trick: It remains to show that |zr
1

˝ρN,s| ă
1
N for all 0 ă r1 ď r. The above construction

of ρN,s depends on the (abstract) isotopy provided by Proposition ??. Nevertheless, since the domain
is compact, the derivatives of ρN,s are bounded (although potentially very large). The key observation
is that by “flattening ”the graph of ρN,s its derivatives can be made arbitrarily small.

For a small ε ą 0, choose a strictly positive function λε : r´δ, δs Ñ r0, 1s satisfying:

(i) λεpsq “ 1 for s P Oppδq,
(ii) 0 ă λεpsq ă ε for s P Oppr´δ, 3

4δsq.

This defines a ”flattening diffeomorphism”

ψε : r´δ, δs ˆ J0pra, bs,Rq Ñ r´δ, δs ˆ J0pra, bs,Rq

ps, x, yq ÞÑ ps, x, λεpsq ¨ yq.

Since ψε is fibered over ps, xq it follows that:

zr
1

˝ ψε ˝ ρN,s “ λεpsq ¨ pz
r1 ˝ ρN,sq, @0 ă r1 ď r.

The construction of ρN,s shows that zr
1

˝ ρN,s is bounded for all s. Indeed, this follows immediately
from the compactness of its domain and continuity of ρN,s. Therefore, choosing ε sufficiciently small
the claim follows.

�

8.5.1. Patching tears. Proposition 8.10 provides a tool for gluing multisections in the foliated setting,
analogous to Corollary 8.5.

Corollary 8.11. Let ε, δ ą 0 be given and consider the foliated cylinder
`

Dk ˆ Dn´k,F :“
ď

xPDk

txu ˆ Dn´k
˘

.

Given two sections s0, s1 : Dn Ñ Rk there exist a foliated section with zig-zags (Definition 8.7)

s : Dn Ñ JrpRk Ñ pDn,Fqq satisfying:

(i) pπf ˝ sq|Dk1´δˆDn´k1´δ
“ s1;

(ii) pπf ˝ sq|OppBDkˆDn´kYDkˆBDn´kq “ s0;
(iii) |Jrs0 ´ s| ă 4ε.

Proof. The proof follows closely the argument of Proposition 8.4, but replacing the zig-zag bump
fucntions from Proposition 8.4 by the zig-zag bump functions with birth/death from Proposition
8.10. The first parts of the proof of Proposition 8.4 go through word for word. Thus, after applying
the “pushing trick” and the “first and second simplification” we can assume to be in the following
situation:

‚ We have two sections s0, s1 : Dk ˆ Dn´k Ñ JrppDk ˆ Dn´k,Fq,Rq,
‚ s0 is the zero-section and s1 “ jr1, is the lift of the constant function equal to one.

We identify these sections with their front projections.

Matching along the horizontal boundary:
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The boundary of the cylinder splits into two parts:

BpDk ˆ Dn´kq “ Sk´1 ˆ Dn´k Y Dk ˆ Sn´k´1.

We refer to the first and second component as the vertical and horizontal boundary respectively.

We want to match s0 and s̃1 along the horizontal boundary while keeping control on the derivatives.
In order to do this we introduce singularities. In the spirit of Proposition 8.4 we construct a suitable
bump function “interpolating” between the constant functons s0 and s1.

Given a small δ1 ą 0, consider the leafwise thickening of the horizontal boundary

T :“ Dk ˆ r1´ δ, 1s ˆ Sn´k´1,

as in Figure 8.5.1.

A neighborhood of the corner (i.e. the boundary of the horizontal boundary) Sk´1 ˆ Sn´k´1 is
contained in the region where s̃1 “ 0. This will be important since our bump function will have
birth/death events along Sk´1 ˆ Sn´k´1.

We decompose the thickening into two regions:

(8.5.1) T “ r1´ δ, 1s ˆ Sk´1 ˆ r1´ δ, 1s ˆ Sn´k´1
ď

Dk´1
1´δ ˆ r1´ δ, 1s ˆ Sn´k´1.

Now we define our bump function ρN : T Ñ J0ppT,Fq Ñ Rq as follows. On the first component
we set ρN to be the pSk´1 ˆ Sn´k´1q-stabilization of the bump function on r1 ´ δ, 1s ˆ r1 ´ δ, 1s as
constructed in Proposition 8.10.

Note that the restriction of ρN to t1´ δu ˆ r1 ´ δ, 1s ˆ Sk´1 ˆ Sn´k´1 equals the bumpfunction
constructed in Proposition 8.4. Hence, we can smoothly extend ρN over the second component as the
pDk1´δ ˆ Sn´k´1q-stabilization of the bump function from Proposition 8.4.

If δ ą 0 is chosen sufficiently small, then the first component of the decomposition in 8.5.1 is contained
in the region where s̃1 “ 0. This implies, together with the “Checking the claimed properties”
argument in the proof of Proposition 8.4 shows, that ρN defines a foliated section with zig-zags
(Definition 8.7) satisfying the required conditions.

Matching along the vertical boundary: There are no restrictions on the derivatives of s in the param-
eter direction. Therefore any interpolation between s0 and s1 in the parameter direction suffices.

A thickening of (part of) the vertical boundary

V :“ r1´ δs ˆ Sk´1 ˆ Dn´k1´δ ,

intersects the thickening of Equation 8.5.1 in the region

V X T “ r1´ δs ˆ Sk´1 ˆ Sn´k´1.

It follows from the way we defined ρN above that

ρN |VXT “ (Sk´1 ˆ Sn´k´1q-stabilization of rρN |r1´δ,1sˆt1´δu,

where rρN : r´δ, δs ˆ r1 ´ δ, 1s Ñ J0pr1 ´ δ, 1s, Rq is constructed in Proposition 8.10. Thus, this
restriction is a smooth function (without singularities) interpolating between s0 and s1. By extending
it over V as the Sk´1ˆDn´k stabilization of rρN defines we obtain an interpolation along the vertical
boundary.

�

8.6. Resolving singularities when r is odd. The zig-zag bump function ρ with birth/death (Def-
inition 8.9) allows us to interpolate between multisections with zig-zag singularities and non-singular
sections. When r (the order of the jet-space we are working in) is even, the holonomic lift jrρ defines
an embedding into the jet bundle. Indeed, the metasymplectic projection (Section ??) of the lift is
given by the birth death of a double fold, see Section 4.4.
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F

Dk ˆ Dn´k

Dk ˆ r1´ δ, 1s ˆ Sn´k´1

r1´ δ, 1s ˆ Sk´1 ˆ r1´ δ, 1s ˆ Sn´k´1

front projection

of s

Sk´1 ˆ Dn´k

Figure 2. Schematic depiction of the graph of s together with the relevant regions
in its domain. Note that the vertical and horizontal boundaries are connected if
k ą 1.

When r is odd, the situation is more complicated. Although a zig-zag still lifts to a smooth map (an
immersion), its birth/death is singular. The reason for this is the open/closed switching from Section
7.2.6. The front projection of a zigzag is a pair of A2r`1 singularities in an open configuration. Hence,
since r is odd, its metasymplectic projection is in closed configuration. As the following lemma shows
this forces the birth/death to be singular.

This side comment needs to appear in the section on singularities

Lemma 8.12. If r is odd, then the metasymplectic projection of a zig-zag cannot be homotoped,
through immersions, to an embedding.

Remark 8.13. Since all of our singularities are stabilizations of the 1-dimensional zigzag the previous
lemma suffices. For the general case we argue using the Maslov class? Is it clear that indepdently of the
topology of the singular locus the zigzag can never be homotoped to the identity through immersions?

Proof. Winding number �

To work around this problem we will change the singularities by a surgery to obtain a singularity
whose birth/death is smooth. Before discussing the details let us first describe the birth/death of the
resulting singularity.

8.6.1. Birth/death of double folds. Consider the trivial bundle π : R Ñ R which we think of as the
front projection of JrpR Ñ Rq. We describe a 1-parameter family of multi-sections ft, t P r0, 1s,
(identified with their front projection) connecting the constant section f0 “ 0 and a multisection f1

with two A2r`1-folds. The family ft is illustrated in Figure 8.6.1.

‚ Starting from the constant section f0 we first add a stabilization (Section ??). We denote by
r` and r´ the right and left singularity respectively.

‚ Using an isotopy supported around r´, we move r´ above the left branch of ft. Note that
this can be done is such a way that all the self-intersections of (the front of) ft are transverse.

‚ Again using a locally supported isotopy, we move the right branch completely above the other
branches. In this proces all the self-intersections are transverse, except for a single time where
the right and middle branch intersect tangentially. At the tangential intersection points the
curvature of the two branches can be chosen differently.
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Figure 3. The 1-parameter family of multi-sections described in Proposition 8.14.

The self-intersections created in the homotopy above resolve when lifting to JrpR Ñ Rq provided r
is at least 2. Thus we obtain an embedding into the total space. On the other hand, for r “ 1 it is
known [] that it is impossible to remove self intersections. The downside to this construction is that
the front projections of the resulting multi-sections are no longer topological embeddings (in contrast
with the case when r is even).

Proposition 8.14. If r ą 2 the family of sections ft, t P r0, 1s, described above lifts to a family of
(embedded) multi-sections of JrpRÑ Rq. Furthermore, for any ε ą 0 we can arrange that |jrft|C0 ă

ε.

Proof. The birth/death of a stabilization lifts to a smooth map in JrpRÑ Rq, as shown in Section ??.
Moreover, the stabilization is a multi-section with two A2r`1 singularities. Thus, the above family
lifts to a smooth family of maps.

Whenever two branches intersect, either their tangent spaces differ (transverse intersection) or their
curvatures differ (non-transverse intersection). Hence, their lifts are disjoint and we obtain an em-
bedded multi-section.

The domain of ft and the parameter space of the family are compact. Hence the lift jrft is bounded.
Denote by µC : RÑ R the fiberwise multiplication by the constant C P R. Then for C ą 0 sufficiently
small (depending on ε) the composition µC ˝ ft satisfies the required properties. �

Remark 8.15. In the above proposition we need r ą 2 in order for the self-intersections to resolve.
If the dimension of the fiber is ě 2, that is if we consider sections of Rk Ñ R for k ě 2, this condition
is not necessary. Indeed, in this case the we can ”push one branch in the extra direction” around each
self-intersection. Also observe that in this case the front projection is a topological embedding.

8.6.2. Surgery. The main purpose of our surgery result stated below is to use it in the proof of Theorem
8.8. Therefore, although the argument holds more generally, we state a somewhat specialized version
which can be applied immediately.

Proposition 8.16. For r ě 0 let f : M Ñ J2r`1pR Ñ Mq a foliated section with zigzags conform

Definition 8.7. Then, for any ε ą 0, there exists an embedded multi-section rf : M Ñ J2rpR Ñ Mq
satisfying:

(i) Σpfq “ Σp rfq as subsets of M . However, the type of singularities differ.

(ii) The singularities of rf consist of folds and birth/deaths of folds.

(iii) | rf ´ f |C0 ă ε (inside JrpX ÑMq) and rf “ f away from the singularity locus.
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Proof. According to Definition 8.7 the singularities of f are stabilizations of wrinkly zig-zags. Since
2r ` 1 is odd this means that they are regularized wrinkled (see Definition 7.24 and Definition ??).
Throughout the proof we identify these (multi-)sections with their front projections, as usual.

For our construction it is useful to think of a wrinkle along Sn´1 as a pair of folds along the upper and
lower hemisphere Dn´1

˘ which come together and die along the equator Sn´2. By applying a surgery
we will change the wrinkle so that ”the birth/death movie” matches that of Proposition 8.14.

We start by decomposing a neighborhood of the singular locus OppSn´1q of the wrinkle in the following
way.

A neighborhood of the equator can be identified with Sn´2 ˆ R2. Let pt, xq denote coordinates on
R2, then the intersection of the singular locus Sn´1 is given by Sn´2 ˆ tx “ t2u. In particular, the
equator is given by Sn´2 ˆ t0u. On this neighborhood the wrinkle equals the Sn´2-stabilization of a
swallowtail Sw4r`2 : R2 Ñ R3 (Definition 7.5).

We can then simply replace the graph of Sw4r`2 by the one from Proposition 8.14, as illustrated in
Figure 8.6.2. Note that the graphs match along tt “ 1u Y tx “ ˘1u and hence on these sides the
new graph can be smoothly continued as f . Then, since the upper and lower hemisphere are disjoint,

the new graph can be extended over Sn´1. Thus, around the upper and lower hemisphere rf equals a
Dn´1-stabilization of an A4r`1-cusp (Definition 7.4).

It remains to check that the resulting map satisfies the required properties. The first two properties
follow immediately from the construction. For the third property observe that the surgery can be
performed on an arbitrary small neighborhood of the equator Sn´2. Here the lift of the original section
is arbitrarily small. By Proposition 8.14 the same holds for the new map. Similarly the change of the
fold locus can be performed on an arbitray small neighborhood of the upper hemisphere. Hence the

lifts of f and rf are C0-close. �

y

t

x

Figure 4. On the left: the swallowtail Sw4r`2 around the equator Sn´2. On the
right: the result after applying surgery.

8.7. Proof of Theorem 8.8. The main difference with the non-parametric proof originate from the
fact that when r is odd the birth/death of a zig-zag does not lift to a (smooth, embedded) multi-
section. Therefore, when r is odd, we apply apply the proof for r ` 1 which is even. Then, in the
last step we use the surgery construction of Proposition 8.16 to obtain a multi-section of the r-th Jet
bundle. When r is even, proof is mostly the same as that of Theorem 8.2 and so we only point out
the differences.
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Firstly, now we are in the foliated setting. Hence, when we choose a triangulation T of X we need
to ensure it is compatible with the foliation F . This follows from Theorem 5.5, stating that the
triangulation can be chosen in general position with respect to F .

In the reduction step of the proof we apply Theorem 5.2 wiggeling the codimension-one skeleton.
This results in a new trianguliation of X, and we want it to be in general position with respect to
F . To this end we choose a vector field V P OppT n´1q tangen to the leaves of F . Then (as stated in
Theorem 5.2) we can arrange that the wiggled skeleton stays transverse to V (and thus to F).

Next, we apply the extension step, using Corollary 8.11 instead of Corollary 8.5. Each top dimensional

cell ∆ of rT is tangent to F along a sphere Sk´1, see Figure 8.7. It has a small neighborhood (inside
Dn) diffeomorphic to the upper half ball:

Dn` :“ tx P Dn | xn ě 0u,

and such that the leaves of F are tangent to the bottom boundary

B´Dn` :“ tx P Dn` | xn “ 0u.

Hence, removing this neighborhood from Dn we obtain a cylinder DkˆDn´k satisfying the conditions
of Corollary 8.11. Thus we can extend the section around the pn ´ 1q-skeleton over each of the top
dimensional cells.

If r is even this concludes the proof. In the odd case (having applied the previous steps with r ` 1)
it remains to apply Proposition 8.16.

F
∆ » Dn

Dk`

Sk´1

Dk ˆ Dn´k

Figure 5. Top dimensional cell ∆ of rT .

9. Higher wrinkled embeddings

As an application of Theorem 8.2 we prove in this section a generalization of the h-principle for
wrinkled embeddings from [21].

