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1 Weird functions and Sard

Exercise 1. Let K C R be a closed subset. Prove that there is a smooth function f : R — R whose
zero set is exactly K. Strategy:

e Observe that the distance function g : R — R to K is continuous.

e Consider the sets K,, := {z € R | g(z) > 1/n}, where n € Z*. Construct a function f, that
is identically 1 on K,, but zero on the complement of K, ;. Hint: Convolve the indicator
function of K,, against a suitably chosen bump function.

e Find constants a, so that f := > a,f, is the desired function. Note: To prove that f is
smooth, you have to choose the a,, carefully.

Deduce that there is a smooth function on R whose critical points are exactly K.

Exercise 2. Let U C [0,1] be an open dense subset with zero measure complement K. Prove that
there is a C' function f : [0,1] — [0,1] whose critical values are exactly K. Hint: Consider a
homeomorphism x : [0, 1] — [0, 1] that is smooth, a diffeomorphism when restricted to (0,1), and has
all derivatives vanishing at the endpoints. In each component of U, use a suitable reparametrisation
of x.

Exercise 3. Let K C R be a subset such that K + K contains a non-empty open subset of R. Prove
that there is no C?-function f : R — R whose singular values contain K. Hint: Construct a suitable
function R? — R and apply Sard to it.

Exercise 4. Let C be the Cantor set. Prove that C' + C = [0, 2].
Exercise 5. Find a C'-function f :R? — R whose set of critical values has positive measure.

Exercise 6. Let M be a smooth manifold. Let f : M — R be a C'-function with locus of critical
points A C M. Prove that f is constant along any piecewise C! curve v C A.

Note: In “A function not constant on a connected set of critical points”, Whitney constructs a C'-
function f : R? — R that is not constant over path-components of the critical set. The caveat is that
the critical set A of f is a non-rectifiable curve (i.e. we cannot connect all points in A by piecewise
C? paths).

Exercise 7. Let M and N be m and n dimensional, respectively, with m < n. Determine the range
of § € (0,1] such that the image of any f : M — N of Holder regularity § has measure zero.

2 Handle dimension and transversality

Exercise 8. A triangulation of a manifold N is a homeomorphism f : K — N from a simplicial
complex. In Differential Topology, we furthermore assume that f is smooth when restricted to all



simplices of K. You can prove that every smooth manifold N admits a triangulation. A possible
strategy, due to Whitney, reads:

e Embed N into some euclidean space E.

e Produce a sufficiently fine triangulation 7" of E.

e In a tubular neighbourhood of N, make simplices transverse to IV by applying transversality.
e Choose a nice subcomplex K of T, homotopy equivalent to IV.

e The projection of K to N should be a homeomorphism.

You probably do not want to do this in detail. T recommend that you think about it, draw some
pictures when N is a curve/surface embedded in R?, and move on.

Exercise 9. We say that N has handle dimension at most n if it deformation retracts to an n-
dimensional CW-complex K C N, called the skeleton, whose simplices are smoothly embedded.

e Find an example in which the handle dimension is smaller than the dimension, and the skeleton
(giving that handle dimension) cannot be chosen to be a manifold.

e Prove that, if N is closed, its handle dimension is equal to its dimension. Hint: Cohomology.

e The following is very difficult but, if you have plenty of time: prove that every open manifold
M of dimension m has handle dimension at most m — 1. Idea: Pick a triangulation and try to
push M into a neighbourhood of the codimension-1 simplices.

Exercise 10. Fix an m-dimensional manifold M. Consider N and L, submanifolds of handle dimen-
sions n and [, respectively. Prove that, generically, NN L = 0 if n +1 < m. Hint: The claim follows
once the skeleta are made disjoint. To prove this latter fact, use induction on the handle dimension
and apply transversality to the cells.

Exercise 11. Let M be a manifold of handle dimension m and dimension n. Prove that M immerses
into Rmax(m?m) and embeds into Rmax(n72m+1).

3 Bordism

Let us recall the construction of (unoriented, singular) bordism. The idea is to build a homology theory
whose building blocks are manifolds and not simplices. We fix an m-dimensional manifold M (the
upcoming definitions work for topological spaces as well, but then we would not have transversality).

We define Z, = Z,,(M) to be the set whose elements are pairs (N, f : N — M), with N a closed
n-dimensional manifold and f a smooth map. Disjoint union defines a notion of addition in Z,. An
element in Z, is nullbordant if it is of the form (OW,g|w), where W is an (n + 1)-manifold with
boundary and f: W — M is a smooth map. This defines a equivalence relation in Z,,: two elements
are bordant if their disjoint union is nullbordant. We denote the resulting set of equivalence classes
by B,; addition descends to this quotient.

Exercise 12. We now use transversality to define an intersection pairing. Given [N, f] € B,, and
[L,g] € By, we define their intersection to be an element [N, f] N[L,g] € Byyi—m:

e Given (f,g) : N x L — M x M, use transversality to find h : N x L — M x M close to (f,g)
and transverse to the diagonal Ay.

e Define [N, f]N[L,g] to be [I := h=1(Ays), h|7]. Prove that this is well-defined (i.e. it does not
depend on choices and it only depends on (N, f) and (L, g) up to bordism).



e Let N be m-dimensional and L be a point. How does [N, f] N [L, g] relate to the degree of f?

