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Contact structures in dimension 3

A three-hour lecture on Contact Topology

In this lecture:

� We will become familiar with 3-dimensional contact structures. In particular,
we will prove a useful criterion to construct them (Proposition 1.5).

� We will look at curves tangent to contact structures, which are called Leg-
endrian knots (Definition 1.7). In particular, we will provide a constructive
method that produces many examples (Proposition 1.17).

� We will introduce a tool (Definition 1.18) to help us distinguish Legendrian
knots.

3-dimensional contact structures

Until fairly recently (with a few exceptions) Contact and Symplectic Topology had
mostly developed in dimensions 3/4. In these dimensions it is possible to have a good
geometrical intuition by simply drawing what is happening.

1.1.1 Examples (25 minutes)

Let us provide some explicit examples of globally defined contact structures on 3–
manifolds. They all can be shown to be contact by checking the condition α∧ dα 6= 0.
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In class activity (25 minutes): For each of the following examples (I will work
out the first one myself in the board):

� Check that the given plane field is a contact structure (by looking at the
condition α ∧ dα 6= 0).

� Draw the coefficients of the second vector field in the framing as a planar
curve.

Try to find a pattern: What do all these curves have in common? Hint: compare
their position and velocity.

Example 1.1. The structure

(R3, ξstd = ker(dy − zdx))

performs almost half a turn with respect to the line field 〈∂z〉. It is (globally) diffeo-
morphic to

(R3, ξstd′ = ker(cos(z)dx+ sin(z)dy)),

which turns infinitely many times with respect to the line field 〈∂z〉. It is also diffeo-
morphic to

(R3, ξstd′′ = ker(dz + ydx− xdy)),

which performs almost a π/2-turn with respect to the radial vector field x∂x + y∂y.
This structure can be rewritten in cylindrical coordinates (r, θ, z) as

ξstd′′ = ker(dz − r2dθ).

We simply say that all of them are the standard contact structure in R3. We invite
the reader to provide explicit contactomorphisms between all of them. �

Example 1.2. The structure

(R3, ξOT = ker(cos(r)dx+ sin(r)rdθ))

turns infinitely many times with respect to the line field 〈∂r〉. It is not diffeomorphic to
the standard contact structure, and it is called the contact structure overtwisted
at infinity. See Theorem [-] below and the subsequent discussion. �

Example 1.3. The structures

(T3, ξk = ker(cos(πkz)dx+ sin(πkz)dy)) k ∈ Z+,

turn k/2 times with respect to the line field 〈∂z〉. They are not diffeomorphic to one
another. The structures are coorientable if and only if k is even. �
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3 Contact structures in dimension 3

Example 1.4. Consider S3 ⊂ C2. It is defined as the level set f−1(1) of

f(x1, y1, x2, y2) = x21 + y21 + x22 + y22.

As such, its tangent space is the kernel of the 1-form

df = 2(x1dx1 + y1dy1 + x2dx2 + y2dy2).

The complex tangencies (i.e. the vectors v such that both v and iv are in TS3) are
simply the complex lines:

ξstd = TS3 ∩ i(TS3) = ker(df) ∩ ker(df ◦ i) = ker(λcan)

= ker(−x1dy1 + y1dx1 − x2dy2 + y2dx2) ⊂ TS3.

Which we already saw in the previous session. (S3, ξstd) is the compactification of
(R3, ξstd). We leave this to the reader. �

1.1.2 The contact condition amounts to turning (25 minutes)

The previous examples lead us thus to the following characterisation of the contact
condition:

Proposition 1.5. Fix coordinates (x, y, z) in S × [−1, 1], where S is a disc, a
2-torus, or a cylinder. Given a plane field of the form

ξ = ker(α), α = fdy + gdx,

where f, g : S × [−1, 1]→ R, we may look at the curves:

γx0,y0 : [−1, 1]→ S1

γx0,y0(z) =
(f(x0, y0, z), g(x0, y0, z))

|f, g|
.

Then:

� ξ is contact at the point (x0, y0, z0) if and only if γx0,y0 is an immersion at
time z0.