At the end of the Section we explain various surgery results for wrinkles, including the passage from
wrinkles to double folds and viceversa.

9.1. Statement of the result. Two submanifolds N1, N2 ĂM have the same r-jet at x P N1 XN2

if N2 is graphical over N1 (around x) and the induced section of the normal bundle vanishes up to
order r, see Section 3.4.2. As before we denote by JrpM,nq the space of r-jets of submanifolds of
dimension n in M .

Theorem 9.1. Let the following data be given:

‚ Two smooth manifolds N and M of dimensions n and m, respectively.
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‚ A connected, compact manifold pair pK,K 1q, with K 1 possibly empty, playing the role of the
parameter space.

‚ A family of smooth embeddings fk : M Ñ N , with k P K.
‚ A family Fk,s of lifts of fk:

JrpN,mq

M N

π
Fk,s

fk

pk, sq P K ˆ r0, 1s

with Fk,s “ jrfk whenever k P K 1 or s “ 0.
‚ A constant ε ą 0.

Then there exists a family of Ar-folded embeddings fk,s : M Ñ N parametrized by pk, sq P K ˆ r0, 1s,
possibly containing embryos, and satisfying:

‚ fk,s “ fk whenever k P K 1 or s “ 0.
‚ |fk,s ´ fk|C0 ă ε.
‚ |jrfk,s ´ Fk,s|C0 ă ε.

We need to add a proof of the following two statements, since they are used in the proof of the
h-principle for integral submanifolds modelled on jet space.

‚ If P ĂM is a polyhedron of positive codimension, then the fold locus of fk,s can be assumed
to be disjoint from P .

‚ Given a line bundle V Ă TN we can arrange that the folds of fk,s are ”along V ”. That is, in
the local model of the folds, V can be chosen as the vertical direction. Also point out that
such line bundles need to be chosen locally on the top dimensional cells of a triangulation, so
there is no obstruction to their existence.

By surgery of the singularities we can pass from folded maps to wrinkled maps, see Section ??. This
immediately implies the following:

Proposition 9.2. Given the same data as in Theorem 9.1, there exists a family of Ar-wrinkled
embeddings fk,s : M Ñ N parametrized by pk, sq P K ˆ r0, 1s, possibly containing embryos, and
satisfying:

‚ fk,s “ fk whenever k P K 1 or s “ 0.
‚ |fk,s ´ fk|C0 ă ε.
‚ |jrfk,s ´ Fk,s|C0 ă ε.

Should add the parametric arguments

9.2. Reduction to sections. Consider an embedded submanifold f : M Ñ N . The normal bundle
π : N ÑM provides the structure of a fibration on an open neighborhood, also denoted by N , of M .
In turn this gives an embedding

(9.2.1) JrpN ÑMq ãÑ JrpN ,mq Ă JrpN,mq.

If the homotopy Fs in Theorem 9.1 is sufficiently small (in the C0-norm on JrpN,mq) then we can
interpret it as a section of JrpN ÑMq.

For the proof of Theorem 9.1 we will also need a fibration structure around folded embeddings (Defi-
nition ??). Let f : M Ñ N be a folded embedding, which we identify with its image. Recall that the
singular locus Σ :“ Σpfq consists of a disjoint union of codimension one spheres. Even though f has
singularities, it has a well-defined Gauss map (Remark ??) Grpfq : M Ñ GrpTN,mq.

Given a thickening of the singular locus:

S :“ OppΣq » p´1, 1q ˆ Σ ĂM,

we can find an embedding g : S ãÑ N , such that j1
xg “ j1

xf for all points x P Σ.
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Similarly, for any top-dimensional cell Ui P T m we find a thickening

Ui :“ OppUiq » Ui YBUi r0, 1q ˆ BUi ĂM,

and an embedding gi : Ui Ñ N extending f |intpUiq.

Both Ui and V are embedded submanifolds. We choose normal bundles, denoted by Ni Ñ Ui and
N Ñ V respectively, such that their restriction to intersection Ui X V agrees. This provides the
structure of a fibration as in Equation 9.2.1.

9.3. The graphical case. In this section we prove a special case of Theorem 9.1. Let f : M Ñ N
be a wrinkled embedding and Fs : M Ñ JrpN,mq, s P r0, 1s a lift of f such that

|jrf ´ F0|C0 ă ε.

Choose Ni Ñ Ui and N Ñ S as in the previous section. We assume that the image of Fs is contained
in the image of the induced coordinates, see Equation 9.2.1. Thus, we only have to work with jet
spaces of fibrations and we can think of Fs as a family of sections. We show how to extend f to a
family of wrinkled embeddings fs : M Ñ N satisfying

|jrfs ´ Fs|C0 ă ε.

9.3.1. Holonomic approximation around the folds. Using the bundle N Ñ S we interpret f |S as a
section of N and the family Fs|S , s P r0, 1s, as sections of JrpN Ñ Sq. Since Σ Ă S has positive
codimension we can apply Theorem 5.2 to find:

‚ a family of isotopies φs,t : S Ñ S, s, t P r0, 1s,
‚ a family of sections σs : S Ñ JrpN Ñ Sq,

satisfying:

‚ σ0 is the zero-section corresponding to jrg,

‚ σs is holonomic on OpprΣsq where rΣs :“ φs,1pΣq,
‚ |σs ´ Fs|C0 ă ε.

This data induces an isotopy in the front projection of JrpN Ñ Sq which we use to translate the folds
of f as follows. Choose a trivialization N » S ˆ Rk such that g corresponds to the zero-section, and
an isomorphism OppΣq » p´1, 1q ˆ Σ inducing coordinates pr, xq. We define

ψs,t : OppΣq ˆ Rk Ñ S ˆ Rk

pr, x, yq ÞÑ pφs,tpxq ` r, y ` σs
`

φ´1
s,1pxq

˘

.

To extend ψs,t to a global isotopy choose a family of bump functions

(9.3.1) τs : S Ñ r0, 1s, s P r0, 1s,

supported in S and satisfying τs|OpprΣsq “ 1. Then the extension is given by ψs : N Ñ N, x ÞÑ

ψs,τspxqpxq, see Figure ??. Finally, fs :“ φs ˝ f defins the desired translation of the fold locus.

Since ψs is supported in OppΣq it follow that fs “ f away from Σ. We claim that the fold locus of fs
”follows Fs as s varies”. More precisely we have Σpfsq “ Σpfq and

|jrfs ´ Fs|C0 ă ε on OppΣq.

To see this note that jrpfs|Σq “ σs|Σ implying that the above inequality holds when restricted to Σ.
Furthermore, recall that the folds of f are equal to the Σ-stabilization of the 1-dimensional fold whose
r-jet is C0-close to that of the zero function. Together with the fact that φs is linear in the r and y
coordinates (as in Equation 9.3.1) on an open neighborhood of Σ this implies the claim
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9.3.2. Extending over M . To extend the solution fs on OppΣq defined above to the whole M we want
to apply Theorem 8.8 relative to Σ. This cannot be done immediately since jrfs does not agree (or is
close to) Fs away from Σ. We solve this problem by interpolating between jrfs and Fs while keeping
the front projection fixed.

Choosing a trivialization of N Ñ S induces the usual coordinates px, y, zq P JrpN Ñ Sq where z :“
pz1, . . . , zrq denotes the collection of coordinates corresponding to formal derivatives (see Definition

3.1). Then, using the bumpfunction τs from Equation 9.3.1 we define a (formal) multi-section rfs :
S Ñ JrpN Ñ Sq by defining its front projection to be equal to fs and

z ˝ rfs :“ τspxqj
rfspxq ` p1´ τspxqqFspxq.

Near the boundary of S this map is equal to Fs and so we can extend it to a map rfs : M Ñ JrpN,mq.

On each connected component of Mz the map rfs can be interpreted as an honest section of N Ñ

pMzΣq which is holonomic near the boundary. Hence applying Theorem 8.8 relative to the boundary
yields the desired extension.

9.4. Proof of Theorem 9.1. In the non-parametric case (i.e. when K is a point) the proof follows
from inductively applying the graphical case from the previous section. More precisely assume that
the required family fs has been constructured for s P r0, s0s Ă r0, 1s. Then, for sufficiently small
s1 ą s0, the pair pfs0 , Fsq for s P rs0, s1s, satisfies the assumptions of Section ??. Hence, we can
extend fs to r0, s1s.

The proof of the parametric case follows exactly the same argument. Indeed both the classical and
the wrinkled holonomic approximation, Theorem 5.2 and Theorem 8.8 hold parametrically.

9.5. Modifying singularities. In this section we explain two surgery constructions on the singular-
ities of maps into jet space. The first construction allows us to pass between (double) fold and wrinkle
type singularities. Recall that singular locus of a wrinkle is a sphere whose hemisphere consists of
birth death Secondly we show how a wrinkle can be replaced by many smaller ones. Together with
the previous construction this also allows us to replace double folds by smaller ones.
The value of these surgeries as technical lemmas, comes from the fact that they are C0-small in nature.
By this we mean that the difference between original and the modified map is arbitarily small in the
C0-norm on maps to jet space. Thus these results can be applied at will simplifying many arguments.
Moreover, they also serve as an illustration of the flexibility of wrinkle and fold singularities.

Most of the singularities we have encountered so far are fibered in nature. They are essentially just
higher parametric versions of (double) folds with birth/deaths. For example, the standard wrinkle
(Definition 4.3) is fibered over its membrane D (isomorphic to a disk Dn). Thus we can think of a
wrinkle as a family of double folds indexed by D, and with birth/deaths at BD. It is straightforward
to generalize this, allowing the membrane to be any domain.

Definition 9.3. Let M be a manifold and D a hypersurface (possibly with smooth boundary). Assume
that D admits a product neighborhood Dˆ R with coordinates pq, xq. Then we define a A2r-wrinkle
along D (or just a D-wrinkle) as the map

wD : D ˆ RÑ D ˆ R2

pq, xq ÞÑ pq,´x3 ´ ρpqqx,

ż x

0

ps3 ` ρpqqs´ x3 ´ ρpqqxqrdsq

where ρ : D Ñ R is a distance function to the boundary BD. If BD “ H then we take ρ “ 1
everywhere.

It is instructive to compare this definition with Definition 7.5. Although the precise definition (and
its singular locus) depends on the choice of distance function and product neighborhood, different
choices yield equivalent maps.

If BD ‰ H then the singular locus of WD is isomorphic to the double of D. More precisely,

ΣpWDq “ Σ1pWDq “ D YBD D,
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where BD (given by the boundary of the membrane) consists of birth/death points. The other points
in the singular locus are folds. If BD “ H then the singular locus is the disjoint union of two (parallel)
copies of D. In this case ΣpWDq consists of fold points only. For example, taking D “ Dn´1 gives
Definition 4.3, while taking D “ Sn´1 recovers Definition 7.7. There are several surgery operations
we can perform to change the properties of (the singular locus of) an A2r-wrinkle.

9.5.1. Moving the singular locus. The most elementary operation consists of changing the singular
locus of a given map. As we are usually considering (front projections of) maps into jet space of order
r, we want the difference between the initial and final map to be Cr-small.

To explain the construction in its most elementary form consider the map

(9.5.1) f : R2 Ñ R2, pq, xq ÞÑ pq, x2q.

It has fold singularities along its singular locus Σpfq “ tx “ 0u. Let γ : r´1, 1s Ñ R2 be an embedded
curve such that γp˘1q “ p˘1, 0q. Suppose we want to change the singular locus to

rΣ :“ pΣpfqzt0u ˆ r´1, 1sq Y γpr´1, 1sq.

Although this can easily be arranged by precomposing f with a suitable diffeomorphism mapping

Σ to rΣ this changes f in a way that is not Cr-small. Instead, by adding more singularities we can
achieve a Cr-small change.

Lemma 9.4. We use the same notation as above. For any ε ą 0 there exists a map rf : R2 Ñ R2,
depicted in Figure 9.5.1, with the following properties:

(i) The singular locus of rf has two connected components:

Σp rfq “ pΣpfqzt0u ˆ r´1, 1s Y γpr´1, 1sqq \ S1.

Furthermore, it consists only of fold and birth/death points.

(ii) rf ´ f |Cr ă ε.

Additionally it is not hard to see that the above maps f and rf are homotopic.

Proof. Consider the function rf whose graph is depicted in Figure 9.5.1. �

The general case is similar. The map rf can be interpreted as a 1-parameter family of maps rfq : RÑ R.
Hence it suffices to understand how to deal with more general parameter spaces. The key point is
that on a collar neighborhood of the boundary BD ˆ r0, 1q the general case is just a stabilization of
the 1-dimensional case. The statement is as follows:

Lemma 9.5. Let f : M Ñ JrpX ÑMq be a multisection, and assume we have the following data:

(i) A domain D Ă Σ10pfq, possibly with non-empty (smooth) boundary;
(ii) A product neighborhood DˆR ĂM with coordinates pq, xq, such that D “ Dˆt0u and f equals:

f : D ˆ RÑ D ˆ Rk`1

pq, xq ÞÑ pq, x2, x2r`1, 0, . . . , 0q.

(iii) A smooth function ∆ : D Ñ R satisfying j8p∆q|BD “ 0. We denote its graph by rD Ă D ˆ R.

Then for any r P N and ε ą 0 there exists a multi-section rf : M Ñ JrpX ÑMq satisfying:

(i) |jr rf ´ jrf |C0 ă ε

(ii) The singular locus Σp rfq is obtained from Σpfq by cutting out D (from the fold locus), gluing in
rD, and adding a rD-wrinkle (Definition ??). That is:

Σp rfq “ pΣpfqzDq Y
B rD

rD \
´

rD Y
B rD

rD
¯

.
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Note that by definition of a wrinkle, a product neighborhood DˆR as above always exists. However, in

general it is not true that any hypersurface rD graphical over Σpfq is contained in such a neighborhood.
The same arguments also allow for vertical singularities/singularities of mapping?

Proof. By assumption we may assume that

f : D ˆ RÑ D ˆ Rk`1

pq, xq ÞÑ pq, x2, x2r`1, 0, . . . , 0q.

Forgetting the coordinates which are constant, f is the D-stabilization of the map

f̂ : RÑ R2, x ÞÑ px2, x2r`1q.

Then, by another change of coordinates (preserving f), we may assume that there exists a collar
neighborhood

(9.5.2) BD ˆ r0, 1q Ă D,

and that ∆ satisies the following properties:

(i) On the complement of the collar ∆ is constant and equal to 1.
(ii) On the collar ∆ depends only on the interval direction, and the induced function ∆B : r0, 1q Ñ R

is strictly increasing.

To construct the required map we use the 1-parameter family of maps F : r0, 1s ˆ RÑ R2, depicted
in Figure 9.5.1.

Figure 6.

It has the following properties:

(i) The upper branch is given by the graph of ∆B, the lower branch is contained in Dˆt0u and the
middle branch is arbitrary close to the upper branch.

(ii) Along the upper branch F has A2r-cusps (Definition 7.4). In particular Ft :“ F |ttuˆR is equal
to f for t P Opp0q.

