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Chapter 1

Linear symplectic geometry

1.1 Symplectic vector spaces and symplectic linear

maps

Let V be a finite-dimensional, real vector space and ω : V × V → R a skew-symmetric
bilinear form, that is, ω(v, w) = −ω(w, v) for all v, w ∈ V .

Definition 1.1. The pair (V, ω) is called a symplectic vector space if ω is non-degenerate,
that is:

ker(ω) = {v ∈ V : ω(v, w) = 0 for all w ∈ V }
is trivial. In other words, ω induces an isomorphism ιω : V → V ∗, ιω(v)(·) = ω(v, ·).

Example 1.2. Let V = R2n and v, w ∈ R. Then

ω0(v, w) =
n∑
i=1

v2i−1w2i − v2iw2i−1

defines the standard symplectic structure on R2n.

Example 1.3. Let V be a finite-dimensional, real vector space, and V ∗ its dual space. Then
the canonical linear symplectic form on V × V ∗ is given by

ωV ((v, α), (v′, α′)) = α′(v)− α(v′).

Homework 1.4. Prove that in the example above the form ω is indeed skew-symmetric and
non-degenerate.

Definition 1.5. Let (V, ω) and (V ′, ω′) be symplectic vector spaces. A linear map Ψ : V →
V ′ is called a linear symplectic map if Ψ∗ω′ = ω, i.e.,

Ψ∗ω′(v, w) = ω′(Ψ(v),Ψ(w)) = ω(v, w) for all v, w ∈ V.

If Ψ is an isomorphism, we call it a linear symplectic isomorphism or linear symplecto-
morphism.
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2 CHAPTER 1. LINEAR SYMPLECTIC GEOMETRY

Example 1.6. Rotation around the origin of R2 by an angle θ is a linear symplectomorphism.

Homework 1.7. 1. Every linear symplectic map between symplectic vector spaces of the
same dimension is a linear symplectomorphism.

2. The linear symplectomorphisms of a symplectic vector space (V, ω) form a subgroup
of GL(V ), denoted by Sp(V, ω).

One of the most important results of this section on linear symplectic structures is to prove
that symplectic vector spaces are classified by their dimension, i.e., any two symplectic
vector spaces of the same dimension are linearly symplectomorphic. In order to prove this,
though, we will first need to learn a few things about subspaces of linear symplectic spaces.

Subspaces of a symplectic vector space

Definition 1.8. Let (V, ω) be a symplectic vector space and W ⊂ V a linear subspace. The
space

W ω = {v ∈ V : ω(v, w) = 0 for all w ∈ W}

is called the symplectic complement (or ω-complement) of W .

Notice that W and W ω are not necessarily transverse, as is the case for a subspace and its
orthogonal complement in a linear space with an inner product.

Lemma 1.9. Let (V, ω) be a symplectic vector space. For any linear subspace W ⊂ V we
have that

dimW + dimW ω = dimV.

Proof. Non-degeneracy of ω implies that ιω : V → V ∗ is an isomorphism. The symplectic
complement W ω is the pre-image of W under ιω of W 0 = {ϕ ∈ V ∗ : ϕ(w) = 0 for all w ∈
W}, the annihilator of W . The claim follows from the identity dimW + dimW 0 = dimV .

Corollary 1.10. If W is a linear subspace of the symplectic vector space (V, ω), then

(W ω)ω = W.

Definition 1.11. Let W be a linear subspace of a symplectic vector space. We call W :

(i) symplectic if W ∩W ω = {0};

(ii) isotropic if W ⊂ W ω;

(iii) coisotropic if W ω ⊂ W ;

(iv) Lagrangian if W = W ω.

Remark 1.12. 1. The linear subspace W is symplectic if and only if the restriction of ω
to W is non-degenerate.
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2. A linear subspace W is symplectic if and only of its symplectic complement W ω is
also a symplectic subspace.

3. A linear subspace W is isotropic if and only if its symplectic complement W ω is
coisotropic. For instance, every 1-dimensional subspace is isotropic and every codi-
mension 1 subspace is coisotropic.

Symplectic bases

Theorem 1.13. Two symplectic vector space are isomorphic if and only if they have the
same dimension.

Proof. We are going to prove that an arbitrary 2n-dimensional symplectic vector space
(V, ω) is isomorphic to R2n with the standard symplectic structure. We first need to find
a symplectic basis for V , that is, a basis {v1, w1, . . . , vn, wn} such that

ω(vi, wj) = δij and ω(vi, vj) = 0 = ω(wi, wj).

This can be achieved by induction over n. For n = 1, pick two vectors v, w such that

ω(v, w) 6= 0, then define v1 := v and w1 :=
w

ω(v, w)
. Next, we assume every 2(n − 1)-

dimensional symplectic vector space admits a symplectic basis and try to prove that this
is also true for 2n-dimensional vector spaces. Define v1 and w1 as above, then their linear
span W is a symplectic subspace of V of dimension 2. Its symplectic complement W ω is
therefore also a symplectic subspace of dimension 2(n − 1). By inductive hypothesis it
admits a symplectic basis {v2, w2, . . . , vn, wn}. The collection {v1, w1, v2, w2, . . . , vn, wn} is
a symplectic basis of V . Define

Φ : R2n → V, Φ(q1, p1, . . . , qn, pn) :=
n∑
i=1

(qivi + piwi).

Then Φ is a linear symplectomorphism.

Homework 1.14. Prove that Φ defined above is indeed symplectic.

Corollary 1.15. Let V be a 2n-dimensional vector space. Then a skew-symmetric bilinear
form on V is non-degenerate if and only if ωn = ω ∧ . . . ∧ ω does not vanish.

Proof. If ω is degenerate, then there exists v 6= 0 such that ω(v, w) = 0 for all w ∈ V .
Extend v to a basis {v1 = v, v2, . . . , v2n} of V , then ωn(v1, . . . , v2n) = 0. If ω is non-
degenerate, then there exists a linear symplectomorphism Φ : R2n → V such that Φ∗ω = ω0

and hence also Φ∗(ωn) = ωn0 and the latter does not vanish.

Homework 1.16. Prove that if Φ is an automorphism of the symplectic vector space (V, ω),
then det Φ = 1.
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Lagrangian subspaces

Lemma 1.17. If W is a maximal isotropic subspace of the symplectic vector space (V, ω),
i.e., it is isotropic and not contained in any isotropic subspace of strictly larger dimension,
then W is Lagrangian.

Proof. Suppose W 6= W ω, then we can choose v ∈ W ω−W and produce a larger isotropic
subspace, namely W ′ = W + Rv.

Homework 1.18. Prove that every symplectic vector space admits a Lagrangian subspace.
In particular, deduce that every symplectic vector space necessarily has even dimension.