� ξ is involutive if and only if the curves γx0,y0 are constant.

Proof. Indeed, we check that

α ∧ dα = [f(∂zg)− g(∂zf)]dx ∧ dy ∧ dz.
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Figure 1.1: A family of curves (f, g) describing a plane field (but we only draw one of
them). The points in which (f, g) is colinear with its velocity (∂zf, ∂zg) correspond to
singular points of the normalised map (f, g)/|f, g|, as seen on the left hand side.

The condition f(∂zg)− g(∂zf) 6= 0 is equivalent to (f, g) and (∂zf, ∂zg) being linearly
independent vectors in R2. This is precisely the immersion condition for (f, g)/|f, g|;
see Figure 1.1.

This is usually phrased as follows: ξ is contact if and only if it turns with respect to
any line field tangent to it. This lemma will be extremely useful, because it will allow
us to construct contact structures by taking any plane field and “adding to it a bit of
turning”. Introducing turning can be done by working locally, thanks to the model
produced by the following lemma:

Lemma 1.6. Let (M, ξ) be a 3-manifold endowed with a plane field. Fix p ∈M . Then,
there are local coordinates (x, y, z) around p in which

ξ = ker(dy + g(x, y, z)dx),

where g is a locally defined function.

Proof. Pick a non-vanishing vector field Z tangent to ξ, locally around p. We may then
choose a locally defined surface S containing p and transverse to Z. By construction,
S is transverse to ξ. Either by hand or by invoking Frobenius’ theorem, we find local
coordinates (x, y) in S such that the line field ξ ∩ TS is spanned by ∂x. Consider now
the flow φt of Z. We give coordinates (x, y, z) to the point φz(x, y). See Figure 1.2.

4



5 Contact structures in dimension 3

Figure 1.2: Construction of the neighbourhood of p in which ξ is in normal form. Z is
a vector field transverse to ξ, S is a surface transverse to it and passing through p.

By construction ξ is tangent to ∂z in these local coordinates. Additionally, it is tangent
to ∂x at {z = 0}. These two conditions imply the local form claimed.

Legendrian knots I

1.2.1 Review of Smooth Knot Theory (15 minutes)

In 3-dimensional Smooth Topology, a knot is an embedding of S1 into a 3-manifold N .
This notion is fundamental due to its role in the definition of surgery (i.e. cutting N
along a knot and filling the hole in order to obtain a new manifold). One often focuses
on the case in which N is R3 or S3 (and this is what we henceforth do).

The simplest knot is the unknot. This is the embedding, unique up to isotopy, which
is the boundary of an embedded disc. Knot theory consists of determining whether
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Figure 1.3: An unknot (in blue) and its projection to the horizontal plane (in red).
We need to specify which is the over-pass at the point in which the projection has a
self-intersection; this is depicted next to the projection with an arrow.

two knots are isotopic to one another. Even the task of determining whether a given
knot is in fact the unknot is non-trivial.

The way in which one presents a knot is through a projection. That is, we pick a plane
in R3 and we project the knot to it orthogonally. Such a projection is, generically
(i.e. for most choices of plane), an immersed curve with self-intersections. These
intersections are an artifact of the projection, and to distinguish them we draw the
strands meeting at the intersection as an under-pass and as an over-pass. See Figure
1.3.

We are interested in classifying knots up to isotopy. As we isotope a knot, its projection
varies, but (generically) it does so in a controlled way: Only three events, called the
Reidemeister moves, may take place. They are depicted in Figure 1.4.

1.2.2 Legendrian Knots (5 minutes)

In a contact 3-manifold we can look at knots as well:

Definition 1.7. Let (N3, ξ) be a 3-dimensional contact manifold. A Legendrian
knot is an embedding S1 → N which is everywhere tangent to ξ.

A Legendrian knot is a Legendrian in the general sense.
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7 Contact structures in dimension 3

Figure 1.4: The three elementary events one might see as a knot is isotoped. They are
called the first, second, and third Reidemeister moves, respectively.
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In the contact setting we do not project to an arbitrary 2-plane. Instead, there are
two projections that are well-suited to manipulating Legendrians:

Definition 1.8. Consider (R3, ξstd = ker(dy − zdx)).