(iii) Along the two bottom branches (and the domain between them) the map

F : R2 Ñ R3, pt, xq ÞÑ pt, Ftpxqq,

is equivalent to an A2r-swallowtail (Definition 7.5). The orientation of the cusps is indicated in
Figure 9.5.1.
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Then on the collar neighborhood from Equation 9.5.2 we define

rf : BD ˆ r0, 1q ˆ RÑ BD ˆ r0, 1q ˆ R2,

pq, t, xq ÞÑ pq, t, Ftpxqq.

We can smoothly extend this over the interior as the stabilization of F1 : R Ñ R2. It follows

immediately from the definition that the resulting rf : DˆRÑ DˆR2 satisfies the claimed properties.
�

9.5.2. cutting wrinkles?

Lemma 9.6. Consider a multi-section f : M Ñ JrpX Ñ Mq. Let D ˆ R Ă M be a product
neighborhood of a hypersurface D, and ε ą 0 a small constant such that:

(i) f has a double fold on D ˆOppr0, 1sq (Definition 7.7).
(ii) |jrfpx, 0q ´ jrfpx, 1q|C0 ă ε

Then for any (separating) hypersurface ∆ Ă D there exists a multi-section rf : M Ñ JrpX Ñ Mq
satisfying:

(i) |jr rf ´ jrf |C0 ă ε;

(ii) Σ10p rfq “ Σ10pfq X∆, and Σ110p rfq “ Σ110pfq \∆.

Informally, the above conditions say that the fold locus of f is cut into two along ∆. Since the double
fold of f is small the resulting map is C0-close to f .

Proof. �

Theorem 9.7. Let f : M Ñ JrpX Ñ Mq be a multi-section without nested singularities, and
tUiuiPI , and tVjujPJ be covers of M and X respectively. Given any ε ą 0 there exists a multi-section
rf : M Ñ JrpX ÑMq satisfying:

(i) |jr rf ´ jrf |C0 ă ε;

(ii) rf has only wrinkle singularities (Definition ??);
(iii) The membrane, and image of each wrinkle are contained in some Ui and Vj respectively.

Proof. By choosing refinements of the covers we can assume that for any Ui there exists a Vj such
that fpUiq Ă Vj .

Let us first consider the case that the singular locus of f consists of a single double fold. Thus we may
assume (see Definition 7.7) that M “ D ˆ R and that f has folds of opposite Maslov coorientation
along D ˆ t0u and D ˆ t1u.

If we choose 0 ă δ ă 1 sufficiently small we can find a (finite) cover tpUiui“1,...,N of D with the
following properties:

(i) the sets pUi ˆ r0, δs cover D ˆ r0, δs;

(ii) each of the pUi ˆ r0, δs is contained in some Ui.

Let δ “
řN
i“1 ρi be a partition of the constant function δ : D Ñ R, subordinate to tpUuiPI . We denote

the partial sums by

δj :“
j
ÿ

i“1

ρi, j “ 1, . . . , N

so that δ0 “ 0 and δN “ δ.

We can interpret δj`1 as a function on (i.e. whose domain is) the graph of δj . Hence, we can

inductively apply Lemma 9.5 taking (in the notation of the lemma) D to be the graph of δj and rD the
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graph of δj`1. The resulting multisection has N additional wrinkles and the singular locus D ˆ t0u
has moved to ∆ˆ tδu.

Repeating the above argument we reduce to the case that f has a double fold along Dˆr1´δ, 1s where
δ ą 0 is arbitrarily small. Hence removing this double fold only induces a C0-small perturbation.

The resulting multi-section rf : M Ñ JrpX Ñ Mq satisfies the required properties. Indeed, each of
its wrinkles is contained in some Ui and hence is mapped into some Vj . Moreover, the induction
proces consists of finitely many steps. Hence making suitable choices in each step it follows that

|jr rf ´ jrf |C0 ă ε.

Next, consider the case that f has a single wrinkle. On the complement of the birth/death locus a
wrinkle defines a double fold. Hence, we can apply the argument above. That is, in complement of
the birth/death locus, we can move the fold loci of the original wrinkle arbitrarily close to each other.
Then, as before, removing this double fold and its birth/death induces only a C0-small perturbation.

For the general case observe that the above arguments only change f in a neighborhood of the double
fold or wrinkle. Thus, since the singularities of f are assumed not to be nested, we can apply the
construction to one singularity at a time. �

9.5.3. Passing between wrinkles and folds.
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PAPER II:

10. Introduction

Consider a manifold M endowed with a geometric structure, e.g. a distribution ξ Ă TM . A common
problem in this setting is to find embeddings f : N ÑM which are in some way compatible with the
geometric structure, e.g. are in general position with respect to ξ. In this paper we study a particular
example of such a problem; the case of embeddings which are tangent to a distribution modelled on
jet-spaces.

Recall that any jet bundle JrpB,F q comes equipped with a Cartan distribution ξ which measures
whether a section is holonomic. More precisely, the graphs of holonomic sections are integral sub-
manifolds, i.e. submanifolds tangent to ξ.

More generally, pM, ξq is a Cartan-Goursat manifold if it is locally isomorphic to pJrpB,F q, ξcanq for
some B,F and r. In this setting we are interested in (the homotopy type of) the space of integral
submanifolds N Ă pM, ξq.

Unlike (the image of) a section, an arbitrary submanifold can be tangent to the fibers of JrpB,F q Ñ B.
An extreme example is the fiber F which is itself an integral submanifold. Except when pM, ξq is a
contact structure (i.e. when the model jet space is J1pB,Rq), the fiber direction can be recovered
directly from ξ and defines a global foliation Vcan on M .

To avoid some of the complications which arise in the general case we restrict ourselves to EmbΣ2pN, pM, ξqq,
the space of Σ2-free embeddings. This means that the dimension of the intersection of N with the
leaves of Vcan is at most one. The formal counterpart of a Σ2-free embedding is a pair pf, Ftq :
N Ñ pM, ξq, t P r0, 1s, consisting of a smooth embedding f : N Ñ M and a family of bundle
monomorphisms Ft : TN Ñ TM , such that F0 “ df and Σ2pF1,Vcanq “ H.

Apart from the ideas of [?] we consider three types of techniques. In Section 15 we consider the
problem in the smooth (i.e. non-integrable) case. That is, we consider (non-integral) embeddings in
pM, ξq which have prescribed singularities with Vcan. The simplest version of the main result is stated
as follows:

Theorem 10.1. Let ξ be a distribution on M and pf, Ftq : N Ñ pM, ξq a formally Σ2-free embedding.
Then for any ε ą 0 there exist an isotopy fs : N ÑM satisfying:

(i) f0 “ f and |fs ´ f0|C0 ă ε;
(ii) Σpf1,Vcanq consists of ΣpF1,Vcanq plus an arbitrary collection of (potentially nested) wrinkles.

11. Cartan-Goursat manifolds and singularities

11.1. Cartan-Goursat distributions. Consider a manifold M endowed with a distribution ξ. Re-
call from Section 3.4 that we say that ξ is modelled on the jet space pJrpB,F q, ξcanq if around
each p PM there exists coordinates px, y, zq, whose domain is a subset of JrpB,F q, in which ξ “ ξcan.
We also refer to such distributions as Cartan-Goursat distributions when the precise model is not
important.

Although the identification with a (trivial) jet bundle exists only locally, many of the useful properties
of jet bundles can be encoded purely in terms of the canonical distribution and hence make sense
globally on pM, ξq. In particular associated to any Cartan-Goursat distribution are the numbers
n “ dimpBq, k “ dimpF q and r, the number of steps in which ξ is bracket generating.

As most of our techniques are based on manipulations in the front projection of jet bundles, we would
like to have a global analogue of the front projection. If k ą 1, the fibers of the (local) front projections
can be recovered from the Cartan-Goursat distribution, see Section ??. Thus we obtain a well-defined
foliation Fcan on pM, ξq, called the characteristic foliation, whose leaves (locally) correspond to
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the fibers of the front projection. In general (when k “ 1 and r ą 1) this foliation does not exist.
However by Corollary ?? we can still recover the vertical distribution

Vcan “ ker dπr,r´1 : TJrpB,F q Ñ TJr´1pB,F q,

from ξ. Again this defines a foliation Vcan on pM, ξq, called the vertical foliation. Lastly note
that in the contact case, when ξ is modelled on J1pRn,Rq, neither the characteristic foliation nor the
vertical foliation exists globally on pM, ξq. This is a consequence of the fact that contact structures
have a much bigger symmetry group than the other Cartan distributions.

11.2. Integral Submanifolds. The objects of interest in this section are embedded integral sub-
manifolds of Cartan-Goursat distributions, i.e. submanifolds N Ă pM, ξq everywhere tangent to ξ.
Note that as distributions Vcan is contained in ξ. Hence an integral submanifold can have singularities
of tangency (Definition ??) with respect to Vcan, i.e. ΣpN,Vcanq ‰ H. In general, complicated singu-
larities of tangency with Vcan cause rigidity for integral submanifolds. Example; Engel structures?.
However, if the singularities of tangency are not too complicated, integral submanifolds satisfy the
h-principle. Thus we focus on the following class of submanifolds.

Definition 11.1. An integral submanifold of a Cartan-Goursat distribution N Ă pM, ξq is called
Σ2-free if Σ2pN,Vcanq “ H. The space of all such embeddings of a manifold N is denoted by
EmbΣ2pN, pM, ξqq.

As usual, the formal counterpart of an integral submanifold decouples the embedding from its deriv-
ative. Observe that the definition of singularity of tangency still makes sense for (injective) bundle
maps. Furthermore, it is not hard to see that there are injective bundle maps which are not homotopic
to a Σ2-free one. Thus we need to require the existence of such a homotopy in the definition of an
formal integral submanifold.

Definition 11.2. An Σ2-free formal integral submanifold of a Cartan-Goursat distribution
pM, ξq is a pair pf, Ftq consisting of

(i) An embeddeding f : N ÑM ;
(ii) A homotopy of injective bundle maps Ft : TN Ñ TM covering f and satisfying:

(i) F0 “ df ;
(ii) the image of F1 is contained in ξ, and F1 is Σ2-free, i.e. Σ2pF1,Vcanq “ H.

The space of formal integral submanifolds with domain N is denoted by FEmbΣ2pN, pM, ξqqq.

Note that in the contact case, i.e. when ξ is modelled on J1pB,Rq, any integral submanifold is Σ2-free
since Vcan is not defined in this case. Given pf, Ftq P FEmbΣ2pN, pM, ξqq it can happen that pf, Ftq
is already an integral embedding on a domain D Ă N . By this we mean that when restricted to D
we have Ft “ F0 “ df . In this case we also say that pf, Ftq is holonomic on D.

The projection π : FEmbΣ2pN, pM, ξqq Ñ EmbpN,Mq is a fibration. In particular to define a homo-
topy of pf, Fsq it suffices to specify an isotopy of f .

Lemma 11.3. let pf, Fsq : N Ñ pM, ξq be a Σ2-free formal integral submanifold, and fq : N ÑM a
Dk-parameter family of embeddings with f0 “ f . Then there exists a Dk-parameter family pfq, Fq,sq :
N Ñ pM, ξq such that pf0, F0,sq “ pf, Fsq.

Proof. Since fq is an embedding, dfq is an injective bundle map for all q P Dk. Hence we can define

Fq,s :“

#

dfp1´2sqq 0 ď s ď 1{2

F2s 1{2 ď s ď 1.
.

�
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11.3. Homotopically essential singularities. This section should probably be included somewhere
else Let us start by assuming that the formal integral submanifold pf, Fsq : N Ñ pM, ξq is generic.
That is, both f and Fs, s P r0, 1s are generic. It then follows from the Thom-Boardmann stratification
theorem that the singular locus Σ1 :“ Σ1pF1,Vcanq is a (codimension-1) submanifold. Furthermore,
it comes with a stratification by submanifolds

Σ1 Ą Σ11 Ą . . .Σ1n0 Ą H,

where each Σ1i`1

Ă Σ1i is a codimension-1 submanifold. Note that general these singularities cannot

be removed even homotopically. Indeed, otherwise we could choose a different family rFs, satisfying

the conditions of Definition 11.2 and with Σp rF1,Vcanq “ H.

Along Σ1 the image of F1 intersects Vcan which defines a line bundle:

V :“ F´1
1 pF1pTNq X Vcanq Ă TN |Σ1 .

The Maslov coorientation (Section ??) can be encoded in a trivialization of V . More explicitely, we
can choose a nowhere vanishing vector field v P XpOppΣ1qq such that V “ Spanpv|Σ1q. This vector
field satisfies the following transversality conditions:

v|Σ1i P ΓpTΣ1i´1

|Σiq, and, v|Σ1i0&Σ1i0, i “ 1, . . . , n.

Here we used the convention that Σ10

“ OppΣ1q. For an illustration of such a vector field see Figure
??.

Definition 11.4. The pair pΣ1, vq is the essential singular locus of the almost Σ2-free integral
submanifold pf, Fsq.

Two such pairs pΣ, vq and prΣ1, rvq are equivalent if there exists a germ of diffeomorphism φ :

OppΣ1q
„
ÝÑ OpprΣ1q preserving the stratification and taking v to rv.

Up to equivalence the extension of v|Σ1 to OppΣ1q does not matter. Hence we will usually not
distinguish between v and its restriction v|Σ1 .

12. Σ2-free integral submanifolds

Evidently any (Σ2-free) integral submanifold determines a formal integral submanifold. This gives
rise to a canonical inclusion map,

(12.0.1) ι : EmbΣ2pN, pM, ξqq ãÑ FEmbΣ2pN, pM, ξqq.

The main goal of this section is to show that the above map satisfies the h-principle, i.e. is a weak
homotopy equivalence.

In order to prove that Equation 12.0.1 is a weak homotopy equivalence we will produce integral
submanifolds whose singularity locus contains the singularity locus of the formal data and, in addition,
has extra wrinkles/double folds. We introduce the former using explicit Whitney singularity models.
Their complement is transverse to the vertical foliation and can then be handled using the previous
sections; this step is where the additional singularities are introduced.

Theorem 12.1. Let the following data be given:

‚ A non-contact Cartan-Goursat distribution ξ on a manifold pair pM,M 1q.
‚ A manifold N .
‚ A connected and compact manifold pair pK,K 1q, with K 1 possibly empty, playing the role of

parameter space.
‚ A K-parametric family pfk, Fk,sq P FEmbΣ2pN, pM, ξqq which is holonomic when x P M 1 or
k P K 1.

‚ A constant ε ą 0.

Then there exists a family of formal Σ2-free integral submanifolds pfk,t, Fk,t,sq P FEmbΣ2pN, pM, ξqq
indexed by K ˆ r0, 1s satisfying:

(i) pfk,0, Fk,0,sq “ pfk, Fk,sq and pfk,1, Fk,1,sq is holonomic.
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(ii) |fk,t ´ fk,0|C0 ă ε.
(iii) pfk,t, Fk,t,sq “ pfk, Fk,sq whenever k P K 1 or x PM 1.

Corollary 12.2. The canonical inclusion

EmbΣ2pN, pM, ξqq ãÑ FEmbΣ2pN, pM, ξqq

is a weak homotopy equivalence.