Homework 1.19. Let (V, ω) be a symplectic vector space, Ψ : V → V a linear map. Prove
that Ψ is a linear symplectomorphism if and only if

ΓΨ = {(v,Ψ(v)) : v ∈ V }

is a Lagrangian subspace of (V × V, (−ω)⊕ ω), where

(−ω)⊕ ω((v, w), (v′, w′)) = −ω(v, v′) + ω(w,w′).

Recall that, given a vector space (V, ω), the space V × V ∗ carries a canonical symplectic
structure defined by

ωV ((v, α), (v′, α′)) = α′(v)− α(v′).

Homework 1.20. The subspaces V ×0V ∗ and 0V ×V ∗ are Lagrangian subspaces of V ×V ∗.
In fact, every symplectic vector space can be written in the form above. This result can
be regarded as the linear version of Weinstein’s Lagrangian neighborhood theorem.

Lemma 1.21. Given a symplectic vector space (V, ω) and a Lagrangian subspace W ⊂ V ,
we can find a linear symplectomorphism

Φ : (V, ω)→ (W ×W ∗, ωW )

such that Φ(W ) = W × {0}.

Proof. We first choose U , a vector space complement to W (not necessarily Lagrangian).
From U we can build, in a canonical way, a Lagrangian complement to W . Since ω is
non-degenerate and W is Lagrangian, the map ιω induces an isomorphism ι′ω : U → W ∗.
Claim: the space W ′ = {u+ Au : u ∈ U}, where A is defined by

−1

2
ι′ω(u) = ι′ω(A(u)) for all u ∈ U,

is a Lagrangian complement of W .
Once we have a Lagrangian complement of W , we can define

Φ : V = W ⊕W ′ → W ×W ∗, Φ(w + w′) = w + ω(·, w′).

Obviously, Φ(W ) = W × {0} and one can easily verify that Φ∗ωW = ω.
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Homework 1.22. 1. Prove that W ′ defined in the above proof is indeed Lagrangian.

2. Check that Φ∗ωW = ω.

Remark 1.23. In the section on compatible complex structures we will see another way to
construct a Lagrangian complement of a given Lagrangian subspace.

1.2 Compatible complex structures

Definition. A complex structure on a vector space V is an automorphism J of V such
that J2 = −Id. A complex structure on a symplectic vector space (V, ω) is called ω-
compatible if g(v, w) = ω(v, Jw) is a positive definite symmetric bilinear form on V , i.e.,
an inner product. The space of compatible complex structure is denoted by J (V, ω). We
call (ω, J, g) a compatible triple on V .

Example 1.24. Let J0 : R2n → R2n be defined by

J0(v1, v2, . . . , v2n−1, v2n) = (−v2, v1, . . . ,−v2n, v2n−1).

Then J0 is a complex structure and it is compatible with the standard symplectic form ω0.

Homework 1.25. Prove that g(v, w) = ω0(v, J0w) is the standard Euclidean inner product
on R2n. Hence, in particular, J0 is a compatible complex structure on (R2n, ω0).

Remark 1.26. 1. Every compatible complex structure on the symplectic vector space
(V, ω) is a symplectomorphism:

(J∗ω)(v, w) = ω(Jv, Jw) = g(Jv, w) = g(w, Jv) = −ω(w, v) = ω(v, w).

2. (R2n, J0) can be identified with (Cn, i).

3. If J is a compatible complex structure on the symplectic vector space (V, ω) and L
is a Lagrangian subspace of V , then JL is a Lagrangian complement of L, that is,
JL is Lagrangian and V = L ⊕ JL. In fact, JL is the orthogonal complement of L
with respect to the inner product g(v, w) = ω(v, Jw).

Homework 1.27. Prove that J is ω-compatible if and only if ω is J-invariant and ω(v, Jv) >
0 for all non-zero v ∈ V .

A compatible complex structure on (V, ω) makes it into a complex inner product space,
with Hermitian metric defined by

h(v, w) = g(v, w) + iω(v, w).

Homework 1.28. Check that h defines a Hermitian structure on V , i.e., h(v, w) = h(w, v),
h(v, v) > 0 for v 6= 0, h is complex linear in the second variable (h(v, Jw) = ih(v, w)) and
complex anti-linear in the first variable (h(Jv, w) = −ih(v, w)).
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Lemma 1.29. Let (ω, J, g) be a compatible triple on the vector space V . Then there exists
an isomorphism Φ : R2n → V such that Φ∗ω = ω0, Φ∗J = J0 and hence also Φ∗g = g0.

Proof. The metric h(v, w) = g(v, w) + iω(v, w) is Hermitian. By the Gram-Schmidt or-
thonormalization process there exists a basis {v1, . . . , vn} of V that is unitary with respect
to h. Define

Φ : Rn → V, Φ(q1, p1, . . . , qn, pn) =
n∑
k=1

(qkvk + pkJ(vk)).

Then the claim follows because h(vk, vl) = δkl and h(vk, J(vl)) = ih(vk, vl).

Corollary 1.30. Let (ω, J, g) be a compatible triple on V . If (ω′, J ′, g′) is another compat-
ible triple, then there exists an automorphism Ψ : V → V which is symplectic and satisfies
Ψ∗J ′ = J (and hence also Ψ∗g′ = g).

The next theorem gives a method for constructing compatible complex structures out of
positive definite inner products. For a vector space V denote by Met(V ) the space of inner
products on V (Riemannian metrics).

Theorem 1.31. Let (V, ω) be a symplectic vector space. There is a canonical continuous
surjective map

r : Met(V )→ J (V, ω)

such that r(ω(·, J ·)) = J .

Proof. Let g be a positive definite inner product on V and let A ∈ GL(V ) be defined by
ω(v, w) = g(Av,w). Then A is skew-adjoint with respect to g, i.e., writing A∗ for the
adjoint we have that A∗ = −A:

g(A∗v, w) = g(v, Aw) = g(Aw, v) = ω(w, v) = −ω(v, w) = g(−Av,w).

Hence P = A∗A = −A2 is symmetric and positive definite. This implies that there exists Q
(symmetric and positive definite, such that Q2 = P . in fact, if we represent P by a positive
definite symmetric matrix, then it can be diagonalized as P = BDiag(λ1, . . . , λ2n)B−1,
with positive eigenvalues λi, and we may define Q := BDiag(

√
λ1, . . . ,

√
λ2n)B−1 Define

r(g) = Jg = Q−1A. Then Jg is a complex structure (J2
g = −Id) and it is compatible with

ω. The continuity of r is proved in [MS98, Ex. 2.52].