� The map πf : R3(x, y, z)→ R2(x, y) is called the front projection.

� The map πL : R3(x, y, z)→ R2(x, z) is called the Lagrangian projection.

1.2.3 Front projection (30 minutes)

One can completely recover (up to shift in the Lagrangian case) a Legendrian knot
from either of its projections. Let us work this out first in the front projection:

Lemma 1.9. Let γ : [0, 1] → R3 be a Legendrian curve. Suppose that πf ◦ γ(t) =
(x(t), y(t)) is immersed. Then the missing z–coordinate can be recovered using the
expression:

z(t) =
dy

dx
(t).

Proof. Since πf ◦γ(t) is immersed and dy− zdx evaluates to zero on γ, we deduce that
γ∗dx = x′(t)dt is nonzero. Then we can solve z(t) = dy/dx, as claimed.

Remark 1.10. A particular case is a curve of the form (t, y(t), z(t)). It must satisfy
y′(t) = z(t). �

Now, not all Legendrian curves γ in (R3, ξstd) project to an immersed curve πf ◦ γ:

Lemma 1.11. The curve γ : R→ R3 given by

γ(t) = (x(t) = t2/2, y(t) = t3/3, z(t) = t)

is embedded and Legendrian.

Proof. The front projection πf ◦ γ(t) = (x(t) = t2/2, y(t) = t3/3) has a singularity (i.e.
fails to be immersed) at t = 0, which we call the cusp. This is the simplest singularity
a planar curve may have.

The curve γ itself is embedded, since the map z(t) is a diffeomorphism of R. For the
Legendrian condition, it is sufficient to show that γ∗(dy − zdx) = t2dt− t2dt = 0.

One can prove that:

8



9 Contact structures in dimension 3

Proposition 1.12. Let γ be a Legendrian knot. After a (C∞) small perturbation, it
may be assumed that πf ◦ γ:

� Fails to be an immersion at a finite collection of points.

� At these points it is equivalent to the cusp or its mirror image.

Proof. This statement requires transversality theory, which is beyond the scope of this
course. The idea is roughly the following: πf ◦ γ fails to be an immersion if and only
if γ is tangent to the projection direction 〈∂z〉. When this happens, since γ itself is
immersed, we have that γ must be graphical over its z–coordinate. That is, up to
reparametrisation we may take γ(t) = (x(t), y(t), t).

Transversality tells us that one can perturb γ so that these tangencies are as simple as
possible. In this case, this means that they should be cuadratic so x(t) should agree
with ±t2 (up to reparametrisation in the domain and the target). The y coordinate
is uniquely determined from x and z (by integrating), yielding y(t) = 2t3

3
, i.e. the

cusp.

Apart from cusps, the planar curve πf ◦ γ may fail to be embedded:

Lemma 1.13. Let γ be a Legendrian knot. Two branches of πf ◦ γ meet at an inter-
section point with different slopes.

Proof. Suppose there are two distinct times t0 and t1 such that

πf ◦ γ(t0) = (x(t0), y(t0)) = (x(t1), y(t1)) = πf ◦ γ(t1).

Embeddedness of γ implies that z(t0) 6= z(t1). This can be rewritten as:

dy

dx
(t0) = z(t0) 6= z(t1) =

dy

dx
(t1)

i.e. the regions of πf ◦ γ for times close to t0 and for times close to t1 have different
slope, as claimed.

In particular: At a crossing we do not need to specify whether it is an underpass or an
overpass, because this is given by the slope. See Figure 1.5.

One can show (appealing again to transversality) that:

Proposition 1.14. Let γ be a Legendrian knot. After a (C∞) small perturbation, it
may be assumed that πf ◦ γ:

� Has only finitely many self-intersections.

� At each intersection point only two branches meet.
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Figure 1.5: On the left we depict two curves whose front projections intersect. The
slopes of the strands are constant and different, so their z–coordinates are different. In
particular, the self-intersection of the front does not correspond to a self-intersection
in 3-dimensional space.

