

Review from Inleiding Topologie

Topologie en Meetkunde, Block 3, 2022

February 1, 2022

You do not have to hand-in any solutions to the following exercises.

Exercise 1. For each of the following topological spaces, check whether they are:

- Connected (if not, how many components are there?) and locally connected.
- Path-connected (if not, how many components?) and locally path-connected.
- Haussdorff (and other separation properties if you want).
- Compact and locally compact.

For the latter ones, I recommend drawing them to get intuition. Which of them are homeomorphic to one another? (For many pairs, you will not be able to answer this question)

1. $\mathbb{R}, \mathbb{R}^2, \mathbb{R}^n$ with their usual Euclidean topology.
2. The open hypercube $(0, 1)^n \subset \mathbb{R}^n$ with the subset topology.
3. The sphere $\mathbb{S}^n := \{x \in \mathbb{R}^{n+1} \mid |x| = 1\}$ with the subset topology.
4. Projective space $\mathbb{RP}^n := \{x \in \mathbb{S}^n\} / \{x \cong -x\}$ with the quotient topology.
5. A set A with the discrete topology (i.e. every subset is open).
6. The torus $\mathbb{T}^2 := \mathbb{S}^1 \times \mathbb{S}^1$ with the product topology.
7. The closed, orientable surface Σ_g with g holes with the subset topology from any inclusion into \mathbb{R}^3 . Remark: we will see these later in the course.
8. The hypercube $[0, 1]^n \subset \mathbb{R}^n$ with the subset topology.
9. The closed unit ball $\mathbb{D}^n := \{x \in \mathbb{R}^n \mid |x| \leq 1\}$ with the subset topology.
10. The closed upper half-space $\mathbb{H}^n := \{x \in \mathbb{R}^n \mid x_1 \geq 0\}$ with the subset topology.
11. The union of two circles at a point $\{x \in \mathbb{R}^2 \mid |x - (1, 0)| = 1\} \cup \{x \in \mathbb{R}^2 \mid |x + (1, 0)| = 1\}$.
12. The line with two origins: Set $A, B = \mathbb{R}$. Then consider $(A \coprod B) / \{A \ni x \cong x \neq 0 \in B\}$ with the quotient topology induced from the disjoint union of A with B .
13. The hawaiian earring $\bigcup_{n \in \mathbb{Z}^+} \mathbb{S}_{1/n}^1((1/n, 0))$ with the topology induced from \mathbb{R}^2 .

14. The topologists comb $([0, 1] \times \{0\}) \cup (\{0\} \times [0, 1]) \cup (\bigcup_{n \in \mathbb{Z}^+} \{1/n\} \times [0, 1])$ with the induced topology from \mathbb{R}^2 .
15. The double comb $([-1, 0] \times \{-1\}) \cup ([0, 1] \times \{1\}) \cup (\{0\} \times [-1, 1]) \cup (\bigcup_{n \in \mathbb{Z}^+} \{1/n\} \times [0, 1]) \cup (\bigcup_{n \in \mathbb{Z}^+} \{-1/n\} \times [-1, 0])$.

Exercise 2. Prove the **pasting lemma**: Let $f : X \rightarrow Y$ be a function (not necessarily continuous) between topological spaces. Let $A, B \subset X$ be open subsets satisfying $A \cup B = X$. Then, f is continuous if and only if $f|_A$ and $f|_B$ are continuous.

Prove the same claim assuming instead that A and B are both closed. Prove the same claim where, instead of two subsets, you have finitely many covering X .

Exercise 3. Show that \mathbb{S}^n is homomorphic to $\mathbb{D}^n / \mathbb{S}^{n-1}$. Hint: use identifications of \mathbb{R}^n with $\mathbb{S}^n \setminus \{p\}$ (the stereographic projection) and with $\mathbb{D}^n \setminus \mathbb{S}^{n-1}$.

Exercise 4. Show that:

- \mathbb{S}^{n-1} is homomorphic to $(\mathbb{R}^n \setminus \{0\}) / (x \cong \lambda x \text{ for } \lambda > 0)$.
- \mathbb{RP}^{n-1} is homomorphic to $\mathbb{S}^{n-1} / (x \cong -x)$.

Exercise 5. Let $\phi : \mathbb{S}^{n-1} \rightarrow \mathbb{S}^{n-1}$ be a homeomorphism. Show that:

- The map $\tilde{\phi} : \mathbb{D}^n \rightarrow \mathbb{D}^n$ defined in spherical coordinates by $\tilde{\phi}(r, p) := (r, \phi(p))$ is a homeomorphism.
- The quotient space $\mathbb{D}^n \coprod_{\mathbb{S}^{n-1} \cong \phi(\mathbb{S}^{n-1})} \mathbb{D}^n$ is homeomorphic to \mathbb{S}^n .

Exercise 6. Let A be the hawaiian ring and B the disjoint union of \mathbb{N} copies of \mathbb{S}^1 with their points $1 \in \mathbb{S}^1$ identified (so B has the quotient topology). Prove that A and B are not homeomorphic by:

- Proving that the points $0 \in A$ and $1 \in B$ (where all the circles meet) must be identified by any homeomorphism between A and B .
- Proving that there is no neighbourhood of $0 \in A$ homeomorphic to a neighbourhood of $1 \in B$.

We do not have the technology yet but, later in the course, prove that these two spaces are not homotopy equivalent.