In particular, this shows that any pair of structures (symplectic, complex, metric) deter-
mines a compatible triple.

Homework 1.32. 1. Prove that Jg in the proof above is a compatible complex structure
on (V, ω) for any choice of metric g.

2. Prove that r(ω(·, J ·)) = J for all J ∈ J (V, ω).

Corollary 1.33. The space J (V, ω) is contractible.
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Proof. The space Met(V ) is contractible since it is a convex subset of a vector space. Given
J0 and J1 in J (V, ω), let gi = ω(·, Ji·), for i = 0, 1, and gt = (1−t)g0 +tg1. For all t ∈ [0, 1],
gt is a metric and gives (by polar decomposition) an ω-compatible J̃t, with J̃0 = J0 and
J̃1 = J1.

1.3 The group of linear symplectomorphisms

Recall: we denote by Sp(V, ω) the group of symplectomorphisms of the symplectic vector
space (V, ω). Since any two symplectic vector spaces are isomorphic, the general linear
group GL(V ) acts transitively on the open subset of ∧2V ∗ consisting of non-degenerate
skew-symmetric bilinear forms. The stabilizer of ω is exactly Sp(V, ω). Hence we can
compute

dim Sp(V, ω) = dimGL(V )− dim∧2E∗ = (2n)2 − 2n(2n− 1)

2
= 2n2 + 2.

Example 1.34. Let W be a Lagrangian subspace of (V, ω) and identify V with W ⊕W ∗.
Given A ∈ GL(W ), let A∗ ∈ GL(W ∗) be the dual map. Then A ⊕ (A−1)∗ is a symplec-
tomorphism. In other words, there is an embedding GL(W ) → Sp(V ). This shows in
particular that Sp(V, ω) is not compact.

Example 1.35. Another natural subgroup of Sp(V, ω) is the group U(V ) of automorphisms
preserving the Hermitian structure for a given compatible complex structure J ∈ J (V, ω).

Let us now fix a compatible complex structure J ∈ J (V, ω) and let g be the corresponding
inner product. Let (·)∗ denote the transpose of an endomorphism with respect to g.

Lemma 1.36. An automorphism A ∈ GL(V ) is symplectic if and only if A∗JA = J .

Proof. An automorphism A is an element of Sp(V, ω) if and only if ω(Av,Aw) = ω(v, w)
for all v, w ∈ V . Equivalently, A ∈ Sp(V, ω) if and only if g(JAv,Aw) = g(Jv, w) for all
v, w ∈ V , i.e., A∗JA = J .

We are now going to reorder the coordinates on R2n in the following way: (q1, . . . , qn, p1, . . . , pn).
This means that we get the following expression for the canonical symplectic form:

ω0(v, w) =
n∑
i=1

(viwn+i − vn+iwi),

while the compatible complex structure J0 is now defined by

J0(v1, . . . , v2n) = (−vn+1, . . . ,−v2n, v1, . . . , vn).

We can now easily define the embedding

Φ : GL(n,C)→ GL(2n,R), Φ(A+ iB) =

[
A −B
B A

]
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which allows us to consider GL(n,C) as a subgroup of R2n. Notice that as such it consist
of those matrices that commute with J0.
Then if we denote by Sp(2n) the group of symplectic 2n × 2n matrices, i.e., the group of
symplectic automorphisms of (R2n, ω0), we have the following ”trefoil” identities:

Sp(2n) ∩GL(n,C) = GL(n,C) ∩O(2n) = O(2n) ∩ Sp(2n) = U(n).

Here O(2n) = {A ∈ GL(2n,R) : Q∗Q = QQ∗ = Id} denotes the group of orthogonal
2n×2n matrices and should be thought of as the group of transformations of R2n preserving
the standard Euclidean metric structure, while U(n) = {A ∈ GL(n,C : U∗ = U−1}
denotes the group of unitary n × n matrices. Please notice that in the last definition,
U∗ denotes the conjugate transpose and so we can also define unitary n × n matrices as
{X + iY : X∗X + Y ∗Y = Id and X∗Y − Y ∗X = 0}.
Homework 1.37. Prove the trefoil identities.

1.4 Linear symplectic reduction

In this section we show that the quotient of a given co-isotropic subspace by its symplectic
complement inherits a natural symplectic structure.
Suppose W is a co-isotropic subspace of the symplectic vector space (V, ω). The kernel of
the restriction of ω to W is, by definition, W ∩W ω, which in the co-isotropic space is equal
to W ω. Denote by W the quotient W/W ω and by π be the quotient map π : W → W .
Then we can define

ω(π(v), π(w)) = ω(v, w) for all v, w ∈ W.

Homework 1.38. 1. Prove that the dimension of W is twice the codimension of W .

2. Prove that ω is a well-defined symplectic structure on W .

The pair (W,ω) is called the reduced space or symplectic quotient.
An interesting fact about symplectic quotients is that Lagrangian subspaces are preserved
by reduction.

Lemma 1.39. Suppose W ⊂ V is co-isotropic and L is a Lagrangian subspace of V .Then
the image of L ∩W under the reduction map π : W → W is a Lagrangian subspace of W .

Proof. Since L is Lagrangian and W co-isotropic, the intersection L∩W is isotropic and so
is π(L∩W ). The result follows form a dimension count. We have namely: dim(π(L∩W )) =
dim(L∩W )−dim(L∩W ω) = dimW −dimL, and that is exactly one half of the dimension
of W .

Homework 1.40. Fill in the details of the above proof.



Chapter 2

Normal form theorems

2.1 Moser trick and Darboux theorem

We will first recall some facts about time dependent vector fields. A time dependent vector

field is a family Xt of vector fields, t ∈ [0, 1] which have the form Xt(x) =
∑

ai(t, x)
∂

∂xi
,

with each ai a smooth function of (t, x). An isotopy of M determines a time-dependent
vector field by

ϕt : M →M, ϕ0 = id,
d

dt
ϕt = Xt ◦ ϕt.

Time dependent vector fields can be viewed as vector fields on [0, 1] × M by setting

X̃(t, x) =
∂

∂t
⊕Xt(x). In particular, a time dependent vector field Xt generates a local

isotopy ϕt. If Xt is compactly supported then ϕt(x) is defined for all (t, x) ∈ [0, 1] ×M .
If Xt(x) = 0 for all t ∈ [0, 1], then there exists an open neighborhood U of x such that
ϕt : U →M is defined for all t.

The Lie derivative along the vector field is defined by

LXtω =
d

dt
ϕ∗tω|t=0

and it satisfies
d

dt
ϕ∗tω = ϕ∗tLXtω.

Moreover, if {ωt} is a smooth family of differential forms, one has

d

dt
ϕ∗tωt = ϕ∗t

(
LXtωt +

dωt
dt

)
.