In class activity (10 minutes): Given the left-hand side of Figure 1.6, draw the
right hand-side. Hints:

� Look first at the cusps, what do they correspond to on the (x, z)–coordinates?

� Look now at the maxima of the upper strand and the minima of the lower
one, what should they correspond to?

� Follow the slope of the upper and lower branches. When are they positive?
When are they negative?

Legendrian knots II

1.3.1 Lagrangian projection (20 minutes)

Let us work in the Lagrangian projection now:

10



11 Contact structures in dimension 3

Figure 1.6: The so-called Legendrian unknot (which is in particular a smooth unknot).
We draw it in both projections. In the front (left) it has two cusps. In the Lagrangian
projection (right) we see a self-intersection.

Proposition 1.15. Let γ : [0, 1]→ R3 be an immersed Legendrian curve. Then:

� Its Lagrangian projection πL◦γ(t) = (x(t), z(t)) is an immersed planar curve.

� The missing coordinate can be recovered by integrating:

y′(t) = z(t)x′(t), y(t) = y(0) +

∫ t

0

z(s)x′(s)ds.

Proof. The curve πL ◦ γ would fail to be immersed at time t if at only if γ is tangent
to ∂y, the direction of projection. Since γ is Legendrian and immersed, this can never
happen (because ∂y is not tangent to ξstd).

The second claim follows because γ∗(dy − zdx) = 0, due to the Legendrian condition.

In particular:

Corollary 1.16. Let γ : S1 → R3 be an embedded Legendrian curve. Then:

� Its Lagrangian projection πL ◦ γ bounds zero area.

� Let t0, t1 ∈ S1 be times at which πL◦γ(t0) = πL◦γ(t1). Then the curve πL◦γ|[t0,t1]
does not bound zero area.
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Figure 1.7: The Lagrangian projection of 3 Legendrians. In every region we specify its
area, the total sum of which must add to zero. The area of each region additionally
allows us to compute which are the over-passes.

Proof. See Figure 1.7.

For the first statement: Since γ is a closed curve, it bounds a (possibly not embedded)
disc D. Then we may apply Stokes to show that:

0 =

∫
γ

dy =

∫
γ

zdx =

∫
πL◦γ

zdx =

∫
πL(D)

dzdx,

where the first equality follows from the fact that γ is closed.

For the second statement we have that πL◦γ|[t0,t1] is a closed planar curve, so it bounds
a (possibly non-immersed) disc D. Then we have:

0 6= y(t1)− y(t0) =

∫
γ|[t0,t1]

dy =

∫
γ|[t0,t1]

zdx =

∫
D

dzdx,

where the first inequality is due to the embeddedness condition.

1.3.2 Construction of Legendrians (20 minutes)

The first meaningful question one might pose is: how rich is Legendrian Knot Theory?
For instance, can any smooth knot be represented by a Legendrian knot? The answer
is yes:

Proposition 1.17. Let γ be a smooth knot in R3. Then, it is smoothly isotopic to
a Legendrian knot γ̃ (which is not unique!).

Proof. This is a proof by picture. It can be done in either projection. See Figures 1.8
and 1.9.

12



13 Contact structures in dimension 3

Figure 1.8: We describe a non-Legendrian curve γ in 3-space by looking at its front
projection (in black) and specifying its missing z–coordinate by drawing a slope (in
red). We claim that we can approximate it by a Legendrian curve. Indeed, we draw
a curve (in blue) whose front projection is close to the black curve and whose slope is
very close to the red slopes. At the turning points it has cusps. Its unique lift is the
desired Legendrian γ̃ approximating γ.