12.1. Proof of main theorem.

12.1.1. The case when M 1 “ K 1 “ H. We start by applying Theorem 15.2 to pf, Fsq : N Ñ pM,Vcanq.
Thus we may assume that f is a smooth embedding whose singularity locus with respect to Vcan
satisfies:

Σpf,Vcanq “ ΣpF1,Vcanq Y
ď

iPI

Si,

where tSiuiPI is a finite collection of (nested) spheres along which f has singularities of fold type.
Furthermore, we may assume that |df´Fs|C0 ă ε on an open neighborhood of the essential singularity
locus ΣpF1,Vcanq.

Next we want to make f integral with respect to ξ, while preserving the essential singularity locus.
This is a two step process. On OppΣpF1,Vcanq we change the singularities of f by hand (using a local
model) to become integral. Then, we use general h-principle arguments to make f integral on the
complement of the singularity locus. We state the first part as the following lemma:

Are we using the assumption |df ´ Fs|C0 ă ε somewhere in the proof of the following lemma?

Lemma 12.3. Consider a Cartan´Goursat manifold pM, ξq and let f : N Ñ pM, ξq be a smooth
embedding which is Σ2-free with respect to Vcan, i.e.

Σpf,Vcanq “ Σ1pf,Vcanq.
Then, for any ε ą 0, there exists an isotopy ft : N Ñ pM, ξq, t P r0, 1s such that:

(i) f0 “ f and |ft ´ f |C0 ă ε;
(ii) Σpft,Vcanq “ Σpf,Vcanq and f1 is integral with respect to ξ on OppΣpf1,Vcanq.

Remark 12.4. It is not hard to see that the conclusion of the above lemma can be arranged directly
in the proof of Theorem 15.2. However, since we want to use that theorem as a blackbox we do not
include the result there.

Proof of Lemma 12.3. For ease of notation we denote Σ :“ Σpf,Vcanq and we (often) identify N
with its image under f . Let us start by assuming that there exists a global fibration chart pM, ξq “
JrpB,F q. Recall that Vcan is the tangent space of the fibers of the fibration π : JrpB,F q Ñ B. Hence
the assumptions of the lemma imply that f : N Ñ JrpB,F q defines a (non-holonomic) multi-section,
i.e. the image of each component of NzΣpf,Vcanq is graphical over B. The idea of the proof is to
homotope f to an integral multi-section on OppΣpf,Vcanqq.

By the following lemma there is a C0-small homotopy making Σ integral with respect to ξ.

Lemma 12.5. Let f : N Ñ JrpB,F q be a (non-holonomic) multi-section with singularity locus
Σ :“ Σpf,Vcanq, and let ε ą 0 be a constant. Then there exists a homotopy (through multi-sections)
ft : N Ñ JrpB,F q, t P r0, 1s satisfying:

(i) f0 “ f and |ft ´ f |C0 ă ε;
(ii) Σpft,Vcanq “ Σ, for all t P r0, 1s;

(iii) The restriction f1|Σ is integral.

Proof of Lemma 12.5. Use holonomic approximation to make the singularity locus integral. Use iso-
topy extension theorem applied to the original section to produce the homotopy. Then an isomorphism
in the tangent space along Σ allows us to map F pTNq X ξ to a principal direction. By the implicit
function theorem we obtain an isotopy of the ambient manifold realizing this.
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�

Recall (see Section 16.4) that since F1 is Σ2-free and maps into ξ, the line

F1pTNq X Vcan “ xV y Ă TM

is a principal subspace. This implies that Whitney singularities in the direction of V are lifts of

sections. More precisely, let Σ1i be a stratum of Σpf,Vcanq, which by the previous lemma we assume

to be integral. Then the corresponding Whitney map with singularity locus Σ1i in the direction of V
is the r-th order lift of a multi-section. We use this observation to make f holonomic in the normal
direction to Σ. Again this is done by induction on the strata of Σ.

Assume f is holonomic on OppΣ1i`1

q. More precisely assume f “ jrσi where σi`1 : OppΣ1iq Ñ

J0pB,F q is a multi-section satisfying:

(i) jrσpΣ1i`1

zΣ1i`2

q “ fpΣ1i`1

zΣ1i`2

q and djrσpvq “ V ;

(ii) Σpjrσ,Vcanq “ Σ1i`1

pjrσ, Vcanq and contains Σ1i`1

pf,Vcanq.

Note that we start the induction at i “ dimN . In this case Σ1i`1

“ H so that the base of the

induction is trivially satisfied. We extend σ to a multi-section σi : OppΣ1iq with the same properties as

above. Such a map is easily defined by taking the Σ1i`1

-stabilization of a suitable Whitney singularity
(Definition 7.2) in the direction of V “ F1pvq, using that V is a principal direction as explained above.

Next we homotope f to agree with jrσi on OppΣ1iq. Observe that by assumption we have that
|df´F1|C0 ă ε implying |dfpvq´V |C0 ă ε, while djrσpvq “ V . Thus, jrσ and f agree on Σ and locally
around Σ their images are graphical over each other. A simple linear interpolation in a neighborhood

of Σ1i deforms f into jrσ. Note that this does not change f on OppΣ1i`1

q and on Σ1i (although it

does change df at points in Σ1izΣ1i`1

). Furthermore, since both f and jrσi are Σ2-free so is the
interpolation. Inductively repeating the above argument yields a multi-section σ : OppΣq Ñ J0pB,F q.
The r-th order lift of σ agrees with f along Σ and satisfies Σpjrσ,Vcanq “ Σpf,Vcanq as stratified sets.

To finish the proof it remains to make f integral on the complement of the essential singularity locus.
Here f is graphical over B. By applying Theorem 8.8, relative to OppΣq, we can homotopy f into an
integral submanifold at the cost of adding double folds (in the complement of the essential singularity
locus). Recall that, according to Section ??, these can be added relatively by a homotopy through
integral embeddings as long as we are not in the contact case. �

13. Eating wrinkles

In this Section we explain various surgery procedures for integral submanifolds in Cartan-Goursat
manifolds. The main goal is proving that a suitable zig-zag (the “loose chart”) can absorb other
singularities with respect to the vertical. This will be used in the next Section to prove an h-principle
for integral submanifolds with prescribed singularities.

13.1. Merging wrinkles. The solutions constructed using h-principle arguments are often rather
abstract. One of the main causes is that the amount of singularities needed in these arguments is
never made explicit. In this section we show that it is fact sufficient to have a single wrinkle. More
precisely, given a wrinkled multisection we show that it can be modified to have only a single wrinkle.
This provides a moral inverse to the operation from the previous section. Moreover, just like the
chopping construction, reducing the number of wrinkles only requires in a C0-small change of the
map.

The mental picture to have in mind for the construction is as follows. As we have seen in the previous
section the birth/death locus can be propagated in the domain of a multi-section (through a C0-small
perturbation). In this way a wrinkle can ’grow tentacles’ connecting to the other wrinkles. After
connecting the wrinkles can be merged into a single one. We note that although the (image of) the
multi-section stays C0-close to the original one, the singularity locus changes a lot.
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Let us start giving the details by formalizing the notion of tentacles.

Definition 13.1. Let X Ñ M be a fibration and f : M Ñ JrpX Ñ Mq be a multi-section. A
tentacle system for f is a pair pB, γq where

B :“
N
ď

i“1

Bi, and, γ :“ pγ0, . . . , γN q,

are collections of (embedded) balls and curves in M such that:

(i) f |Bi is equivalent to a wrinkle and f |MzB has only fold singularities;
(ii) γi is a curve from B0 to Bi starting and ending in the singular locus of f |B0 and f |Bi respectively;

(iii) the γi are disjoint and each of them intersects the fold locus of f transversely.

Remark 13.2. Using the passing between wrinkles and folds, the above theorem gives a similar result
for folded maps. The construction is local in the sense that the map is only changed on a neighborhood
of the wrinkles and the connecting curves.

It is not hard to see that if M is connected and f has only folds and wrinkle singularties then a
tentacle system always exists. In general it can happen that the wrinkles of f are nested. In this case
we will always assume that the indices are compatible with the nesting in the sense that

Bi Ă Bj implies i ą j.

Here Bi Ă Bj means that the membrane of Bi is contained in the membrane of Bj . Note that the
wrinkle f |B0

is distinguished since the curves connect all the other wrinkles to this one. Furthermore,
the compatibility condition implies that this wrinkle is never nested inside another one.

Then we move the wrinkles giving the following statement. It is important to realize that although
the (image of) the map stays C0-close the singularity locus of f changes a lot!

The precise statement is as follows:

Theorem 13.3. Let X Ñ M be a fibration and f : M Ñ JrpX Ñ Mq a multi-section and pB, γq a

tentacle system (Definition 13.1). Then, for any ε ą 0 there exists a multi-section rf satifying:

(i) rf has a single wrinkle;

(ii) |jr rf ´ jrf |C0 ă ε and rf “ f on MzOppB Y γq.

Add remark that the proof mostly works also for double folds instead of wrinkles. The only difficulty is
that making a double fold into an inside out fold is not C0 small unless the double fold is. Furthermore
since we can pass between folds and wrinkles it also follows from the above theorem.
How far are we from proving everything here for submanifolds of jet space, analogous to emmys paper?

Remark 13.4. Altough it not relevant to our setup, the above condition that f |MzB has only fold
singularities is not strictly necessary. The proof below still goes through if f has higher singularities
provided that we can choose a tentacle system disjoint from them. This happens for example if they
form a subset of M which has codimension ě 2.

The proof uses two observations which are presented in the next two subsections. First, since the
curves of a tentacle system can intersect the fold locus, we need to show that a double fold can ’pass
through another fold’. This allows the tentacles to grow ’through’ the fold locus. Second, we show
how two wrinkles connected by a curve (which does not intersect any other folds) can be merged to
a single wrinkle. Using these ingredients the proof of the theorem is given in Section 13.3.

13.1.1. Moving wrinkles through folds. We start with a special case in which we have local coordinates
and the sections are in normal form. Consider the trivial fibration RÑ R2. Let pq, xq be coordinates
for the base and y for the fiber. We use our usual identification of multi-sections f : R2 Ñ JrpRÑ R2q

with their front projection. That is, we identify them with surfaces in R3, or with 1-parameter families
of curves in R2.
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There are two different operations to pass a double fold ’through’ a fold, depending on the Maslov
coorientation of the folds relative to each other. Recall that, since our fiber bundle is trivial, this
amounts to whether the front has a positive of negative singularity of tangency with the fiber. That
is, away from the singularities of tangency, the orientation of the front (coming from the base) and the
orientation of the fiber determine an orientation of the total space. At the singularity of tangency this
orientation changes, and we say the singularity is positive (resp. negative) if the orientation changes
from negative to positive (resp. positive to negative).

For the first case, when the folds have alternating Maslov coorientations, our starting section is
denoted by f´,0 : R2 Ñ JrpR Ñ R2q. Its front projection is depicted on the left in Figure 13.1.1. It
has fold singularities at tx “ ´2u, tx “ ´1u and tx “ 1u which have negative, positive, and negative
Maslov coorientation respectively. We think of the first two folds as a doublefold which we want to
pass through the third fold. As in Figure 13.1.1 this fold can be moved arbitrarily close to the third
fold. Then, unpairing the first two folds and pairing tge last two the double fold ’jumps over’ the fold
and can then continue moving. Note that the fold locus of a single fold cannot be moved without
introducing a C0-large change. Therefore, after the second step the position left most fold is fixed
and cannot be moved back to its starting position.

This proves the following lemma:

Lemma 13.5. For any ε ą 0 there exists a 1-parameter family of multi-sections f´,t : R2 Ñ JrpRÑ
R2q, t P r0, 1s, satisfying the following conditions:

(i) |jrf´,t|C0 ă ε for all t P r0, 1s;
(ii) f´,tpq, xq “ f´,0pq, xq for all t P r0, 1s and pq, xq P Opptq “ ˘2u Y tx “ ˘2uq;

(iii) the front projection and singular locus of f´,t are as depicted in Figure 13.1.1. To be precise, for
all t, the singular locus of ft consists of 3 connected components of fold points with alternating
Maslov coorientation. For t “ 0 the first two fold loci are paired together forming a double-fold
while for t “ 1 and q P r´1, 1s the last two folds are paired.

x

q

x

y

Figure 7. The top and bottom depict respectively the front and fold locus of the
family of multi-sections ft, t P r0, 1s defined in Lemma 13.5. To be precise, the top
depicts the restriction of ft to the dashed line in the domain. As t varies from 0 to 1
(from left to right in the figure), the double fold moves to the third fold, the pairing
switches to the last two folds forming a new double-fold which then moves further.

In the second case, when the last two folds have the same Maslov coorientation, the homotopy is
slightly more complicated. Consider the 1-parameter family of multi-sections depicted in Figure ??.

Add in the premilinaries somewhere a remark pointing out that Reidemeister moves also work in Jr

using A2r-folds.

TODO, important: the procedure to pass the zig-zag to the other side, without surgery, is missing.
This is key to preserve the singularity locus. The point is that it appears in the other side as a zig-zag
with “fishes”

Since the pairing trick does not work we need to apply surgery to the singular locus. This amounts to
first applying a Reidemeister II move to create a self-intersection in the front and then cancel the last
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two folds (which have the same Maslov coorientation) by an inverse Reidemeister I move. In terms
of the singular locus this amounts (locally around tq “ 0u) to cancelling the two folds against each
other. Thus, we create a ’hole’ in the singular locus through which we would like to move the first
fold. However, recall that only double folds can be moved while preserving the C0-norm of the map.
Hence we first apply a Reidemeister I move, creating a double fold. This puts us in the setting of
Lemma 13.5 allowing us to move two of the folds through the hole. Again we state this as a lemma
for later reference.

Lemma 13.6. For any ε ą 0 there exists a 1-parameter family of multi-sections f`, t : R2 Ñ JrpRÑ
R2q, t P r0, 1s, satisfying the following conditions:

(i) |jrf`,t|C0 ă ε| for all t P r0, 1s;
(ii) f`,tpq, xq “ f`,0pq, xq for all t P r0, 1s and pq, xq P Opptq “ ˘2u Y tx “ ˘2uq;

(iii) the front projection and singular locus of f`,t are as depicted in Figure 13.1.1.

x
q

x
y

Figure 8. The top and bottom depict respectively the front and fold locus of the
family of multi-sections ft, t P r0, 1s defined in Lemma 13.6. From left to right (as t
varies) the front projection changes by a Reidmeister II, an inverse Reidemeister I,
a Reidemeister I, and an inverse Reidemeister II move. On the fold locus this has
the effect of locally canceling the last two folds against each other, then creating a
wrinkle and moving the resulting double fold through the gap.

13.2. Inside out wrinkles. Next we describe how to wrinkles can be merged into a single one. Recall
from Section 7.1.3 that the A2r-Swallowtail is given by the map

Sw2r : Rn Ñ Rn`k

pq, xq Ñ pq,´x3 ´ q1x,

ż x

0

ps3 ` q1s´ x
3 ´ q1xq

rdsq.(13.2.1)

We usually interpret it as a 1-parameter family of maps, indexed by q1, interpolating between a double
fold and a regular map. In other words, the q1-coordinate controls the birth/death of the double fold.
Replacing q1 with another function depending on the q coordinates we obtain different configurations
of the birth/death locus.