All the normal form theorems can be proved by a technique called Moser’s trick. Here is
a first example to illustrate this technique.

9
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Theorem 2.1. Let M be a compact manifold and {ωt}, t ∈ [0, 1], a smooth family of
symplectic forms on M with exact time derivative:

d

dt
ωt = dαt.

Then there exists a smooth isotopy {ϕt} such that

ϕ∗tωt = ω0 for all t ∈ [0, 1].

Proof. The idea is to find the isotopy as the flow of a time-dependent vector field Xt.

Suppose
d

dt
ϕt = Xt ◦ ϕt, ϕ0 = id. Then ϕ∗tωt = ω0 holds provided

d

dt
ϕ∗tωt = 0. Using

Cartan formula and the properties of the Lie derivative we obtain:

d

dt
ϕ∗tωt = ϕ∗t

(
dιXtωt +

dωt
dt

)
and hence

d

dt
ϕ∗tωt = 0 if and only if

dιXtωt +
dωt
dt

= d(αt + ιXtωt) = 0.

Since ωt is non-degenerate for all t, there exists a solution Xt of αt + ιXtωt) = 0. The flow
{ϕt} of Xt satisfies (by construction) ϕ∗tωt = ω0.

Remark 2.2.

We can use Moser’s argument to prove that if two symplectic forms agree at every point
of a compact submanifold N , then they are symplectomorphic in a neighborhood of N .

Proposition 2.3 (Moser’s argument). Let M be a 2n-dimensional manifold, N ⊂ M a
compact submanifold, and ω0 and ω1 symplectic forms that agree at each point x ∈ N .
Then there exists open neighbourhoods U0 and U1 of N and a diffeomorphism ψ : U0 → U1

such that ψ∗ω1 = ω0 and ψ|N = id.

Proof. The first step in the proof is to show that there exists a neighbourhood of N where
ω1 − ω0 is exact. Let τ = ω1 − ω0 and let i denote the embedding of N in M . Choose a
tubular neighbourhood of N , i.e., a diffeomorphism

χ : i∗TM/TN → U

onto an open neighborhood of N in M . For t ∈ [0, 1] define

ϕt : U → U, ϕt(χ(x, v)) = χ(x, tv),

and let βt ∈ Ω1(U) be given at the point χ(x, v) by

βt(V ) = τ

(
d

dt
ϕt, (ϕt)∗(V )

)
,



2.1. MOSER TRICK AND DARBOUX THEOREM 11

and β =

∫ 1

0

βt. We will show that τ = dβ.

Since ϕt|N = id, αt vanishes on N for all t. Let t > 0 and define Xt =
d

dt
ϕt ◦ ϕ−1

t . Then

we have:
d

dt
ϕ∗t τ = ϕ∗tLXtτ = ϕ∗t (ιXtdτ + dιXtτ) = dϕ∗t ιXtτ = dβt.

Observe now that ϕ0(U) ⊂ N implies that ϕ∗0τ = 0 and ϕ1 = id implies ϕ∗1τ = τ . It follows
that

τ = ϕ∗1τ = ϕ∗0τ =

∫ 1

0

(dβt) dt = dβ.

Of course, this first step would also follow from a relative version of the de Rham theorem:
since τ is closed and vanishes along N , and since N and U are homotopy equivalent, there
exists a 1-form β on U such that β = 0 along N and dβ = τ on U .
Now define

ωt = ω0 + t(ω1 − ω0), t ∈ [0, 1].

Clearly ωt is closed for all t. Since ω0 and ω1 agree along N , ωt|N = ω0 and since non-
degeneracy is an open condition, by restricting U if necessary, we can make sure that ωt|U
is non-degenerate for all t. Let Xt be the unique vector field satisfying

β + ωt(Xt, ·) = 0.

This time we need to be more careful, because U is non-compact and the flow of Xt might
not exist for all times t. Since β = 0 along N , Xt vanishes along N . Hence there exists
a tubular neighborhood U0 of Nsuch that the flow {ψt} of Xt exists for all x ∈ U0 and
t ∈ [0, 1] and ψt(U0) ⊂ U for all t ∈ [0, 1]. Let U1 = ψ1(U0): then ψ1 : U0 → U1 is a
diffeomorphism and it satisfies:

d

dt
ψ∗tωt = ψ∗t

(
LXtωt +

dωt
dt

)
= ψ∗t (−dβ + ω1 − ω0) = 0.

Since Xt vanishes along N for every t, ψ restricts to the identity on N .

The following result, known as Darboux’s theorem is now a simple corollary of the above
proposition, but for historical reasons we will still call it a theorem. The original proof did
not make use of Moser’s argument.

Theorem 2.4 (Darboux’s theorem). Let (M,ω) be a symplectic manifold of dimension 2n.
Then for every point x ∈ M there exists a neighborhood U of x and a chart ϕ : U → R2n

such that ϕ∗ω0 = ω.

Proof. Let ψ be any chart centered at x. By the classification result for symplectic vector
spaces, we find a linear isomorphism Φ of R2n such that ω coincides with Φ∗ψ∗ω0 at the
point x. We can now apply the above proposition, with N = {x}.
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We will consider the following equivalence notions for symplectic structures: two symplectic
forms ω1 and ω2 on a manifold M are called:

1. symplectomorphic if there exists a diffeomorphism Φ of M such that ω0 = Φ∗ω1;

2. deformation equivalent if they are related by a path of symplectic forms;

3. isotopic if they are related by a path of cohomologous symplectic forms;

4. strongly isotopic if there exists an isotopy ϕt of M such that ϕ∗1ω1 = ω0.

We can immediately see that the following implications hold:

strongly isotopic ⇒ symplectomorphic
isotopic ⇒ deformation equivalent

strongly isotopic ⇒ isotopic

where the last implication follows from homotopy invariance of de Rham cohomology.

The following theorem shows that on closed manifold the notions of isotopic and strongly
isotopic symplectic forms are in fact equivalent. In other words, on cannot change the
symplectic structure within a fixed cohomology class.

Theorem 2.5 (Moser’s stability). Let M be a closed manifold. Suppose, ωt, t ∈ [0, 1] is a
smooth family of symplectic forms on M such that the cohomology class [ωt] is independent
of t. Then there exists a smooth isotopy ϕt : M →M such that ϕ∗tωt = ω0 for all t ∈ [0, 1].

Proof. The main ingredient of this proof is the existence of a smooth family of 1-forms σt

such that
d

dt
ωt = dσt. Then the claim follows immediately from Moser’s trick.

Example 2.6 (Closed symplectic surfaces). Let Σ be a closed orientable surface. Then
symplectic structures on Σ are just area forms and they are classified (up to isomorphism)
by their total area.