Figure 1.9: We describe a non-Legendrian curve in 3-space by looking at its Lagrangian
projection (in black); we must keep track of the missing z–coordinate (which is a
number at each point of the curve, recorded in red). We draw a blue curve which
is very close to the black curve and that has many loops. The area of these loops
accounts exactly for the desired displacement in z. In this manner, its unique lift is
the Legendrian that we desired. The self-intersections that appear when we introduce
loops do not lift to actual self-intersection (because the loops bound positive area), so
the Legendrian constructed is embedded.
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1.3.3 Rotation number (10 minutes)

Legendrian Knot Theory studies the question: when are two given Legendrian knots
homotopic to one another (as Legendrian knots)? It is a necessary condition that they
are smoothly isotopic, but this is not sufficient. The first additional invariant we can
define is:

Definition 1.18. Let γ : S1 → (R3, ξstd = ker(dy − zdx)) be an immersed Legen-
drian. Its Lagrangian projection πL ◦ γ is a closed and immersed planar curve in
R2(x, z). As such, we may look at the Gauss map:

ρ(γ) : S1 → S1 ⊂ R2(x, z)

ρ(γ)(t) =
(πL ◦ γ)′(t)

|(πL ◦ γ)′(t)|
.

Then, the rotation number of γ is the degree of ρ(γ), which is an integer.

Remark 1.19. Looking at this definition, you should convince yourself that it depends
on the orientation we put in R2(x, z),. Here we are assuming that it is the standard
one given by the basis {∂x, ∂z}.
Lemma 1.20. The rotation number is invariant under homotopies of immersed Leg-
endrians.

Proof. Let (γs)s∈[0,1] be a family of immersed Legendrians. The corresponding projec-
tions (πL ◦ γs)s∈[0,1] are also immersed. As such, we obtain a homotopy of maps:

ρ(γs)(t) =
(πL ◦ γs)′(t)
|(πL ◦ γs)′(t)|

We conclude by recalling that the degree is a homotopy invariant of maps S1 → S1.

We will use this Lemma in the exercises to distinguish Legendrian knots that are
smoothly isotopic.

Remark 1.21. To a Legendrian knot one can assign another invariant called the Thurston-
Bennequin number, which measures the twisting of ξstd with respect to the knot. We
will not look into this any further; I invite you to read the book by Geiges. �

Exercises
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15 Contact structures in dimension 3

Make sure you are comfortable with the definitions and statements marked as
important (in blue) in the notes. Then, take a look at the first exercise of each
block below (we will spend the first hour of Session 16 discussing them).

1.4.1 Contact forms, Reeb fields

Exercise 1.1. Prove that the following 1-forms are contact forms in R3 (in either
standard coordinates (x, y, z) or polar coordinates (r, θ, z)). Compute their Reeb
vector fields. Describe their closed Reeb orbits (i.e. the orbits of the Reeb vector
field which are periodic), computing their periods.

� α1 = dy − zdx,

� α2 = cos(z)dx+ sin(z)dy,

� α3 = dz − ydx+ xdy,

� α4 = cos(r)dx+ sin(r)rdθ.

Exercise 1.2. Prove that the following plane fields are contact structures:

(T3 = (R/Z)3, ξk = ker(cos(πkz)dx+ sin(πkz)dy)) k ∈ Z+.

Compute the Reeb vector field of the given contact forms. Describe their closed
Reeb orbits (with their periods).

Proof. First observe that, for k odd, the forms given are in fact not well-defined at
z = 0, 1. This tells us that the corresponding plane fields are not coorientable (this
showed up in the last exercise of the previous sheet already). This is not a problem
when we check the contact condition, which is just a local computation. We write:

αk = cos(πkz)dx+ sin(πkz)dy, dαk = πk(− sin(πkz)dzdx+ cos(πkz)dzdy)

αk ∧ dαk = −πkdx ∧ dy ∧ dz

which is a volume form, so ξk is contact.

We now compute the Reeb field. Important remark: for k odd, the Reeb field is
not well-defined! If a contact structure is not coorientable, it does not make sense to
talk about its Reeb field, because the Reeb field is defined in terms of a contact form.
Now, for k even, the kernel of dαk is spanned by

Rk = cos(πkz)∂x + sin(πkz)∂y

15
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which satisfies αk(Rk) = 1, so it is the Reeb vector field.