Definition 13.7. The A2r-inside out wrinkle is the germ around tpq, xq P R2 | x “ 0,´1 ď q ď 1u
of the map

IWr2r : Rn Ñ Rn`k

pq, xq Ñ pq,´x3 ´ pq2
1 ´ 1qx,

ż x

0

ps3 ` pq2
1 ´ 1qs´ x3 ´ pq2

1 ´ 1qxqrds, 0, . . . , 0q.(13.2.2)

There is another configuration of the birth/death locus that is relevant to us. Let pφ, ρq P Sn´2 ˆ R
denote spherical coordinates on Rn´1.
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Definition 13.8. The A2r-Spherical inside out wrinkle is the germ around tpφ, ρ, xq P Rn | ρ ď
1, x “ 0u of the map

IWr2r : Rn Ñ Rn`k

pφ, ρ, xq Ñ pq̃,´x3 ´ pρ2 ´ 1qx,

ż x

0

ps3 ` pρ2 ´ 1qs´ x3 ´ pρ2 ´ 1qxqrds, 0, . . . , 0q.(13.2.3)

Observe that up to equivalence, only the qualitative behavior of the function ρ2 ´ 1 in the above
definition matters. That is, if λ : RÑ R is any function which is negative on r0, 1q, positive on p1,8q,
and transverse to zero then replacing ρ2´ 1 by λpρq yields an equivalent map. In particular the value
of λ does not matter.

Using a suitable family of functions depending on ρ we can homotope the spherical inside out wrinkle
into a double fold. This will be our model for the merging of two wrinkles. Thus, for a fixed ε ą 0 let
λt : RÑ R, t P r0, 1s, be a smoothing of the following piecewise linear map, see Figure ??:

(i) λtpρq “ λtp´ρq for all t P r0, 1s and q P R;

(ii) λtpρq :“

$

’

&

’

%

ε ρ P rp1` εp1´ tq,8q

´ε ρ P r0, p1´ εqp1´ tqq

ρ´ 1` t everywhere else on r0,8q

Then, the desired map is defined as:

SIWr2r,t : Rn Ñ Rn`k

pφ, ρ, xq Ñ pφ, ρ,´x3 ´ λtpρqx,

ż x

0

ps3 ` pρ2 ´ 1qs´ x3 ´ λtpρqxq
rds, 0, . . . , 0q.(13.2.4)

Note that the homotopy can be made arbitrarily small by a suitable choice of ε ą 0. Have to do
emmy style calculation to show that the perturbation is Cr-small not jst C0-small

´ε

ε

λ0

´λ1{2

´λ1

Figure 9.

Should be careful that the coorientations of the folds of each wrinkle might not match

Lemma 13.9. Suppose f : M Ñ JrpX Ñ Mq is a multi-section whose singular set consists of two
disjoint wrinkles. Furthermore, let γ be a path from (he singular locus of) one wrinkle to the other
and which does not intersect the singular locus away from its endpoints. Then, for any ε ą 0 there

exists a multi-section rf : M Ñ JrpX ÑMq satisfying:

(i) The singular set of rf consists of a single wrinkle;

(ii) |jrf ´ jr rf |C0 ă ε and rf “ f on MzOppΣpfq Y γqq.

Proof. Recall that although a wrinkle has a local model arounds its singular locus Sn (where n “
dimM), in general this local model does not extend over the ball Dn. In particular, the folds at
corresponding points in the northern and southern hemisphere of Sn need not be in cancelling position.
On the other hand as the equator consists of birth/death points, the folds near the equator are in
cancelling position.
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We start by modifying γ so that its endpoints lie in the fold locus of the wrinkle sufficiently close to
the birth/death locus. Note that this only requires modifying γ in an (arbitrary small) neighborhood

of the wrinkle. This ensures that the resulting map rf satisfies rf “ f on MzOppγ Y Σpfqq.

Around the endpoints of the modified curve (still denoted by γ) there there exists a coordinate
neighborhood pφ, ρ, xq P Rn where f equals SIWr2r,1 (see Equation 13.2.4) and the (image of the)
curve γ is given by tpφ, ρ, xq | ρ “ 0, x ě εu . Here ε ą 0 will be chosen sufficiently small at the end
of the proof.

We start modifying f by replacing SIWr2r,1 with SIWr2r,0. Then we can find a cilinder C » §n´2 ˆ I
around γ whose boundary equals the birth/death locus of SIWr2r,0 as in Figure ??. To be precise C
satisfies the following conditions:

(i) Let g be a metric on M which agrees with the standard Euclidean metric in the coordinate
charts around the endpoints of γ. Then C is contained in an ε-thickening (with respect to g)
Dn´1 ˆ γ of γ.

(ii) Near its boundary C is tangent to the hyperplane tpφ, ρ, xq | x “ 0u.

The second condition implies that there exists a coordinate neighborhood §n´2ˆR2 of C on which f
(after the first modification) looks like the Sn´2 stabilization of IWr2r : R2 Ñ R2`k from Definition
13.7.

�

13.3. proof of Theorem 13.3. The proof is essentially a straightforward applicatication of the
results from the previous sections. The main technicallity is that the wrinkles of the multi-section
f : M Ñ JrpX Ñ Mq might be nested. Recall (Definition 13.1 that given a tentacle system pB, γq
the indices of the singular loci are compatible with the nesting in the sense that if Bi Ă Bj then i ą j.
This means that if we remove the wrinkles one by one, starting from the highest index, we can assume
without loss of generality that the wrinkle we are removing does not contain any other wrinkle.

Thus let γiptq : r0, 1s ÑM be the curve from B0 to Bi as in Definition 13.1. By modifying γi we can
arrange that its endpoints lie in the fold locus of the wrinkle arbitrarily close to the birth/death locus.
Then, slightly extending γi, we may assume that it intersects both the upper and lower hemispheres
of B0 and Bi.

We associate to γi a partitition of the unit interval t0 “ 0 ă t1 ă ¨ ¨ ¨ ă t`´1 ă t` “ 1, for some ` P N,
so that each tj corresponds to a point γiptjq where γi intersects the fold locus of f . By the preceding
remark

f |γiprt0,t1sq, and, f |γiprt`´1,t`sq,

are equivalent to a double fold. Depending on the Maslov coorientation of the fold at γipt1q we use
Lemma 13.5 or Lemma 13.6 to “pass B0 through the fold at γipt1q ”. In terms of the above partition
this means that fγiprt1,t2sq becomes equivalent to a double fold. Continuing like this we end up with
a modified f for which f |γiprt`´3,t`´2sq and f |γiprt`´1,t`sq are both equivalent to double folds, and the
latter lies on the wrinkle Bi.

By applying Lemma 13.9 we can absorb the latter wrinkle into the double fold. Finally we can undo
the modifications we made using Lemma 13.5 and Lemma 13.6 so that f |γiprt0,t1sq are again paired as
a double fold. Note that the last step is essential as it removes the extra wrinkles indroduced when
applying Lemma 13.6.

13.4. Flexible double-folds. Recall that Theorem 13.3 tells us that any multi-section can be sim-
plified to have a single wrinkle. In this section we aim to prove a similar simplification result for
(double) fold singularities. This result will play a key role in proving a general h-principle for integral
submanifolds (with simple singularities) of jet space, given in Section ??, generalizing the main result
from [?].

Let us start by observing that the proof of Theorem 13.3 never uses the whole wrinkle, only a small
piece of it consisting of a double fold. However, being part of a wrinkle, this region can be chosen close
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to the birth/death singularities, so that the double fold is arbitrarily small (see the proof of Lemma
13.9). Ultimately, this is the reason that allows the homotopy of Theorem 13.3 to be C0-small. In
turn this avoids any potential problems with self-intersections of the perturbed map.

In general an integral submanifold might have large double folds so that we cannot expect to simplify
the fold locus by a C0-small perturbation. In fact, sometimes the fold locus cannot be simplified at all.
Do we have a simple/explicit example of this?To deal with these problems we follow the approach of
[?], and define a model double-fold whose existence allows us to simplify the fold locus. As indicated
by the above observations, the main property of this model is that it has the correct “size ”, which
will be made precise below.

Recall that the jet bundle JrpRÑ Rnq can be trivialized using a trivialization R » RnˆR. Explicitely,
given coordinates px, yq P Rn ˆ R let zI , I “ pi1, . . . , 1nq denote induced holonomic coordinates
(Definition 3.1). We define the following subsets in jetspace:

Cr0 :“ tpx, y, zq P JrpRÑ Rq | |x| ď 1, |y| ď 1, |zi| ď 1, @i ď ru.

The corresponding subset of the base is denoted by

B0 :“ πbpC
r
0q “ r´1, 1s.

Let Npn, rq :“ dim JrpRÑ Rnq then for any ρ ą 0 we also define

Crρ :“ Cr0 ˆ r´ρ, ρs
Npn,rq´Np1,rq Ă JrpRÑ Rnq.

As before we denote the projection to the base by:

Bρ :“ πbpC
r
0q “ r´1, 1s ˆ r´ρ, ρsn´1.

Note that a point px, y, zq P JrpRÑ Rnq is contained in Crρ if and only if x P r´1, 1s ˆ r´ρ, ρsn´1, all
the pure derivatives in x1 are in r´1, s and all other derivatives in r´ρ, ρs. Note that if n “ 1 then
Cr0 and Crρ coincide.

Let φr : B0 Ñ JrpRÑ B0q be a multi-section with the following properties:

(i) φr is constant equal to 0 around x “ ´1 and constant equal to 1 around x “ 1;
(ii) the image of its lift jrφr is contained in Cr0 ;
(iii) φr is equivalent to an A2r-double fold.

Lastly we define

φr,ρ : Bρ Ñ JrpRÑ Bρq,

as the rρ, ρsn´1 stabilization of φr (i.e. extending φr to be constant in the r´ρ, ρsn´1-coordinates).
The pair pCrρ , φr,ρq is called an A2r-double fold chart.

We emphasize that it is not only the map φr,ρ, but the pair pφr,ρ, C
r
ρq that is important for our discus-

sion. Indeed, as a map φr,ρ is equivalent to any A2r-double fold, and hence any integral submanifold
with a double-fold contains it. However, the definition of equivalence requires only the germ (around
the image) of φr,ρ to be contained. Here, we ask the whole cube Crρ to be contained.

Going back to the proof of Theorem 13.3, we used that double folds can be homotoped to inside
out wrinkles. The key point is that this homotopy cannot always be contained inside Crρ , unless ρ is
sufficiently large. Hence we make the following definition:

Definition 13.10. The double fold φr,ρ is said to be flexible if it is homotopic, within Crρ , to a
spherical inside-out wrinkle (Definition 13.8). In this case the pair pCrρ , φr,ρq is called a flexible
double fold chart.

Of course we still need to understand for which ρ the above model is flexible. For small r this can be
computed explicitely while for general r we have a (non sharp) bound given by the following lemma:

Lemma 13.11. The minimal length ρ for which the A2r-double fold chart pCrρ , φr,ρq is flexible, denoted
by ρr, satisfies:

ρ1 “ 1, ρ2 “
3

2
, ρ2 “ 2, ρr ă 3r´1.
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Proof. As shown by Equation 13.2.4, it is possible to homotope a double fold to an inside out wrinkle.
Furthermore, it is not hard to see that if the starting double fold is sufficiently small (with respect to
the C0-norm on the r-th order jet bundle) then the homotopy stays inside Crρ . To see why this is true
first observe that, by compactness and continuity, the r-th order lift of Sw2r,t is bounded. Hence, we
can apply a “scaling trick ”to make the lift arbitrarily close to the zero section as follows.

Let px, y, zIq, I “ pi1, . . . , inq denote the usual coordinates on JrpR Ñ Rnq. In these coordinates we
define a scaling diffeomorphism of the front of JrpRÑ Rnq by:

µλ : RÑ Rn Ñ RÑ Rn, px, yq ÞÑ pλx1, x2, . . . , xn, λ
r`1yq,

for any λ ą 0. Recall that any diffeomorphism of the front can be lifted to a contact transformation
(Definition 3.6). We still denote the lift by µλ : JrpRÑ Rnq Ñ JrpRÑ Rnq which in coordinates is
given by

(13.4.1) µλpx, y, z
Iq “

`

λx1, x2, . . . , xn, λ
r`1y, λr`1´i1zI

˘

, I “ pi1, . . . , inq.

Since 0 ď i1 ď r it follows that µλ, for λÑ 0, contracts Crρ into an arbitrarily small neighborhood of
the zero section in JrpRÑ Rnq. Therefore, if λ is sufficiently small, we can homotope µλ ˝ φr,ρ to an
inside out wrinkle within Crρ .

Of course, we want our homotopy to be relative to the boundary of Bρ. Thus, it remains to find
an interpolation between µλ ˝ φr,ρ and φr,ρ, and this is where the size of ρ becomes crucial. Let
λ : r´ρ, ρsn´1 Ñ r0, 1s be a function which is 1 around the boundary of the domain, and equal ε to
around the origin. Then, denote px :“ px2, . . . , xnq P Rn´1, and consider the map

rφr,ρ : Bρ Ñ JrpRÑ Rnq, x ÞÑ µλppxq ˝ φr,ρpxq.

Observe that φr,ρ does not depend on the px coordinates. Together with Equation 13.4.1 this implies

that the image of rφr,ρ is contained in Crρ provided the derivatives of λ satisfy

|
d

dxI
λ| ď 1, @|I| ď r.

To find λ it suffices to find a function fr : r0, ρs Ñ r0, 1s satisfying:

(13.4.2) frp0q “ 0, frpρq “ 1,
ˇ

ˇ

dk

dxk
fr
ˇ

ˇ ď 1, @0 ď k ď r,

and which can be smoothly extended as the constant function. In fact, since scaling by a constant
preserves the above conditions, it is enough to find a function satisfying frpρq ą 1. Then, taking

λpxq :“ frp|x2|q ¨ ¨ ¨ ¨ ¨ frp|xn|q,

yields the desired function. Therefore, ρr is the minimal number such that for any ρ ą ρr there exists
a function as above.

For r “ 1, 2, 3 explicitely define the corresponding piecewise smooth function as in Figure ??. If ρ ą ρr
these functions satisfy frpρq ą 1. Hence, a smoothening of f will satisfy the required conditions.

For the general case we can use the following inductive algorithm. Suppose fr satisfies the properties
above, then we define fr`1 in the following way:

F pxq :“

$

’

&

’

%

frpxq x P r0, ρrs

1 x P rρr, ρr ` 1s

frpρr ` δ ´ xq x P rρr ` 1, 2ρr ` 1s.

Observe that the (piecewise smooth) function

fr`1pxq :“

ż x

0

F pyqdy,

satisfies the conditions in Equation 13.4.2. Hence a suitable smoothing and rescaling yields the desired
function. Furthermore, since ρr ě 1 for all r, we obtain the bound ρr ă 3r´1. �

Lemma 13.12. If a multi-section contains a birth/death singularity then it contains a flexible double-
fold.
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13.4.1. Fishes: an alternative approach.

13.4.2. The parametric case.

14. Σ2-free integral submanifolds with prescribed singularities

14.1. Setup and statement of the theorem. We consider now integral submanifolds whose locus
of tangencies with respect to the vertical foliation is fixed. As before, we impose for the singularities
to be of Whitney type.