Exercise 13. We can define oriented singular bordism by considering now pairs (N, f) with N
oriented. A nullbordant element (OW, g|w) is taken to have the boundary orientation given by the
orientation of W. Prove that the intersection pairing can be defined in this oriented setting as well.
How does this relate to the degree of a map?

4 Transversality in geometry

Exercise 14. A symplectic structure in a 2n-dimensional manifold M is a closed, non-degenerate
2-form w. Non-degeneracy means w™ # 0 (i.e. at each point, w, seen as a matrix, has non-zero
determinant). Prove that a generic closed 2-form is symplectic in the complement of a smooth
hypersurface H C M. Hint: Perturb w using exact 2-forms.

Exercise 15. A l-form « in a (2n + 1)-dimensional manifold M is said to be a contact structure if
aAda™ # 0 (i.e. da is non-degenerate when restricted to the hyperplane field ker(«)). Prove that a
generic 1-form is contact in the complement of a smooth hypersurface H C M.

Exercise 16. A 1-form « in a (2n+2)-dimensional manifold M is said to be an even-contact structure
if a Ada™ # 0. Prove that a generic 1-form is even-contact in the complement of a discrete collection
of points A C M. Deduce that, if M is open, it has an even-contact structure. Hint: Its handle
dimension is at most 2n + 1.

Exercise 17. Let M be a manifold. Prove that a generic symmetric 2-tensor g on M is non-degenerate
in the complement of a stratified hypersurface H C M. What is a reasonable stratification for H
(and what are the dimensions of the strata generically)? Hint: Think first about the linear case (i.e.
stratify the space of symmetric bilinear maps on a vector space).

5 Jet spaces

Exercise 18. Prove that the space of immersions is open (as a subset of the space of all maps in
the strong C'!-topology). Then, you may want to prove the same statement for embeddings (but it is
much trickier!) Prove that the space of embeddings is not open in the C°-topology.

Exercise 19. Let us introduce coordinates (z,y,z) on J"(R™,R™). Here z € R™ are the domain
variables and y € R™ the target variables. Given a multi-index I = (i1,--- ,i,) of cardinality
[I| =iy + -+ i, < r, we write z] for the variable representing the derivative 9j' - -- 9} of y; with
respect to the xz-variables.

Given diffeomorphisms ¢ : R” — R" and ¢ : R™ — R™, we can produce a diffeomorphism of jet
space @ : J"(R™, R™) — J"(R™,R™) by setting

D(jpf) = Jh(Wo fod™).

We call this a point symmetry. When 4 is taken to be the identity, we call this a domain symmetry.

e Prove that point symmetries in J!(R,R) are indeed diffeomorphisms.

e Prove that the only subsets R C J!(R,R) invariant under point symmetries are J!(R,R) itself
and the empty set.

e Prove the analogous statements for J"(R™ R™).

Exercise 20. Suppose that R C J"(R™,R™) is invariant under domain symmetries. Prove that
7 : R — R™ the projection to the z-variables, is a fibre bundle. Can you characterise all such R in
the case n,m,r =17



Exercise 21. Find a subset R C J*(R,R) such that:

e There is a section F' : R — R (here the domain corresponds to the z-variable).

e There is no function f : R — R such that j'f takes values in R.

Hint: You can pick F first and then construct a suitable R.

Can you find an example with R open and invariant under domain symmetries?

6 Random exercises

Exercise 22. Let f : R — R be a smooth function with &7 f(0) = 0 for j < r and 9" f(0) # 0. Then,
the Malgrange preparation theorem states that there is ¢ non-vanishing such that f(x) = g(z)z" close
to zero.

Deduce that there is a diffeomorphism ¥ : R — R, locally defined close to the origin, such that
fow = +z". We say that, thanks to the coordinate change 1, we have put f in normal form close
to zero.

Prove that there is no normal form for functions flat at zero (i.e. smooth functions with 87 f(0) = 0
for all j). I.e. exhibit various flat functions that cannot be transformed into one another by a local
change of coordinates.

The punchline here is that, locally, smooth functions resemble analytic functions when their Taylor
polynomials are non-vanishing, but may be very wild otherwise.

Exercise 23. Let M be the vector space of m-by-n matrices, m < n. Write My C M for the
locus of matrices of rank exactly k& < m. Recall that the general linear group GL,, acts on M by
right-multiplication. Similarly, GL,, acts on M from the left.

e Prove that there is a transitive action of GL,, x GL,, on M.

e Compute the isotropy of this action (i.e. pick an element in M} and determine the subgroup H
fixing it).

e Deduce that M}, is smooth and diffeomorphic to the quotient (GL,, x GL,,)/H.

Exercise 24. Let M be the space of m-by-n matrices; let m < n. Consider now Ay C M, the locus
of matrices of rank at most k < m. Observe that this is an algebraic subvariety. Find examples of m,
n and k such that Aj is not smooth.