A torus {z = z0} is foliated by closed orbits of Rk if and only if cos(πkz0) and sin(πkz0)
are linearly dependent over the rationals, i.e. either cos(πkz0) = 0 or tan(πkz0) is a
rational number. Otherwise the torus is foliated by orbits which are copies of R. If
cos(πkz0) = 0 or sin(πkz0) = 0 the period of the orbits is 1. Otherwise, if tan(πkz0) =
p/q, with p, q coprime integers, the corresponding orbits close up for the first time
when you move q in the direction of x and p in the direction of y. Since the speed in
x is cos(πkz0), this tells us that the period is q/ cos(πkz0) = p/ sin(πkz0).

1.4.2 Classification of contact structures

Exercise 1.3. Show that any two plane fields in R3 are homotopic to one another.
Show that the space of plane fields in S3 has Z components.

Proof. The cotangent bundle of R3 is trivial T ∗R3 ∼= R3 × R3. In particular, its
projectivisation is trivial too PT ∗R3 ∼= R3 × RP2. Giving a plane field in R3 amounts
to giving a section s : R3 → PT ∗R3 (indeed, such an s has a well-defined kernel at each
point, which is the corresponding plane field). Thus, plane fields in R3 up to homotopy
are the same as sections of PT ∗R3 up to homotopy, i.e. the same as maps R3 → RP2

up to homotopy. Since R3 is contractible, all of them are homotopic to one another.
This also shows that the space of plane fields in R3 is contractible.

Any closed 3-manifold is parallelisable (this is a non-trivial theorem!) As such, PT ∗S3 ∼=
S3 × RP2. Plane fields in the 3-sphere are thus described by maps S3 → RP2. The
possible homotopy classes are then given by π3(RP2) = π3(S2) = Z, where we use that
the universal cover of RP2 is S2.

Exercise 1.4. Consider (R3, ξstd = ker(dy − zdx)). Show any arbitrarily big (but
compact) domain of R3 can be mapped to an arbitrarily small one by a contacto-
morphism of ξstd.

Proof. Consider the family of maps fλ(x, y, z) = (λx, λ2y, λz). Since

f ∗λ(dy − zdx) = λ2(dy − zdx)

we conclude that they are contactomorphisms for every λ 6= 0. By taking λ sufficiently
small, we may map any arbitrarily big compact set in R3 to a small one.

The previous exercise can be used to prove the following statement:

Proposition 1.22. (R3, ξstd = ker(dy − zdx)) is contactomorphic to an arbitrarily
small ball (also endowed with ξstd).

16



17 Contact structures in dimension 3

Proof. The rough idea is that one can construct a contactomorphism D3 → R3 as the
limit of a family of embeddings D3 → R3 that preserve the contact structure and whose
images are progressively bigger. Formalising this statement requires the use of contact
Hamiltonians, which we did not cover in the course.

Exercise 1.5. Let ξ0 and ξ1 be contact structures in R3. Show that they are
homotopic (as contact structures) to one another if and only if they induce the
same orientation. Hint: use Darboux and think about the space of embeddings
R3 → R3.

Proof. Suppose that ξ0 induces the standard orientation. It is sufficient to show that
it is homotopic to ξstd = ker(dy + zdx), which also induces the standard orientation.
Use Darboux’ theorem to find a open ball U0 with coordinates (x′, y′, z′) in which
ξ0 = ker(dy′+z′dx′). We can assume that U0 is the image on an orientation preserving
embedding ψ0 : R3 → R3 which is additionally a contactomorphism (by using the
Proposition preceding this exercise).

We claim that the space of embeddings R3 → R3 preserving the orientation is con-
nected. The intuitive idea is that one can precompose any embedding f with a homo-
topy of embeddings (ρr)r∈(0,∞] : R3 → R3 such that ρr(R3) = D3

r. As ε goes to zero,
the map f ◦ ρε sees progressively less and less of f and remembers only the differential
of f at the origin. This effectively provides a retraction of the space of embeddings
onto GL(R3), which has two components, corresponding to the two orientations.

Assuming this, find a path ψt between ψ0 and the identity ψ1 = IdR3 . Thus, the family
(ψt)

∗ξ0 is a homotopy between (ψ0)
∗ξ0 = ξstd and (ψ1)

∗ξ0 = ξ0.