Our goal is to prove an h-principle. For this, we need a certain local model to provide sufficient
flexibility. This is reminiscent of the existence of a zig-zag in the study of S-immersions [], the
existence of an “overtwisted disk” in the study of contact structures [9] and Engel structures [14], or
the existence “loose chart” in the study of Legendrians [37].

In our setting we need a flexible doublefold chart as in Definition 13.10. Given a ball D Ă N we
denote by EmbΣ2

pN, pM, ξq;D,∆q (resp. FEmbΣ2pN, pM, ξq;D,∆q) the space of all Σ2-free integral
submanifolds (resp. the space Σ2-free formal integral submanifolds) whose singularity locus is ∆ and
have D as a flexible doublefold chart. The precise nature of ∆, as a stratified subset, and D, as a
chart, has to be explained.

Theorem 14.1. The canonical inclusion map

EmbΣ2pN, pM, ξq;D,∆q ãÑ FEmbΣ2pN, pM, ξq;D,∆q,

is a weak homotopy equivalence.

The above theorem follows immediately from the following more detailed (and technical) statement.
Furthermore, it shows that the above h-principle is in fact C0-close and relative both in domain
and parameter. The theorem states that any (K-parametric) family of formal Σ2-free integral free
embeddings can be connected by a C0-small path (of such K-parametric families) to a family of Σ2-
free integral embeddings. Furthermore, if the family is already holonomic (in domain or parameter)
then the path can be chosen constant.

Theorem 14.2. Let the following data be given:

‚ A Cartan-Goursat distribution ξ on a manifold pair pM,M 1q, and a manifold N containing
a ball D;

‚ A connected and compact manifold pair pK,K 1q, with K 1 possibly empty, playing the role of
parameter space;

‚ A K-parametric family pfk, Fk,sq P FEmbΣ2pN, pM, ξq;D,∆q which is holonomic when x PM 1

or k P K 1;
‚ A constant ε ą 0.

Then there exists a family of formal Σ2-free integral submanifolds pfk,t, Fk,t,sq P FEmbΣ2pN, pM, ξq;D,∆q
indexed by K ˆ r0, 1s satisfying;

(i) pfk,0, Fk,0,sq “ pfk, Fk,sq and pfk,1, Fk,1,sq is holonomic;
(ii) |fk,t ´ fk,0|C0 ă ε;

(iii) pfk,t, Fk,t,sq “ pfk, Fk,sq whenever k P K 1 or x PM 1.

15. Appendix. Smooth embeddings with prescribed singularities

15.1. Setup and statement of the result. The simplest case of Theorem 9.1 (when r “ 1) states
that any formal deformation of a submanifold can be C0-approximated by an isotopy. That is, given
an embedding f : N Ñ M and a tangential rotation Fs : TN Ñ TM |N , for any ε we can find an
isotopy fs : N ÑM such that

|fs ´ f |C0 ă ε, |dfs ´ Fs|C0 ă ε.
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In many interesting cases M comes equipped with a distribution ξ, and we would like to additionally
control the singularities of tangency of fs with respect to ξ.

Throughout this section we fix distribution ξ of rank ď k on a manifold M of dimension n ` k, and
we consider embeddings f : N Ñ pM, ξq where dimN “ n.

Definition 15.1. A formally Σ2-free submanifold of pM, ξq is a pair pf, Fsq consisting of:

(1) An embedding f : N ÑM ;
(2) A homotopy of injective bundle maps Fs : TN Ñ TM covering f such that F0 “ df and

Σ2pF1, ξq “ H.

If we can take Fs “ F0 “ df then we say that f is Σ2-free or that pf, Fsq is holonomic.

The following h-principle is the main result of this section. It states that, up to additional folds, any
formally Σ2-free submanifold is isotopic to a holonomic Σ2-free submanifold with the same singularity
locus.

Theorem 15.2. Let pf, Fsq : N Ñ pM, ξq be a formally Σ2-free submanifolds. Then, for any ε ą 0
there exists an isotopies fs : N ÑM satisfying:

(i) f0 “ f and
|fs ´ f0|C0 ă ε;

(ii) On OppΣpF1, ξq we have
|df1 ´ Fs|C0 ă ε;

(iii) the singularity locus satisfies

Σpf1, ξq “ ΣpF1, ξq Y
ď

iPI

Si,

where tSiuiPI is a finite collection of (nested) codimension-one spheres along which f1 has sin-
gularities of fold type. Here the equality is as stratified sets.

15.2. Proof of the result. To explain the idea of the proof, first suppose that Fs&ξ for all s P r0, 1s.
In this case we can arrange that ξ is contained in the fibers of the normal bundle π : N Ñ N .
Therefore, Ft can be interpreted as a section of J1N Ñ N and we can use holonomic approximation
to isotope N to follow Ft along its codimension-one skeleton (containing Σ). Then, we modify f in the
normal direction to Σ so that it has the correct singularities of tangency with ξ. Finally, appealing to
Theorem 8.8, we can extend the isotopy over the top dimensional cells of N , at the cost of introducing
additional (double) fold singularities.

In general both f and Fs (for s ă 1) can have extremely bad singularities of tangency with ξ. However,
knowing that f is formally Σ2-free, we can replace ξ with a family of distributions ξs such that Fs&2ξs
for all s. To be precise, since Fs : TN Ñ TM |fpNq is an injective bundle map we can find a family of

bundle isomorphisms xFs : TM Ñ TM such that

xFs ˝ F0 “ Fs : TN Ñ TM |fpNq, @s P r0, 1s.

Using this map define a family of distributions ξs, s P r0, 1s on M by:

ξs :“ pFs ˝ pF´1
1 pξq.

We observe that ξ1 “ ξ, and Fs&
2ξs for all s P r0, 1s. In particular ξ0&2df . Indeed, transversality is

preserved by isomorphisms, and since F1&2ξ we obtain

Fs “ p pFs ˝ pF´1
1 q ˝ F1&2p pFs ˝ pF´1

1 qξ “ ξs.

Recall that singularities of tangency of Fs with ξs are encoded by the stratified submanifold

ΣpFs, ξsq “ Σ1 Ą Σ11 ¨ ¨ ¨ Ą Σ1n Ą H,

where Σ1i has codimension-i in N . Note that (by construction of ξs) the singularity locus does not
depend on s. Furthermore, along Σ we have a splitting

(15.2.1) ξs|Σ “ pξs ‘ xVsy,
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where Vs P TN |Σ satisfies

(i) F´1
s pTN X ξsq “ Spanpvq;

(ii) Orientation determined by maslov coorientation.

Probably fine to just say that Fs maps v to V . Don’t need to fix orientations so that V is defining
the orientation or not.

Notation got mixed up? There is a difference between v and V :“ F1pvq. The splitting of ξ is with
respect to V not v.

Next we isotope N to have the correct singularities around Σ. This done using a double induction
argument. First choose a partition t0 “ 1 ă t2 ă ¨ ¨ ¨ ă tk “ 1 of the interval r0, 1s. If the partition is
sufficiently fine then Fs, s P rti, ti`1s is graphical over Fti for each 1 ď i ď k ´ 1. Moreover we can
arrange the maximal angle between Fs and Fti to be as small as we want. Then the first induction
statement is as follows:

Induction on time: Suppose there exists an isotopy fs, s P r0, tis satisfying the conditions in the
statement of Theorem 15.2. Furthermore, suppose that Fs, for s P rti, ti`1s is graphical over Fti on
OppΣq. Then there is an extension fs, for s P r0, ti`1s with the same properties.

To prove the induction statement it suffices to construct the extension satisfying |dfti`1
´Fti`1

|C0 ă ε
on OppΣq. Since the angle between Fti`1

and Fs, s P rti`1, ti`2s, is small the graphically condition
then follows. The extension is constructed inductively on the strata of Σ. To be precise we prove:

For the induction step its important that |df1´F1|C0 ă ε on a neighborhood of OppΣiq. This follows
from the proof. Away from Σ this is not true at all.

Lemma 15.3. Consider pf, Fsq : N Ñ pM, ξq be a formally Σ2-free submanifold such that:

(i) Σ2pFs, ξq “ H for all s P r0, 1s;
(ii) Fs, s P r0, 1s is graphical over N .

Suppose that Σpf |OppΣ1i`1
q
q “ ΣpF1, ξq. Then for any ε ą 0 there exist an isotopy fs : N Ñ M

satisfying:

(i) f0 “ f , |fs ´ f0|C0 ă ε;

(ii) fs “ f on OppΣii`1

q

(iii) |dfs ´ Fs|C0 ă ε on OppΣiq;
(iv) Σpf1q XOppΣ1iq “ Σ1i ;

Before proving the lemma let us see how to complete the proof of the theorem. By the double induction
procedure (and Lemma 11.3) we obtain a homotopy of formally Σ2-free submanifolds pft, Ft,sq, s, t P
r0, 1s such that pf0, F0,sq “ pf, Fsq and

Σpf1|OppΣq, ξq “ ΣpF1,1, ξq.

We apply Theorem 9.1 to pf1, F1,sq, relative to OppΣq. This yields another isotopy, rfs satisfying:

(i) rf0 “ f1, and rfs “ f1, for all s on OppΣq;
(ii) | rfs ´ f1|C0 ă ε.

(iii) rf is a folded embedding (with respect to ξq away from Σ.

Observe that since we apply Theorem 9.1 in the smooth case, the condition |d rf1 ´ F1,1|C0 ă ε does
not hold close to the fold locus. Instead we have that F1,1&ξ so that by the moreover part of Theorem

9.1 we can arrange the folds of rf to be tangent to ξ. Moreover, away from the folds, |d rf ´ F1,1| ă ε

which implies that rf1 is transverse to ξ. Thus, up to additional fold singularities, the singularity loci

of f1 and rf1 agree, concluding the proof.
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Proof of Lemma 15.3. Using F1 obtain a splitting

ξ|Σ “ pξ ‘ xvy,

as in Equation 15.2.1. We can extend this splitting to an open neighborhood U of Σ in M . Further-

more, since pξ&N we may assume that it is contained in the fibers of the normal bundle π : N Ñ N
to N in M .

Recall that v is transverse to Σ1izΣ1i`1

. Hence we can thicken Σ1i to a hypersurface pΣ1i Ă U

transverse to v. A neighborhood of pΣ1i can be identified with the total space of the bundle

π : N |
pΣ1i ˆ RÑ pΣ1i ˆ R,

in which v is identified with the unit vector field on the R-factor. Furthermore, these coordinates f is

identified with a section (which by slight abuse of notation we still denote by) f : pΣ1iˆRÑ N
pΣ1i ˆR.

Having the correct singularity should be made into a precise statement (in a lemma?). This should
mean that you have a fold singularity wrt a fixed vector field direction and the correct corientation.
Because this is already enough (by stability of folds etc) to conclude that the interpolation is through
fold singularities. We dont need to actually have coordinates where the map looks like the standard
model. Also for the parametric case this is better since obtaining models parametrically is prob-
lematic; there can be some noise which is small enough so that the interpolation is through folds.
Approximating Fs: By the graphicallity assymption F1 defines a section σ of the bundle J1pN |

pΣ1iˆRq.
Furthermore, we may assume that σ “ j1f on the neighborhood U :“ OppΣ1i`1

q where f is assumed
to have the correct singularities. Indeed, let ρ : N Ñ r0, 1s be a bump function supported in U and

equal to one on a smaller open V Ă U containing Σ1i`1

. Then,

rFs :“ Fp1´ρqs,

agrees with Fs outside U , and proving the lemma for Fs is equivalent to proving it for rFs.

Thus we can apply holonomic approximation (Theorem 5.2) to σ along the hypersurface pΣ1i relative

to U . This provides a homotopy of sections σt : pΣ1i ˆ RÑ J1pN |
pΣi ˆ Rq whose front projection we

denote by ft, as well as a family of isotopies φt : pΣ1i ˆ RÑ pΣ1i ˆ R satisfying:

(i) σ1 is holonomic on Oppφ1ppΣ
1iq, i.e. σ1 “ j1f1;

(ii) |ft ´ f |C0 ă ε, |df1 ´ F1|ε, f0 “ f and ft “ f on OppΣ1i`1

q;

(iii) φtppΣ
1i ˆ t0uq is transverse to v.

To extend rft to N , note that we can make the identification

Oppφs,1ppΣ1iq “ φs,1ppΣ
1iq ˆ p´δ, δq Ă pΣ1i ˆ R,

for δ ą 0 sufficiently small. Choose a smooth bump function ρ : p´δ, δq Ñ r0, 1s which is 1 around
zero and 0 near the boundary. Then the desired extension is given by:

fs :“ rfρs.

Placing singularities: By the previous step, we can assume that N has the correct singularities on

OppΣi`1q and that Σi is transverse to ξ. It remains to place the correct singularities around Σi.

Recall from Section 4, that Σ1n can be realized by the Whitney singularities. More precisely write
px, qq “ px1, . . . , xn´1, qq for the coordinates on Rn and consider the embedding:

ĆWhitn : Rn Ñ Rn ˆ R
px, qq ÞÑ px, qn`1 ` x1q

n´1 ` ¨ ¨ ¨ ` xn´1q, qq.

This map expresses the n-th Whitney singularity Whitn : Rn Ñ Rn (see Section 4) as the singularity
of tangency with respect to the fibers of the projection π : Rn`1 Ñ Rn. Recall from Remark ??that
ĆWhitn describes the birth/death of two copies of ĆWhitn´1. In particular, away from the origin ĆWhitn
is equivalent to the R-stabilization of ĆWhitn´1.
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Next we look for the correct coordinates in M to place the singularities. First observe that normal

bundle of each connected component of Σ1izΣ1i`1

inside N is trivial. Indeed, this follows inductively

since v is transverse to Σ1i`1

inside Σ1i (and since we can can always slightly extend the trivialization

over a connected component of Σ1izΣ1i`1

over Σ1i`1

). Thus a neighborhood of Σi in N can be
identified with

Σi ˆ Rˆ Rn´i´1,

with coordinates pp, q, xq, where the q coordinate corresponds to the flow lines of v. In these coordi-

nates we have pΣi “ tq “ 0u.

Similarly, inside M we know that Σi is transverse to V “ F1pvq. By assumption V is graphical over
N (although we cannot assume it to be tangent). Hence we can choose the normal bundle N of N to
be transverse to V . Thus we identify a neighborhood of Σi in M with the total space of the bundle

(15.2.2) π : N |
pΣi ˆ RÑ pΣi ˆ R, pp, qq ÞÑ pπppq, qq,

where π : N Ñ N is the usual projection, and the R factor in the total space (resp. the base)
corresponds to integral curves of V (resp. v). As such we think of v as the projection of V onto N .

In these coordinates N is identified with the image of a section f , as constructed in the previous step.

Moreover, we can choose a splitting N “ pN ‘R such that f is identified with a map into the R-factor.
Now consider the section

f1 : Σi ˆ Rˆ Ri´1 Ñ pN |Σi ‘ Rˆ Σi ˆ Rˆ Ri´1

pp, q, xq ÞÑ p0,Whitipq, xqq, p, q, xq.