In fact, if ω0 and ω1 are symplectomorphic, then their total area is equal by the change of
variables forum for integrals.

Conversely, assume that Area (Σ, ω0) = Area (Σ, ω1) and that the orientations induced by
ωo and ω1 agree. Then [ω0] = [ω1] and hence ω1 − ω0 = dα for some α ∈ Ω1(Σ). Define
ωt = (1 − t)ω0 + tω1. Then ωt is a symplectic form for all t, and [ωt] = [ω0] (i.e., ω0

and ω1 are isotopic). By Moser’s stability there exists a smooth isotopy ϕt of Σ such that
ϕ∗tωt = ω0 for all t (i.e., ω0 and ω1 are strongly isotopic). In particular, ϕ∗1ω1 = ω0, i.e., ω1

and ω0 are isomorphic. If the orientations do not agree, let Ψ be an orientation-reversing
diffeomorphism of Σ and apply the previous argument to ω0 and Ψ∗ω1. The required
symplectomorphism is Ψ ◦ ϕ1.
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2.2 Symplectic, (co-)isotropic and Lagrangian

submanifolds

Definition. A submanifoldN of a symplectic manifold (M,ω) is called symplectic (isotropic,
co-isotropic, Lagrangian) if TxN ⊂ TxM is a symplectic (isotropic, co-isotropic, La-
grangian) subspace for every x ∈ N .

Example 2.7. 1. Let (Mi, ωi), i = 1, 2, be symplectic manifolds. Let πi, i = 1, 2, denote
the projection M1×M2 →Mi. Then π∗1ω1− π∗2ω2 is a symplectic form on M1×M2.
For every x ∈M2, M1 × {x} is a symplectic submanifold of M1 ×M2.

2. The graph of a diffeomorphism f : M1 →M2 is a Lagrangian submanifold of M1×M2

if and only if f is symplectic.

3. For any smooth manifold L, the zero section and the fibers of the cotangent bundle
T ∗L are Lagrangian submanifolds (with respect to the canonical symplectic form).

Weinstein’s celebrated Lagrangian tubular neighborhood theorem states that a neighbor-
hood of a Lagrangian submanifold L ⊂ (M,ω) depends symplectically only on the differ-
ential topology of L.

Theorem 2.8 (Weinstein’s Lagrangian neighbourhood theorem). Let L be a compact La-
grangian submanifold of the symplectic manifold (M,ω). Then there exist tubular neigh-
borhoods U of the zero section in T ∗L and U ′ of L in M and a diffeomorphism ϕ : U → U ′

such that ϕ|L is the inclusion and ϕ∗ω = ωcan.

Proof. We are first going to show that we can ”match” ω and ωcan along the zero section
of T ∗L. Then we will apply Moser’s argument.

Choose an ω-compatible almost complex structure J on TM , i.e., J : TM → TM and
J2 = −idTM . Such a compatible almost structure always exists. Let g = ω(·, J ·) be the
associated metric. Then for every q ∈ M , JTqL is the orthogonal complement (w.r.t. g)
of TqL in TqM . The exponential map exp : (TqL)⊥ → M is a diffeomorphism onto its
image when restricted to a small ε-neighbourhood of the zero section. Let k : T ∗M → TM
be the isomorphism induced by g, so that g(k(p), v) = p(v). Then on a suitable small
neighborhood V of the zero section of T ∗L we can define

Φ : V →M, (q, p) 7→ expq(Jk(p)).

Under the identification T(q,0)(T
∗L) = TqL⊕ T ∗q L we get:

dΦ(q,0)(v, p) = v + Jkq(p),
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where the sum on the right-hand side is the sum of vectors in TqM . Now we compute:

(Φ∗ω)(q,0)((v, p), (v
′, p′)) = ωq(v + Jk(p), v′ + Jk(p′))

= ωq(v, Jk(p′))− ω(v′, Jk(p))

= gq(v, k(p′))− gq(v′, k(p))

= p′(v)− p(v′)
= (dλcan)(q,0)((v, p), (v

′, p′)).

Notice that in the above calculations we have used that ω is J-invariant and that ωq(v, v
′) =

0 = ωq(k(p), k(p′)) because TqL is Legendrian. We have thus shown that dλcan and ω agree
over the zero section of T ∗L, and we can apply Moser’s argument to finish the proof.

We end this section with a more general normal form theorem for compact submanifolds
of a symplectic manifold (M,ω). For this we will first need to introduce some definitions.
Let π : E → X be a (smooth) real vector bundle of rank 2n. A symplectic structure
on E is a collection (ωx)x∈X , where ωx is a symplectic bilinear form on Ex, which varies
smoothly with x (i.e., a smooth section of Λ2E∗ → X such that each ωx ∈ Λ2E∗x is a linear
symplectic form. We call (E,ω) a symplectic vector bundle.
A complex structure J on the symplectic vector bundle E is called ω-compatible if for
each x ∈ X, Jx is ωx-compatible. The space of compatible complex structures on (E,ω) is
denoted by J (E,ω).

Theorem 2.9 (Space of compatible complex structures on a symplectic vector bundle).
For any symplectic vector bundle (E,ω), the space of compatible complex structures J (E,ω)
is non-empty and contractible

An isomorphism of symplectic vector bundles (E,ω) and (E ′, ω′) is a vector bundle isomor-
phism Φ : E → E ′ (covering the identity map) such that Φ∗ω′ = ω. Given a sub bundle
of a symplectic vector bundle (E,ω) over X we define

W ω = {(x, v) : x ∈ X and v ∈ W ωx
x }.

Example 2.10. 1. If (M,ω) is a symplectic manifold, then (TM,ω) is symplectic vector
bundle.

2. If E → X is any vector bundle, there is a canonical symplectic structure on the
Whitney sum E ⊕ E∗, defined by

(ωE)x((v, η), (v′, η′)) = η(v′)− η′(v) for all v, v′ ∈ Ex, η, η′ ∈ E∗x.

3. if N is a symplectic submanifold of M , then TN is a symplectic subbundle of TM |N
(i.e., TxN is a symplectic subspace of TxM for every x ∈ N), and we have a symplectic
direct sum decomposition

TM |N = TN ⊕ TNω.
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Proposition 2.11 (Normal form for subbundles of symplectic vector bundles). Let (E,ω)
be a rank 2n symplectic vector bundle and W ⊂ E a rank 2k + l subbundle, such that
V = W ∩W ω has constant rank l. Then

(E,ω) ∼= (W/V, ω)⊕ (W ω/V, ω)⊕ (V ⊕ V ∗, ωV ).