1.4.3 Legendrians and their front projection

Exercise 1.6. Check that any legendrian [0, 1]→ (R3, ker(dy−zdx)) which is graph-
ical over the x–coordinate can be reparametrised to be of the form (x, y(x), y′(x)),
with y a function of x.

Exercise 1.7. As shown in the previous exercise, (R3, αcan = dy− zdx) is the space
of 1-jets of functions from R to R. I.e, we think of y as a function of x and z as
its derivative.

Consider the maps:

� f1(t) = (x(t) = t2, y(t) = t3).

� f2(t) = (x(t) = tl, y(t) = tk), with k > l positive integers.
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Lift them to Legendrians in R3 (i.e. find expressions z(t) such that (x(t), y(t), z(t))
is a parametrised curve tangent to ker(αcan)). Which of the resulting Legendrians
are immersed?

Proof. We need the expression y′(t)− z(t)x′(t) to hold. For f2 this means that:

ktk−1 − lz(t)tl−1 = 0, z(t) =
k

l
tk−l.

As soon as k ≥ l, this is a well-defined expression. Now, the tangent vector to f2 is:

f ′2(t) = (x′(t), y′(t), z′(t)) = (ltl−1, ktk−1,
k(k − l)

l
tk−l−1)

which vanishes at t = 0 if and only if l > 1 and k > l + 1. Otherwise f2 is immersed
(for instance, if k = l + 1, as is the case for f1).

Exercise 1.8. This is a follow-up of the previous exercise. Lift the following maps
to Legendrians in R3:

� fε(t) = (x(t) =
∫ t
0
(s2 − ε)ds, y(t) =

∫ t
0
s(s2 − ε)ds), where ε ∈ R is a

parameter.

� gε(t) = (x(t) =
∫ t
0
(s2 − ε)ds, y(t) =

∫ t
0
(s2 − ε)2ds), where ε ∈ R is a param-

eter.

For which values of the parameter are the resulting Legendrians embedded? Draw
their front and Lagrangian projections schematically as ε varies.

The first family is called the first Reidemeister move. The second one is called
the stabilisation.

Proof. We compute as before. For fε the expression t(t2 − ε) + z(t)(t2 − ε) implies
that z(t) = t. In particular, the curves are immersed for all times. Since z(t) is
strictly increasing, it follows that they are embedded too. This implies that the family
constructed is a homotopy of embedded legendrians.

For gε we solve (t2 − ε)2 + z(t)(t2 − ε), yielding z(t) = t2 − ε. In particular, the
curve g0 = (t3/3, t5/5, t2) has a singular point at t = 0. All other curves are immersed
because the only critical point of z(t) takes place at t = 0, which is not critical for x(t),
whose critical points are at t = ±

√
ε. Additionally, they are embedded: this follows

because y(t) is strictly increasing outside of the origin but z(t) is decreasing for t < 0
and increasing for t > 0. Thus, the family gε is not a homotopy of immersed/embedded
legendrians, because a singularity appears at ε = 0.

Use Wolfram Alpha (or something else) to plot these! In each of the projections,
determine which is the over-crossing.
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19 Contact structures in dimension 3

Figure 1.10: The three Legendrian Reidemeister moves in the front projection. The
over-crossings represent strands with greater slope and therefore greater z-value.

Figure 1.11: Two pieces of Legendrian knot, shown in the front projection.

Exercise 1.9. Using the three Reidemeister moves (Figure 1.10) show that there is
a homotopy of Legendrian embeddings connecting the following two local config-
urations shown in Figure 1.11.

Proof. See Figure 1.12.

1.4.4 The rotation number

Exercise 1.10. Let γ : S1 → (R3, ker(dy − zdx)) be a Legendrian knot. Show that
the rotation number of γ(−t) is minus the rotation number of γ(t).
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Figure 1.12: The embedded Legendrian homotopy between the two configurations,
expressed in terms of Reidemeister moves. The blue areas correspond to Reidemeister
I moves.
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21 Contact structures in dimension 3

Exercise 1.11. For each integer k ∈ Z, find a Legendrian knot in (R3, ker(dy−zdx))
with k as its rotation number. To describe the knots, draw schematically their
front and Lagrangian projections, stating what convention you use to draw the
crossings. It is sufficient that you provide the picture for k = 0, 1, 2 and you
briefly explain how the general case goes. Remark: you should explain why the
two projections you draw indeed correspond to the same knot and you should
explain how the rotation is computed from them.