Note that this is just the Σ1i-stabilization of ĆWhiti. By the construction in the previous step, f1 agrees

with f on OppΣ1i`1

q (possibly after a fiberwise change of coordinates of the bundle in Equation 15.2.2).
Since both f and f1 are sections, we can simply interpolate between them to obtain the desired isotopy
of N . �

OTHER SECTIONS:

16. The integral Grassmannian

Let B and F be vector spaces of dimensions n “ dimpBq and k “ dimpF q. We are interested in
l-dimensional integral submanifolds of pJrpB,F q, ξcanq. Our goal in this Section is to understand
their linear counterpart, i.e. the corresponding integral elements.

We will do this step by step, looking first at the horizontal elements (Subsection 16.2), then at the
elements that intersect the vertical distribution in a given dimension (Subsection 16.3), and finally at
how these different pieces glue together (Subsections 16.4 and 16.5).

Let us provide some context about integral manifolds and integral elements: the first to regard
general integral submanifolds of jet space as “generalised solutions” seems to have been R. Thom in
[11], where he sketched the proof of his famous “homological h-principle”. Later, A.M. Vinogradov
brought attention to them, in the context of Geometry of PDEs, in [42]. Several works have followed
in this direction [6, 7, 43].

It is within the Geometry of PDEs literature [27, 28] that the integral Grassmannian has been studied.
As far as the we are aware, the majority of what is currently known can be found in the works of V.
Lychagin [30, 29, 31, 32]. Despite containing beautiful results, these articles follow an announcement
format and proofs are often missing or just outlined. One of our goals in this Section is to provide a
detailed account of Lychagin’s work. We will not attempt to discuss the relation with commutative
algebras; this will be done in future work.

We note that our homotopy type computations for the integral Grassmannian in Subsection 16.5 seem
to be new.
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16.1. Decomposing the integral Grassmannian. Following subsection ??, we identify the tangent
space of JrpB,F q at any point with the vector space

g “ B ‘ F ‘HompB,F q ‘ Sym2
pB˚, F q ‘ ¨ ¨ ¨ ‘ Symr

pB˚, F q.

In Definition 3.4 we endowed g with a natural graded Lie algebra structure given by the contraction
of vectors with tensors. We called this the jet Lie algebra with parameters n, k, and r. It was then
proven in Proposition ?? that g models the nilpotentisation of ξcan. Under this isomorphism, integral
elements (of a given dimension l) correspond to Lie subalgebras lying in the zero degree part

g0 “ B ‘ Symr
pB˚, F q.

The space of integral elements is denoted by Grintegralpg, lq. It decomposes into several pieces, de-
pending on how integral elements intersect the vertical component. We define:

GrΣipg, lq :“ tW P Grintegralpg, lq | dimpW X Symr
pB˚, F qq “ iu,

where the subscript Σi is inspired by the Thom-Boardman notation.

The piece GrΣ0
pg, lq is precisely the horizontal Grassmannian, as introduced in subsection 3.3. We

also call it the regular cell even though it is, in general, not dense in Grintegralpg, lq. This is shown
in subsection 16.3.3 below. We will describe the spaces GrΣipg, lq in Subsections 16.2 and 16.3.

16.1.1. The grassmannian of multi-sections. In Section 6 we will introduce multi-sections, i.e. inte-
gral submanifolds that are horizontal in a dense set. These are submanifolds that one can manipulate
through their front projection. Any integral element tangent to a multi-section must be in the clo-
sure GrΣ0pg, nq of the horizontal elements; we call this space the Grassmannian of multi-section
elements.

Furthermore, we are interested in multi-sections with mild singularities of tangency, which will be, in
particular, of corank 1. Therefore, we content ourselves with describing how the two strata GrΣ0pg, nq
and GrΣ1pg, nq glue together.

Definition 16.1. The Σ2-free integral Grassmannian, is the union

GrΣ2´freepg, nq :“ GrΣ0pg, nq YGrΣ1pg, nq.

We will study its topology in Subsection 16.5.

We will study Grintegralpg, lq as a whole in the future. In particular, in the present work we do not

look at the closures GrΣipg, nq with i ą 1.

16.2. Horizontal elements. We now prove Lemma 16.3: the Grassmannians of horizontal elements
are vector bundles with (standard) Grassmannian base. This description appeared already in the
recent work [7].

16.2.1. Maximal horizontal elements. A maximal horizontal element W is graphical over B. We can
represent it (uniquely) as the graph of a homomorphism A P HompB, Symr

pB˚, F qq. Then:

Lemma 16.2. Let W “ graphpAq be a n-dimensional subspace of g0 graphical over B. Then, W is
integral if and only if A P Symr`1

pB˚, F q.

Proof. The Lie subalgebra condition for W means that for any pair w0 `Apw0q, w1 `Apw1q PW we
have:

0 “ rw0 `Apw0q, w1 `Apw1qs “ ιw0Apw1q ´ ιw1Apw0q

which implies that A is symmetric with respect to the first variable as well. The claim follows. �

This Lemma realises the correspondence between horizontal elements at a point p P JrpY Ñ Xq and
points in the fibre of Jr`1pY Ñ Xq over p.
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16.2.2. General dimension. More generally, if W is horizontal and of dimension l ď n, it projects
down to some l-dimensional subspace H Ă B, defining a map

πb : GrΣ0pg, lq Ñ GrpB, lq

to the l-Grassmannian of the base. We claim that this is a vector bundle which can be explicitly
described in terms of the tautological bundle γ over GrpB, lq.

Lemma 16.3. There is a canonical isomorphism of vector bundles over GrpB, lq:

GrΣ0pg, lq –
Symr`1

pB˚, F q

Symr`1
pγK, F q

,

where γK is the annihilator of the tautological bundle γ.

Proof. We look at all the graphical l-subspaces in g0, not necessarily integral: given H Ă B, its
possible lifts correspond to the elements of HompH,Symr

pB˚, F qq. Packaged all together, for varying
H, they are elements of the total space of the vector bundle:

Hompγ,Symr
pB˚, F qq Ñ GrpB, lq.

We want to determine which of these are horizontal.

To do so, we use the auxiliary trivial vector bundle Symr`1
pB˚, F q Ñ GrpB, lq. We look at the bundle

map given by evaluation on each l-subspace:

evγ : Symr`1
pB˚, F q Ă HompV,Symr

pB˚, F qq ÞÑ Hompγ,Symr
pB˚, F qq.

The image of this map is necessarily contained in GrΣ0pg, lq. We claim that the map is an epimorphism:
this follows from the fact that any horizontal W , projecting to H Ă B, may be extended to a maximal
horizontal element by direct summing with the complement of H in B.

The kernel of evγ is, by definition, the subspace of those elements of Symr`1
pB˚, F q which vanish

when a vector in γ is plugged in. By symmetry, we deduce that there is a exact sequence

0 Ñ Symr`1
pγK, F q Ñ Symr`1

pB˚, F q Ñ GrΣ0pg, lq Ñ 0

of vector bundles, proving the claim. �

16.2.3. The subspace filtration. Let H Ă B be a linear subspace. In the proof above we looked at
those elements in Symr`1

pB˚, F q which vanish when an element of H is plugged in. One can, more
generally, consider those tensors that vanish when a collection of elements in H is used. This leads
us to define the following filtration:

Symr`1
pB˚, F qpH,jq :“ tA P Symr`1

pB˚, F q | ιvj ¨ ¨ ¨ ιv1A “ 0, for any vi P Hu,

¨ ¨ ¨ Ă Symr`1
pB˚, F qpH,jq Ă Symr`1

pB˚, F qpH,j`1q Ă . . .

By the discussion in the previous subsection, we have that

Symr`1
pB˚, F qpH,1q “ Symr`1

pHK, F q.

In general, by choosing a direct summand of H, we can identify:

Symr`1
pB˚, F qpH,jq

Symr`1
pB˚, F qpH,j´1q

– Symj´1
pH˚, F q b Symr`2´j

pHK, F q.

yielding the dimension formula:

dim

ˆ

Symr`1
pB˚, F qpH,jq

Symr`1
pB˚, F qpH,j´1q

˙

“ k

ˆ

n` j ´ 2

n´ 1

˙ˆ

n` r ` 1´ j

n´ 1

˙

.

In Subsection 16.4 we will study the principal cone in Symr`1
pB˚, F q, i.e. the space of tensors A of

the form A P Symr`1
pHK, F q, for some H Ă B.
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16.2.4. Aside: the conormal. We finish this Subsection presenting the conormal construction. Given
a horizontal submanifold of JrpY Ñ Xq, it produces a maximal integral submanifold containing it.
This will not be needed later on, but it helps us emphasise that maximal integral submanifolds are
often exotic looking (compared to those integral submanifolds that are almost everywhere horizontal).

We first present the linear analogue of this phenomenon:

Definition 16.4. Let W Ă g0 be l-dimensional and horizontal. Denoting its projection to B by H,
we define the conormal of W to be the subspace:

conormalpW q :“W ‘ Symr
pHK, F q Ă g0.

The space Symr
pHK, F q is the intersection of the polar space of H with the vertical component.

Hence, the conormal is a maximal integral element.

In the contact case, conormalpW q is middle-dimensional and therefore a lagrangian subspace of ξcan.

In the general case, Symr
pHK, F q has dimension k

`

pn´lq`r´1
n´l´1

˘

which is often (much) larger than n´ l.
For instance:

‚ If l “ n´ 1, we have dimpSymr
pHK, F qq “ k.

‚ If l “ n´ 2, we have dimpSymr
pHK, F qq “ kpr ` 1q.

‚ If l “ n´ 3, we have dimpSymr
pHK, F qq “ k pr`2qpr`1q

2 .

Therefore, the conormal construction produces integral elements which are tangent to the fibre along
a large subspace, and whose dimension is often much larger than n.

Now for the manifold version:

Definition 16.5. Let N Ă JrpY Ñ Xq be a l-dimensional, integral submanifold with immersed
projection πbpNq Ă X. We define its conormal to be the manifold:

conormalpNq :“ tp P JrpY Ñ Xq | πr,r´1ppq P πr,r´1pNq, p Ą Tπpr,r´1ppqπr,r´1pNqu.

In the last inclusion we think of p P JrpY Ñ Xq as a maximal horizontal element in πr,r´1ppq P
Jr´1pY Ñ Xq.

To see how this corresponds to the linear version, we choose a trivialisation so we may work with
JrpB,F q, where B and F are vector spaces. Then the conormal is precisely the space

tp P JrpB,F q | πr,r´1ppq P πr,r´1pNq, p P conormalpTπr,r´1ppqπr,r´1pNqqu.

Here we use the fact that both the base B and the fibre F are vector spaces to canonically identify
the fibre of r-jet space with Symr

pB˚, F q and therefore invoke the linear definition.

16.3. Integral elements of given corank. Having understood the horizontal case (which we will
have to invoke repeatedly), we may look now at more general integral elements. Namely, those
intersecting the vertical component in a subspace of dimension i.

16.3.1. The setup. The space GrΣipg, lq is endowed with two canonical maps. The first is simply the
restriction of the base projection; we denote it by:

πb : GrΣipg, lq ÞÑ GrpB, l ´ iq.

The second one intersects an integral element with the vertical component. We write:

XSymr
pB˚, F q : GrΣipg, lq Ñ GrpSymr

pB˚, F q, iq.

Given W P GrΣipg, lq, the subspaces H “ πbpW q and Wv “ W X Symr
pB˚, F q must be orthogonal

with respect to the curvature/Lie bracket. This means that Wv must be, in fact, an element of
GrpSymr

pHK, F q, iq. Reasoning in this fashion for all W simultaneously leads us to look at the total
space of the bundle GrpSymr

pγK, F q, iq Ñ GrpB, l ´ iq. We write ν for the tautological bundle over
it.
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The two canonical maps defined above yield a projection π : GrΣipg, lq Ñ GrpSymr
pγK, F q, iq. It is

immediate that π is a vector bundle in which a natural choice of zero section is:

(16.3.1) pH,Wvq Ñ H ‘Wv,

where H P GrpB, l ´ iq and Wv P GrpSymr
pHK, F q, iq.

16.3.2. The result. We may describe GrΣipg, lq explicitly:

Lemma 16.6. There is a canonical isomorphism of vector bundles:

GrΣipg, lq –
Symr`1

pB˚, F q

Symr`1
pγK, F q ‘Hompγ, νq

over the total space of GrpSymr
pγK, F q, iq Ñ GrpB, l ´ iq.

Proof. As before denote by Symr`1
pB˚, F q Ñ GrpSymr

pγK, F q, iq the trivial vectorbundle, with fiber

Symr`1
pB˚, F q. We define a vector bundle epimorphism

‘ : Symr`1
pB˚, F q ÞÑ GrΣipg, lq

which, at a point Wv P GrpSymr
pHK, F q, iq, is given by

A ÞÑ ‘H,Wv
pAq :“ graphpA|Hq ‘Wv.

The tensor A is in the kernel of ‘H,Wv
(i.e. gets mapped to the zero section from Equation 16.3.1) if

and only if the associated quotient map

Ã : H ÞÑ Symr
pB˚, F q{Wv

is zero. I.e. ιvA P Wv for every v P H. Therefore, after choosing a direct summand for H, we can
identify:

kerp‘H,Wv q – Symr`1
pHK, F q ‘HompH,Wvq,

which is a vector subspace of Symr`1
pB˚, F qpH,2q – Symr`1

pHK, F q ‘HompH,Symr
pHK, F qq. �

16.3.3. Dimension counting. From the previous proof, we deduce that:

Corollary 16.7. The fibre of GrΣipg, lq, as a vector bundle over GrpSymr
pγK, F q, iq, has dimension

„ˆ

n` r

n´ 1

˙

´

ˆ

n´ l ` i` r

n´ l ` i´ 1

˙

k ´ ipl ´ iq.

Similarly, we deduce:

Corollary 16.8. The manifold GrΣipg, lq has dimension

dimpGrΣipg, lqq “ pl ´ iqpn´ l ` iq`
„ˆ

r ` pn´ l ` iq ´ 1

n´ l ` i´ 1

˙

k ´ i



i`

„ˆ

n` r

n´ 1

˙

´

ˆ

n´ l ` i` r

n´ l ` i´ 1

˙

k ´ ipl ´ iq.

Proof. The space GrpB, l´ iq has dimension pl´ iqpn´ l` iq. The fibre of Symr
pγK, F q has dimension

`

r`pn´l`iq´1
n´l`i´1

˘

, so it follows that the fibre of GrpSymr
pγK, F q, iq has dimension:

„ˆ

r ` pn´ l ` iq ´ 1

n´ l ` i´ 1

˙

k ´ i



i.

Putting all these computations together, we deduce the claim. �
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We are particularly interested in comparing GrΣipg, lq with the regular cell GrΣ0pg, lq, which we want
to regard as the “generic” ones. To do so with define a number, which we call the codimension, as
follows:

codimpr, n, k, l, iq :“ dimpGrΣ0pg, lqq ´ dimpGrΣipg, lqq.

We particularise to the case n “ l and we compute:

codimpr, n, k, n, iq “ i2 ` kr
1´ i

1` r

ˆ

r ` i´ 1

i´ 1

˙

,

codimpr, n, k, n, 1q “ 1,

codimpr, n, k, n, 2q “ 4´ kr,

codimpr, n, k, n, 3q “ 9´ krpr ` 2q.