Proof. Pick a compatible almost complex J on (E,ω). Then

U1 = W ∩ JW, U2 = W ω ∩ JW ω, and U3 = JV

are smooth subbundles of E. Then the decomposition

E = U1 ⊕ V ⊕ U2 ⊕ U3

induces a symplectic vector bundle isomorphism

(E,ω) ∼= (W/V, ω)⊕ (W ω/V, ω)⊕ (V ⊕ V ∗, ωV ),
u1 + v + u2 + u3 7→

(
u1, u2, (v,−iu3ω)

)

Now we can state the more general normal form result for submanifolds of a symplectic
manifold.

Theorem 2.12 (Symplectic normal forms). Let ω0 and ω1 be symplectic forms on a mani-
fold M , and N ⊂ M a compact submanifold such that ω0|N = ω1|N . Suppose moreover
that K := ker(ω0|N) = ker(ω1|N) has constant rank, and the bundles (TNω0/K, ω0) and
(TNω1/K, ω1) are isomorphic as symplectic vector bundles. Then there exist tubular neigh-
borhoods U0 and U1 of N and a diffeomorphism ϕ : U0 → U1 such that ϕ|N = id and
ϕ∗ω1 = ω0.

Proof. By the previous proposition, we have that

(TM |N , ω0) ∼= (TN/K, ω0)⊕ (TNω0/K, ω0)⊕ (K ⊕K∗, ωK),

and similarly for ω1.
By hypothesis, the right hand side is isomorphic for ω0 and ω1. Hence the left hand side
is also isomorphic, i.e, there exists a symplectic vector bundle isomorphism Φ : TM |N →
TM |N with such that Φ|TN = 1. Then by the Whitney Extension theorem, Φ extends
to a an embedding ϕ : U → M of a tubular neighborhood of N such that ϕ|N = id and
dϕx = Φx for all x ∈ N . It follows that ϕ∗ω1 = ω0 along N . We can now apply Moser’s
argument to the submanifold N and the symplectic forms ω0 and ϕ∗ω1.

All the normal forms for submanifolds of a symplectic manifold are corollaries of this result.
For instance, if the submanifold N is symplectic with respect to both ω0 and ω1, then the
bundle K is trivial and we have the vector bundle isomorphism

(TM |N , ω0) ∼= (TN, ω0)⊕ (TNω0 , ω0),
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and similarly for ω1. If we assume the two symplectic forms to coincide along N and
the symplectic normal bundles (TNω0 , ω0) and (TNω1 , ω1) to be isomorphic (as symplectic
vector bundles), then we satisfy the conditions of the symplectic normal forms theorem
and we get a symplectomorphism of neighborhoods U0 and U1 of N , equipped with ω0 and
ω1, respectively, that fixes N .

Corollary 2.13 (Symplectic neighbourhood theorem). Let ω0 and ω1 be symplectic forms
on a manifold M , and N ⊂ M a compact submanifold such that ω0|N = ω1|N is sym-
plectic. Suppose moreover that the bundles (TNω0 , ω0) and (TNω1 , ω1) are isomorphic as
symplectic vector bundles. Then there exist tubular neighborhoods U0 and U1 of N and a
diffeomorphism ϕ : U0 → U1 such that ϕ|N = id and ϕ∗ω1 = ω0.

2.3 Some applications of normal forms

Fixed points of a symplectomorphism

Let (M,ω) be a symplectic manifold, ϕ a symplectomorphism of M . We can reformulate
the problem of finding fixed points of ϕ in terms of intersections of Lagrangian submanifold.
There is in fact a one-to-one correspondence between

{fixed points of ϕ} 1−1←→ {intersections of Γϕ with the diagonal ∆ ⊂M ×M},

where Γϕ denotes the graph of ϕ.

Corollary 2.14. Suppose (M,ω) is compact and H1
dR = 0. Then every ϕ ∈ Symp(M,ω)

C1-close to the identity has at least 2 fixed points.

Proof. Recall that by Weinstein’s Lagrangian neighborhood theorem, a neighborhood of
a Lagrangian submanifold can always be symplectically identified with a neighborhood of
the zero section in the cotangent bundle of the manifold. If ϕ is C1-close to the identity,
Γϕ ⊂ T ∗M is close to the zero section M0 and can be written as the graph of a 1-form σ.
But σ = dh as H1

dR = 0, and

p ∈ Γϕ ∩M0 ⇔ dhp = 0⇔ p ∈ Crit(h).

Since M is compact, h has at least one maximum and one minimum.

Remark 2.15. 1. This result fails if H1
dR 6= 0; think of translation on the torus T2 =

R2/Z2.

2. If H1
dR 6= 0, the result holds for Hamiltonian symplectomorphisms.
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Gompf’s connected sum construction

Suppose we have two symplectic embeddings ij : (N, σ)→ (Mj, ωj), j = 1, 2, of a compact
codimension 2 submanifold in M1 and M2. Suppose also that both embeddings have
trivial normal bundle. Then from the symplectic neighborhood theorem we get symplectic
embeddings ϕj : N ×Dε →Mj, such that ϕj(N ×{0}) = ij(N) and where the symplectic
form on the trivial disc bundle is σ ⊕ dx ∧ dy. Remove the origin from each Dε to get an
annulus A = Dε \ {0}. The annulus admits a symplectic automorphism that interchanges
the boundary components:

ψ : A→ A; ψ(r, θ) = (
√
ε2 − r2,−θ).

Hence we can construct the fibre connected sum of M1 and M2 along N :

M1]NM2 = M1 \ i1(N) ∪id×ψ M2 \ i2(N)

where id×ψ : ϕ1(N×Dε)→ ϕ2(N×Dε). This manifold carries a natural symplectic struc-
ture, which coincides with ω1 and ω2 outside of a tubular neighborhood of N . This means
that away from N , nothing changes, so for instance symplectic/Lagrangian submanifolds
of Mj which are disjoint from N stay symplectic/Lagrangian.
The above construction was used by Gompf to prove:

Theorem 2.16. Any finitely generated group G appears ads the fundamental group of some
compact, 4-dimensional symplectic manifold.

Gompf’s contraction is an example of how to construct new symplectic manifolds from old
ones by surgery. In the next section we will see how to construct new symplectic manifolds
from symmetry.