Proof. See Figure 1.13. The main idea is to simply draw curves γk in the (x, z)-plane
(the Lagrangian projection) bounding zero area and such that γ′k has degree k. Any
such curve will lift to a closed Legendrian, thanks to the formula

y(t) = y(0) +

∫ t

0

zdx,

to fix this lift we pick y(0) arbitrarily. According to the previous exercise, it is enough
to construct γk for k ≥ 0.

Now, on the left hand side is the unknot, as seen in class. Its Lagrangian projection
is a figure eight, which bounds zero area and has rotation zero. The idea now is to
add to this Lagrangian projection additional loops: Adding a turn either clockwise or
counterclockwise substracts or adds 1 to the rotation number, respectively. This is
depicted in pictures two and three. One can make the curve γk describe one big lobe
in clockwise direction and k+ 1 lobes in counterclockwise direction (the cases depicted
are k = 1, 2). It is important to make sure that the k + 1 lobes bound together the
same (unsigned) area as the big lobe, in order to yield a closed curve (this is badly
depicted in the picture!).

In order to produce the front projection, we look at the points in which the Lagrangian
projection is tangent to the z-direction. These points (marked in the figure) correspond
to the cusps of the front. Each strand in-between these points is graphical over the
x direction, so we can draw it by recalling that z recovers the slope in the front. In
particular: each time we transverse one of the right-most z-tangencies, we are increas-
ing in z, so the corresponding cusp in the front is transversed downwards (because the
slope is increasing). Similarly, every time we cross one of the tangencies in-between the
small lobes, we are decreasing in slope; thus, the corresponding cusp is also transversed
downwards. This tells us that we keep making zig-zags in the front projection.

Exercise 1.12. Given γ : S1 → R3 Legendrian immersion and a trivialisation of
ξstd = ker(dy − zdx), there is a map:

ρ(γ) : S1 → S1
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Figure 1.13: Three unknots. The Lagrangian projection on top and the front projection
at the bottom. Some of the points are coloured to identify them between the two
projections. All the pictures are supposed to be symmetric with respect to the x-axis
(the horizontal one in both cases). The over-crossings correspond to greater z and thus
to greater slope.

22



23 Contact structures in dimension 3

ρ(γ)(t) =
γ′(t)

|γ′(t)|
∈ ξγ(t) ∼= R2

where the identification ξγ(t) ∼= R2 depends on the choice of trivialisation. Show
that the absolute value of the degree of ρ(γ) is independent of the trivialisation.
How is this related to the rotation number of γ?

Proof. Trivialisations of the plane field ξstd correspond to framings {X, Y } of ξstd (in-
deed, we map X to ∂x in R2 and Y to ∂y). Such a trivialisation ξstd ∼= R3 × R2 in
particular provides an orientation of ξstd by taking the standard orientation in R2 on
each fibre.

Now, since R3 is contractible, the space of sections of ξstd is contractible. As such,
any two choices of framing {X0, Y0} and {X1, Y1} inducing the same orientation are
homotopic to one another by a family {Xs, Ys}s∈[0,1]. For each s, the corresponding map
ρs(γ) is a planar curve (defined as in the statement, where we indicate the dependence
with respect to the trivialisation using the subscript s). The degree of a planar curve
is constant in its homotopy class, i.e. since s → deg(ρs(γ)) is continuous and takes
values in the integers, it is constant. When we consider {Y,X} instead of {X, Y }, the
degree changes signs.

The rotation number is defined as the degree computed in the standard trivialisation
X = ∂x + z∂y and Y = ∂z.

What you should take from this exercise is that the rotation number can be defined
on any contact 3-manifold (M, ξ), in an analogous manner, once we fix a trivialisation
of ξ (which is not always possible, because ξ might not be trivial as a bundle).
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