So we deduce:

Corollary 16.9. The space GrΣ1pg, nq has codimension 1 in GrΣ0pg, nq.

In the contact setting k “ r “ 1, the space GrΣipg, nq has codimension ipi`1q
2 in GrΣ0pg, nq.

That is: with the exception of a few cases in which r and k are small, the strata GrΣipg, nq, i ą 1,
are often larger than the regular cell.

The most interesting component, from a PDE perspective, is the closure GrΣ0pg, lq of the horizontal
cell. We will not attempt to look at it in depth. As pointed out in the introduction, it is enough that
we understand how GrΣ2´freepg, lq sits inside; we will do so in Subsection 16.5.

16.4. Principal subspaces. It is convenient that we introduce some auxiliary concepts before we
look at GrΣ2´freepg, lq Ă GrΣ0pg, lq. The main definition of interest in this Subsection is:

Definition 16.10. A horizontal element A P GrΣ0pg, nq – Symr`1
pB˚, F q is principal if

A “ fr`1 b α,

for some (unique) f P B˚ and α P F . The span of a principal element is said to be a principal
subspace.

Any non-zero principal element defines a kernel subspace kerpAq :“ kerpfq Ă B which is of codimen-
sion 1, and an image subspace ImagepAq Ă Symr

pB˚, F q which is by definition the 1-dimensional
space spanned by fr b α.

Remark 16.11. As points in pr`1q-jet space, principal elements correspond precisely to pure deriva-
tives (i.e. derivatives of order r ` 1 along a single direction in the base).

16.4.1. The principal cone. We claim that the set of all principal subspaces in Symr`1
pB˚, F q is the

cone of an algebraic subvariety in the projectivisation. Let us recall two constructions from classic
algebraic geometry.

Let V and W be vector spaces. We define the Veronese mapping:

PpV q ÞÑ PpSymr`1
pV qq,

rvs ÞÑ rvr`1s.

Similarly, the Segre mapping is defined by the expression:

PpV q ˆ PpW q ÞÑ PpV bW q,
prvs, rwsq ÞÑ rv b ws.

Both of them are algebraic maps.

In our setting, we can put them together to define the principal mapping:

PpB˚q ˆ PpF q ÞÑ PpSymr`1
pB˚, F qq,

prf s, rαsq ÞÑ rfr`1 b αs.
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We are interested in the cone it defines. It is given by the image of the map:

B˚ ˆ F ÞÑ Symr`1
pB˚, F q,

pf, αq ÞÑ fr`1 b α.

We will abuse notation and still call this map the principal mapping, as long as no confusion may
arise. Its image, which we denote by V0 and we call the principal cone, is an algebraic subvariety.
By construction, a horizontal element is principal if and only if it is contained in V0.

16.4.2. The closure of the principal cone. Fix A0, A1 P Symr`1
pB˚, F q, with A1 principal, and con-

sider the linear combinations pA0 ` sA1qsPR. We can see that

pA0 ` sA1q|kerpA1q “ A0|kerpA1q,

i.e. the graph over kerpA1q does not depend on s. However, A0 ` sA1 explodes in the complement of
kerpA1q as s goes to infinity. This implies that the sequence of horizontal elements pA0` sA1qsPR has
well-defined limit in GrΣ1pg, nq: the integral element

graphpA0|kerpA1qq ‘ ImagepA1q.

In terms of r-jet space, this phenomenon corresponds to an explosion of a pure derivative of order
r ` 1. Any element in GrΣ1pg, nq may be written as such a limit, so we deduce:

Lemma 16.12. GrΣ1pg, nq is contained in the closure of GrΣ0pg, nq.

Applying this reasoning with A0 “ 0, we are effectively looking at the closure V :“ V0 in GrΣ0pg, nq
of the principal cone:

Lemma 16.13. The principal subvariety V is the union of two pieces V0 and V1. The latter piece
is the zero section of GrΣ1pg, nq as a bundle over GrpSymr

pγK, F q, 1q Ñ GrpB,n´ 1q.

Proof. Any element in the closure of V0 can be realised as the limit of a path psAqsPR, with A
principal. As reasoned above, its limit is then the direct sum kerpAq‘ ImagepAq, where the first term
is a hyperplane in B and the second one is a line in Symr

pkerpAqK, F q. This concludes the claim. �

Lastly, we remark that V1 “ GrpSymr
pγK, F q, 1q, as a bundle over GrpB,n´ 1q, is trivial. Indeed, an

element in the fibre is a line in Symr
pγK, F q, which can be uniquely identified with its image in F ,

which is again a line. This shows that:

Corollary 16.14. There is an identification

V1 “ GrpB,n´ 1q ˆGrpF, 1q “ PpB˚q ˆ PpF q.

16.4.3. The topology of the principal subvariety. We want to determine the homotopy type of V by
putting its pieces together. This is relevant because, as we will see in Subsection 16.5.2, V is homotopy
equivalent to GrΣ2´freepg, nq.

Let us make a preliminary remark. We write rV for be the blow-up of V at the origin. We denote the
tautological bundles over PpB˚q and PpF q by γB˚ and γF , respectively. We then look at the forgetful
map

rV Ñ PpB˚q ˆ PpF q.
One can check that it is a fibration with RP1 fibres and, in fact, it is the fibrewise compactification
of the real line bundle γbr`1

B˚ b γF . From this expression we see that there is a certain asymmetry
depending on the parity of r, so we must tackle each case separately.

Write xB˚ – RPn for the compactification of B˚ by adding PpB˚q at infinity. Denote by SpF q the unit
sphere (with respect to some scalar product). Then:

Lemma 16.15. Let r be even. Then, there is a fibration

Z2 Ñ xB˚ ˆ SpF q Ñ V.

In particular, if k “ dimpF q “ 1, we have that V is homotopy equivalent to xB˚ – RPn.
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Proof. We define maps

B˚ ˆ SpF q ÞÑ V0,

pf, αq ÞÑ fr`1 b α;

PpB˚q ˆ SpF q ÞÑ V1,

prf s, αq ÞÑ prf s, rαsq.

Their composition defines a continuous map xB˚ ˆ SpF q ÞÑ V, as claimed. For the second claim we
note that the bundle is trivial because SpF q “ Z2. �

Similarly:

Lemma 16.16. Let r be odd. Then V is homotopy equivalent to the quotient

PpB˚q ˆ pF

PpB˚q ˆ 0
.

Proof. Regard PpB˚q as the quotient of the unit sphere (for some scalar product) under the antipodal
map. Consider the map:

PpB˚q ˆ F ÞÑ V0,

prf s, αq ÞÑ fr`1 b α,

which is well-defined because r is odd. Together with the identity map PpB˚q ˆ PpF q ÞÑ V1, this
defines a mapping

PpB˚q ˆ pF ÞÑ V

which is surjective, maps PpB˚qˆt0u to the origin in V, and is a homeomorphism in the complement;
quotienting we deduce the claim. �

16.4.4. The tangent variety of the principal cone. Lastly, being a subvariety of a vector space, we can
look at the tangent variety TV0 Ă Symr`1

pB˚, F q associated to V0.

To determine TV0, we look at the map ψpf, αq “ fr`1 b α. Its differential at a covector f P B˚ and
a vector α P F is readily computed:

df,αψ : B˚ ˆ F Ñ Symr`1
pB˚, F q,

df,αψpg, βq “ fr`1 b pα` βq ` pr ` 1qg ¨ fr b α.

Equivalently, if we set H “ kerpfq Ă B, we see that the tangent space to V0 at fr`1 b α ‰ 0 is the
subspace:

Symr`1
pHK, F q ‘H˚ b Symr

pHK, xαyq Ă Symr`1
pB˚, F qpH,2q.

This identifies the normal fibre to V0 at pf, αq with the quotient

Symr`1
pB˚, F q

Symr`1
pHK, F q ‘H˚ b Symr

pHK, xαyq
,

as we would expect from our description of GrΣ1pg, nq as a bundle over V1.

16.5. The Σ2-free integral Grassmannian. In this last Subsection we state some structural results
about GrΣ2´freepg, nq and we provide sketches of proofs. A more comprehensive account will appear
in future work.
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16.5.1. Smoothness. According to Subsections 16.2 and 16.3, the pieces GrΣ0pg, nq and GrΣ1pg, nq
are smooth manifolds. The first is a vector space. The second one is a vector bundle over a smooth
bundle with grassmannian base and fibre. The computations in subsection 16.3.3 show that the later
has dimension one less than the former. One can put together these facts to show:

Proposition 16.17. GrΣ2´freepg, nq is a smooth open manifold, embedded in Grpg0, nq. Furthermore,
GrΣ1pg, nq sits inside as a smooth hypersurface.

Proof. It is sufficient to describe, at each point W P GrΣ1pg, nq, a chart that is simultaneously a
submanifold chart of GrΣ2´freepg, nq inside of Grpg0, nq and a submanifold chart of GrΣ1pg, nq inside
GrΣ2´freepg, nq. We will just provide the latter.

Let W be presented as limsÑ˘8 graphpA0`sA1q, with A0, A1 P Symr`1
pB˚, F q and A1 principal. We

write L for a neighbourhood of A0 within the normal fibre to the principal cone at A0. Additionally,
we fix a pn`k´1q-dimensional family U of rank-1 maps whose projectivisations are a neighbourhood
of rA1s in the space of principal subspaces.

Then, the map
Φ : Lˆ U ˆ p´δ, δq Ñ Grpg, nq

pA,A1, sq Ñ A`
1

s
A1

is a smooth embedding with image a neighbourhood of W in GrΣ2´freepg, nq. Further, the map
Φ|UˆLˆt0u parametrises the hypersurface GrΣ1pg, nq. �

We remark that we do not know whether GrΣ0pg, nq is smooth in general. In the contact case it is
known that it is.

16.5.2. Homotopy type. We can put together Proposition 16.17 with the work we did in the previous
Subsection about the principal subvariety to show that:

Proposition 16.18. The Σ2-free Grassmannian GrΣ2´freepg, nq is homotopy equivalent to the prin-
cipal subvariety V.

Proof. We just provide a sketch of proof.

Let us fix a metric in g0 making the horizontal and vertical components orthogonal. This immediately
defines a distance function > between lines in g0, given as the sine squared of the angle they make.
We can readily extend this function to Grpg0, nq as follows:

>pA,A1q :“ max
LĂA,L1ĂA1

>pL,L1q.

We restrict > to GrΣ0pg, nq.

Note that the horizontal cell GrΣ0pg, nq is the set of points at distance strictly less that 1 from the
zero map. Similarly, GrΣ2´freepg, nq is the set at distance strictly less than 1 from V. We may then
define the distance function

d : GrΣ2´freepg, nq Ñ r0, 1q

dpAq :“ inf
BPV

>pA,Bq,

whose zero set is V.

The function d is smooth. It can be seen that its restriction to GrΣ1pg, nq is Morse-Bott and its critical
set is precisely V1. The situation in GrΣ0pg, nq is more delicate because d is not Morse-Bott: its zero
locus is the principal cone, which is singular, and the additional critical points (corresponding to the
cut locus of d) form a conical algebraic subvariety S.

We may then proceed as follows: we modify d by adding a perturbation hpAq “ |A|2ρ; here ρ :
GrΣ0pg, nq Ñ R is a bump function supported in the intersection of a neighbourhood of S and
the complement of a ball around zero. In particular, this perturbation is zero in the hypersurface
GrΣ1pg, nq. The effect of this is that minus the gradient flow of d ` h retracts everything to a
neighbourhood of V, which itself retracts onto V. �
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16.5.3. The Maslov hypersurface. In the Lagrangian Grassmannian, the complement of the regular
cell is usually called the Maslov cycle. As studied by V. Maslov and V. Arnol’d [33, 3], it is a two-sided
(i.e. cooriented) and non-separating hypersurface and, it defines a first homology class through the
intersection pairing. Let us study this phenomenon in general jet spaces. We will henceforth denote:

Definition 16.19. GrΣ1pg, nq Ă GrΣ2´freepg, nq is called the Maslov hypersurface.

The Maslov hypersurface is non-separating in general. Furthermore:

Proposition 16.20. The Maslov hypersurface is two-sided if and only if one of the following condi-
tions holds:

‚ dimpF q “ 1 and r is odd, or
‚ dimpBq “ dimpF q “ 1.

These are not mutually exclusive.

Proof. According to Proposition 16.18, it is sufficient that we prove that V1 is coorientable within V.

Then, we refer back to subsection 16.4.3, where it was explained that rV (the blow-up at the origin of
V) is the fibrewise compactification of the tautological bundle γbr`1

B˚ b γF over PpB˚q ˆ PpF q. Here
the zero section corresponds to the blow-up of the origin and the infinity section is precisely V1, but
their roles are symmetric.

Now we observe that γbr`1
B˚ b γF is isomorphic to the normal bundle of V1 in rV, and therefore

isomorphic to the normal bundle of V1 in V. Furthermore, this bundle is trivial if and only if the
terms γF and γbr`1

B˚ are individually trivial. This proves the claim. �

Furthermore:

Corollary 16.21. Let dimpF q “ 1 and r be odd. Then a choice of orientation for F determines a
coorientation for the Maslov hypersurface.

Proof. Indeed, as computed in the proof of Proposition 16.20, the normal bundle to GrΣ1pg, nq is
precisely γF , which is canonically identified with F . �

Similarly:

Corollary 16.22. Let dimpBq “ dimpF q “ 1 with r even. Then, a choice of orientation for B˚ ‘ F
determines a coorientation for the Maslov hypersurface.

Proof. The normal bundle to GrΣ1pg, nq is γB˚ b γF , which is identified with detpB˚ ‘ F q. �

In both cases, once we have oriented either F or B˚ ‘ F , we will call the resulting coorientation the
Maslov coorientation.

16.5.4. The Maslov class. Under the assumptions of Proposition 16.20, the Maslov hypersurface is
non-separating, cooriented, and closed as a subset. This is enough to have a well-defined cohomology
class using the intersection pairing:

Definition 16.23. Suppose one of the following conditions holds:

‚ dimpF q “ 1 and r is odd, or
‚ dimpBq “ dimpF q “ 1,

and that a Maslov coorientation has been fixed.

Then, the Maslov index or Maslov class is the non-zero, non-torsion element

Ind P H1pGrΣ2´freepg, nq,Zq
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defined by:
Indprγsq :“ |γ XGrΣ1pg, nq| P Z ,

where γ is a curve representative intersecting the Maslov hypersurface transversally. The count of
intersection points takes into account signs, comparing the orientation of γ with the Maslov coorien-
tation.

16.5.5. The local Maslov class. Even if the Maslov hypersurface is not two-sided, it still makes sense
to talk about a local Maslov coorientation: indeed, let W P GrΣ1pg, nq and consider a ball
U Ă GrΣ2´freepg, nq containingW . In U , the intersection UXGrΣ1pg, nq is two-sided, so a coorientation
can be chosen.

Given a local Maslov coorientation for U X GrΣ1pg, nq, we can reason as before to define a local
Maslov class for oriented curves

pr0, 1s, t0, 1uq Ñ pU, pBUqzpU XGrΣ1pg, nqqq

using the intersection pairing. It can only take the values t0, 1,´1u.

This will play a role in Subsection 7.2.
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