Chapter 3

Contact geometry

3.1 Contact structures and Reeb dynamics

Integrability and the theorem of Frobenius

We will start by recalling some facts about integrable distributions. Let M be a smooth
n-dimensional manifold, 1 ≤ d ≤ n. A d-dimensional distribution D on M is a choice of
a d-dimensional subspace Dp of TpM for each p ∈ M . A distribution D is smooth if for
every p ∈M there exists a neighborhood U of p and d smooth vector fields X1, . . . , Xd on
U which span D at each point of U . A vector field X on M is said to lie in the distribution
D if Xp ∈ Dp for all p ∈M .
An immersed submanifold i : N → M is an integral submanifold of a distribution D
if i∗(TpN) = Di(p) for all p ∈ N . A distribution D is called integrable if through each
point of M there exists an integral manifold of D. The theorem of Frobenius states that a
distribution is integrable if and only if it is involutive, i.e., [X, Y ] ∈ D whenever X and Y
are smooth vector fields lying in D.

Theorem 3.1 (Frobenius). Let D be a d-dimensional, smooth distribution on M . Then
D is integrable if and only if it is involutive

Remark 3.2. (i) A 1-dimensional distribution is the same as a non-vanishing vector field,
the image of an integral curve is an integral manifold. So a 1-dimensional distribution
is always integrable by local existence of integral curves.

(ii) The smooth distribution D defined on R3 by the vector fields

X =
∂

∂x
+ y

∂

∂z
and Y =

∂

∂y

is not integrable: there is no integral manifold through the origin of R3. Equivalently,

it is not involutive: in fact, [X, Y ] = − ∂

∂z
, which does not lie in D.

Distributions can also be described in terms of smooth 1-forms.

19
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Lemma 3.3. A d-dimensional distribution D on M is smooth if and only if each point p
has a neighborhood U on which there exist smooth 1-forms ω1, . . . , ωn−d such that

Dq = kerω1
q ∩ . . . ∩ kerωn−dq

for all q ∈ U .

We say that a k-form ω annihilates D if ω(X1, . . . , Xk) = 0 whenever X1, . . . , Xk are local
sections of D. The following proposition gives a characterization of integrable (involute)
distributions.

Proposition 3.4. Suppose D is a smooth distribution on M . Then D is integrable if and
only if the following condition is satisfied: if η is any smooth 1-form that annihilates D on
an open subset U ⊂M , then dη also annihilates D on U .

We now turn to hyperplane distributions (i.e., the case d = n− 1). Let ξ be a hyperplane
distribution, then it can always be described locally as the kernel of a 1-form α and therefore
integrability in this context is equivalent to the following: dα = 0 when restricted to vectors
in ξ, or equivalently, α ∧ dα = 0. The contact condition is as far from this as possible: it
requires dα to restrict to a non-degenerate form on ξ.

Contact structures and Reeb vector fields

Let M be a smooth manifold, ξ ⊂ TM a hyperplane field (i.e., a smooth codimension
1 sub-bundle). Write TM = ξ ⊕ ξ⊥ with respect to an auxiliary Riemannian metric g.
Locally, ξ can always be described as the kernel of a 1-form, by trivializing ξ⊥ around a
point. This can be done globally if and only if ξ is co-orientable (i.e., ξ⊥ is orientable).

Definition 3.5. Let ξ be a co-orientable hyperplane field on a smooth manifold M of
dimension 2n+ 1 and α a 1-form such that ξ = kerα. Then dα is non-degenerate on ξ is
and only if

α ∧ (dα)n 6= 0.

If this is the case, ξ is called a contact structure and α is called a contact form.

Definition 3.6. Associated to any contact form there is a uniquely defined vector field Rα,
called the Reeb vector field of α. It is defined by the conditions

ιRαdα = 0 and ιRαα = 1.

Definition 3.7. Let (M, ξ) be a contact manifold with contact form α. A contactomor-
phism of (M, ξ) is a is a diffeomorphism of M which preserves the contact structure, i.e.,
f∗(ξ) = ξ. A contactomorphism is called strict if it also preserves the contact form.

Remark 3.8. (i) Even though the definition of a contact structure ξ is independent of
the choice of contact form, choosing different contact forms leads to different vector
fields and flows with different properties.
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(ii) If α is a contact form for the contact structure ξ and Rα its Reeb vector field, the
flow of Rα preserves α and hence ξ.

Example 3.9. (i) On R2n+1 with coordinates (x1, . . . , xn, y1, . . . , yn, z), the 1-form

α1 = dz +
n∑
i=1

xidyi

is a contact form. The corresponding Reeb vector field is R1 =
∂

∂z
.

(ii) The restriction of the form

α0 =
n+1∑
j=1

(xjdyj − yjdxj)

to S2n+1 ⊂ R2n+2 defines a contact structure.

(iii) If B is a manifold, the restriction of the Liouville form λcan on T ∗B to the unit
cotangent bundle ST ∗B is a contact form.

The last two examples actually fit in a larger class which we will describe in the next
section.

Hypersurfaces of contact type

One comes across contact strucures naturally when considering hypersurfaces in a sym-
plectic manifold that are everywhere transverse to a given Liouville vector field.
Recall that a Liouville vector field Y on a symplectic manifold (W,ω) is a smooth vector
field on W such that LY ω = ω.

Lemma 3.10. Let Y be a Liouville vector field on the symplectic manifold (W,ω). Then
α := ιY ω restricts to a contact form on each hypersurface M ⊂ W which is everywhere
transverse to Y .

Proof. It follows from Cartan’s formula that dα = ω. Now suppose dimW = 2n and
M ⊂ W is a smooth codimension one submanifold which is everywhere transverse to Y .
Then

α ∧ (dα)n−1 = ιY ω ∧ ωn−1 =
1

n
ιY (ωn).

Since ωn 6= 0 on W , the last term must be non-zero along M provided Yp /∈ TpM for all
p ∈M .

If M is as in the above lemma, it is called a hypersurface of contact type.
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Moser’s argument and Darboux’s theorem

Just as in the case of symplectic manifolds, there is a local normal form theorem for contact
manifolds.

Theorem 3.11 (Darboux). Let α be a contact form on the (2n+ 1)-dimensional manifold
M and p ∈M .Then there exists coordinates (x1, . . . , xn, y1, . . . , yn, z) in a neighborhood U
of p such that

α|U = dz +
n∑
i=1

xidyi.

Theorem 3.12 (Gray Stability). Let ξt, t ∈ [0, 1] be a smooth family of contact structures
on a closed manifold M . Then there exists an isotopy (ϕt)t∈[0,1] of M such that

dϕt(ξ0) = ξt for all t ∈ [0, 1].

Remark 3.13. (i) In contrast to the symplectic case, there is no cohomological condition.

(ii) Contact forms do not satisfy stability.

Hamiltonian and Reeb dynamics: the Weinstein Conjecture

Let (W,ω) be a symplectic manifold and H : W → R a smooth Hamiltonian function. If
Σ is a regular level set of H (i.e., dH(x) 6= 0 for all x ∈ Σ), existence of periodic solutions
of the Hamilton’s equations ẋ(t) = XH(x(t)) on Σ depends only on the hypersurface and
the symplectic structure, not on the Hamiltonian function H. This is because, up to
parametrization, these solutions are closed characteristics of the line bundle

LΣ = {(x, v) ∈ TΣ) : ωx(v, w) = 0 for all w ∈ TxΣ}.

Because of this, it makes sense to ask the question of existence of periodic orbits without
reference to a specific Hamiltonian function: when does a hypersurface Σ in the symplectic
manifold (W,ω) admit a Hamiltonian periodic orbit? In 1986, Viterbo proved the following
theorem:

Theorem 3.14. A compact hypersurface Σ in the symplectic manifold (R2n, ω0) always
admits periodic Hamiltonian orbits if it is of contact type.

Viterbo’s result prompted Weinstein to formulate his famous conjecture: if Sigma is a
compact hypersurface of contact type in a symplectic manifold (W,ω), then it always
carries periodic orbits.
Another point of view on this conjecture is the one coming from contact structures an
Reeb dynamics. If Σ ⊂ (W,ω) is a hypersurface of contact type, in fact, with transverse
Liouville vector field Y , then (Σ, α := ιY ω|Σ) is a contact manifold and the Reeb vector
field is also a section of the characteristic line bundle. Hence the hyeprsurface of contact
type Σ ⊂ (W,ω) admits periodic Hamitlonian orbits if and only if the contact manifold
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(Σ, α := ιY ω|Σ) admits periodic Reeb orbits. We can therefore generalize the Weinstein
conjecture and ask: ”When does the closed, strict contact manifold (Σ, α) admit a periodic
Reeb orbit?”
A seminal result in this direction is Hofer’s proof off the Weinstein Conjecture for S3:

Theorem 3.15. Every contact form on the three-sphere admits a periodic Reeb orbit.

The importance of this theorem lies not only in the result, but also in the method of
proof, which introduced a whole new technique in the study of contact geometry and
Reeb dynamics, namely that of pseudo-holomoprhic curves in symplectizations. Another
interesting feature of this proof is that it is a proof by cases: it distinguishes between forms
defining a tight contact structure and forms defining an overtwisted contact structure.

3.2 Tight vs. overtwisted and symplectic fillability

in dimension 3

Characteristic foliations

Let (M, ξ) be a contact 3-manifold and S ⊂ M an embedded oriented surface. For each
x ∈ S we can consider the space lx = ξx∩TxS. This subspace of TxM will be a line in TxS
at most points, but at some points, which we call singular, we will have lx = TxS. The
characteristic foliation is the induced (1-dimensional) singular foliation on S.

Example 3.16. If S = S2 ⊂ (R3, ξ = ker(dz+ xdy− ydx), so that ξ = span{x∂z − ∂y, y∂z +
∂x}, the poles (x = y = 0) will be singular points, whereas at all other points l will be
one-dimensional.

Remark 3.17. Singular points cannot form an open subset of S because of the contact
condition.

Example 3.18. Consider now R3 but with a different contact structure, namely ξ = ker(cos r dz+
r sin r dϕ), and let S be the closed disk with radius ϕ in the plane z = 0. Then ξ is hori-
zontal in r = 0 and r = π, i.e., at the center and along the boundary of the disk. Between
0 and ϕ, the contact planes make one turn, so their intersection with TS is the span of ∂r.
We call this the standard overtwisted disk. If we push up the interior of S very slightly, the
points at htte boundary are not singular any more, but l is spanned by ∂ϕ at these points,
so the boundary becomes a closed leaf in the characteristic foliation. the other leaves spiral
out form the center point and converge towards the boundary.

Charactersitic foliations completely determine the contact structure in a neighborhood of
the surface S:

Theorem 3.19. Let (Mi, ξi), i = 0, 1, be contact manifolds, Si embedded surfaces. If
there exists a diffeomorphism f : S0 → S1 which preserves the characteristic foliation
(Tf(l0) = l1), then f may be extended to a contactomorphism from a neighborhood of S0

to a neighborhood of S1.
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Definition 3.20. A contact structure ξ on a 3-manifol M is called overtwisted (OT) if
there exists an overtwisted disk DOT ⊂M . It is called tight otherwise.

The following theorem is interesting because (combined with Darboux’s theorem) it shows
that every contact structure is locally tight, so the existence of an overtwisted disk really
is a global question.

Theorem 3.21 (Bennequin). (R3, ξ = ker(dz − ydx)) does not have an overtwisted disk.

It follows from Eliashberg overtwisted classification that any 3-manifold has an overtwisted
contact structure, On the other hand, there exist closed contact 3-manifolds that do not
support any tight contact structure. It thus seems natural to ask how to detect ”tightness”
of a contact structure. One possible way is by studying the existence of symplectic fillings.

Definition 3.22. Let (M, ξ = kerα) be a contact manifold, so that (ξ, dα|ξ) has a sym-
plectic vector bundle structure, Let (W,ω) be a symplectic manifold. We call W a weak
symplectic filling of M if ∂W = M as oriented manifolds and ω|n−1

ξ > 0. WE call W a
strong symplectic filling of M if ∂W = M an there exists a Liouville vector field, defined
near ∂W , pointing outwards along ∂W and satisfying ξ = ker(ιY ω|TM) as co-oriented con-
tact structures. In this case we also say that M is the ω-convex boundary of W . If the
Liouville vector filed points into W , then one calls M the ω-concave boundary.

Remark 3.23. (i) The boundary of a strong filling is of contact type.

(ii) If ξ0 and ξ1 are contact structures on M filled (in the strong sense) by the same sym-
plectic manifold (W,ω), then they are isotopic. In other words, a strong symplectic
filling pretty much determines the contact structure on its boundary.

(iii) Convex and concave are different concepts in this context than in the usual geometric
situation. One can find, for instance, Liouville vector fields Y+ and Y− on (R2, ω =
r dr ∧ dϕ) defined near S1, everywhere transverse to S1, with Y+ pointing out of the
unit disk and Y− pointing into the unit disk.

We can now finally state the theorem relating the tightness of the contact structure on a
3-manifold to the existence of a symplectic filling:

Theorem 3.24 (Eliashberg-Gromov). If a contact manifold (M, ξ) is weakly symplectically
fillable, then the contact structure is tight.

Example 3.25. (S3, ξ = ker(x1dy1−y1dx1 +x2dy2−y2dx2)) can be filled by (B4, dx1∧dy1 +
dx2 ∧ dy2), hence it is tight..

Remark 3.26. This theorem was one of the main reference points for everyone attempting
to generalize the definition of overtwisted contact structure to higher dimensions: over-
twistedness should represent an obstruction to symplectic fillability.
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