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1 Weird functions and Sard

Exercise 1. Let K ⊂ R be a closed subset. Prove that there is a smooth function f : R→ R whose
zero set is exactly K. Strategy:

� Observe that the distance function g : R→ R to K is continuous.

� Consider the sets Kn := {x ∈ R | g(x) ≥ 1/n}, where n ∈ Z+. Construct a function fn that
is identically 1 on Kn but zero on the complement of Kn+1. Hint: Convolve the indicator
function of Kn against a suitably chosen bump function.

� Find constants an so that f :=
∑
anfn is the desired function. Note: To prove that f is

smooth, you have to choose the an carefully.

Deduce that there is a smooth function on R whose critical points are exactly K.

Exercise 2. Let U ⊂ [0, 1] be an open dense subset with zero measure complement K. Prove that
there is a C1 function f : [0, 1] → [0, 1] whose critical values are exactly K. Hint: Consider a
homeomorphism χ : [0, 1]→ [0, 1] that is smooth, a diffeomorphism when restricted to (0, 1), and has
all derivatives vanishing at the endpoints. In each component of U , use a suitable reparametrisation
of χ.

Exercise 3. Let K ⊂ R be a subset such that K +K contains a non-empty open subset of R. Prove
that there is no C2-function f : R→ R whose singular values contain K. Hint: Construct a suitable
function R2 → R and apply Sard to it.

Exercise 4. Let C be the Cantor set. Prove that C + C = [0, 2].

Exercise 5. Find a C1-function f : R2 → R whose set of critical values has positive measure.

Exercise 6. Let M be a smooth manifold. Let f : M → R be a C1-function with locus of critical
points A ⊂M . Prove that f is constant along any piecewise C1 curve γ ⊂ A.

Note: In “A function not constant on a connected set of critical points”, Whitney constructs a C1-
function f : R2 → R that is not constant over path-components of the critical set. The caveat is that
the critical set A of f is a non-rectifiable curve (i.e. we cannot connect all points in A by piecewise
C1 paths).

Exercise 7. Let M and N be m and n dimensional, respectively, with m < n. Determine the range
of δ ∈ (0, 1] such that the image of any f : M → N of Hölder regularity δ has measure zero.

2 Handle dimension and transversality

Exercise 8. A triangulation of a manifold N is a homeomorphism f : K → N from a simplicial
complex. In Differential Topology, we furthermore assume that f is smooth when restricted to all
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simplices of K. You can prove that every smooth manifold N admits a triangulation. A possible
strategy, due to Whitney, reads:

� Embed N into some euclidean space E.

� Produce a sufficiently fine triangulation T of E.

� In a tubular neighbourhood of N , make simplices transverse to N by applying transversality.

� Choose a nice subcomplex K of T , homotopy equivalent to N .

� The projection of K to N should be a homeomorphism.

You probably do not want to do this in detail. I recommend that you think about it, draw some
pictures when N is a curve/surface embedded in R3, and move on.

Exercise 9. We say that N has handle dimension at most n if it deformation retracts to an n-
dimensional CW-complex K ⊂ N , called the skeleton, whose simplices are smoothly embedded.

� Find an example in which the handle dimension is smaller than the dimension, and the skeleton
(giving that handle dimension) cannot be chosen to be a manifold.

� Prove that, if N is closed, its handle dimension is equal to its dimension. Hint: Cohomology.

� The following is very difficult but, if you have plenty of time: prove that every open manifold
M of dimension m has handle dimension at most m− 1. Idea: Pick a triangulation and try to
push M into a neighbourhood of the codimension-1 simplices.

Exercise 10. Fix an m-dimensional manifold M . Consider N and L, submanifolds of handle dimen-
sions n and l, respectively. Prove that, generically, N ∩ L = ∅ if n+ l < m. Hint: The claim follows
once the skeleta are made disjoint. To prove this latter fact, use induction on the handle dimension
and apply transversality to the cells.

Exercise 11. Let M be a manifold of handle dimension m and dimension n. Prove that M immerses
into Rmax(n,2m) and embeds into Rmax(n,2m+1).

3 Bordism

Let us recall the construction of (unoriented, singular) bordism. The idea is to build a homology theory
whose building blocks are manifolds and not simplices. We fix an m-dimensional manifold M (the
upcoming definitions work for topological spaces as well, but then we would not have transversality).

We define Zn = Zn(M) to be the set whose elements are pairs (N, f : N → M), with N a closed
n-dimensional manifold and f a smooth map. Disjoint union defines a notion of addition in Zn. An
element in Zn is nullbordant if it is of the form (∂W, g|W ), where W is an (n + 1)-manifold with
boundary and f : W →M is a smooth map. This defines a equivalence relation in Zn: two elements
are bordant if their disjoint union is nullbordant. We denote the resulting set of equivalence classes
by Bn; addition descends to this quotient.

Exercise 12. We now use transversality to define an intersection pairing. Given [N, f ] ∈ Bn and
[L, g] ∈ Bl, we define their intersection to be an element [N, f ] ∩ [L, g] ∈ Bn+l−m:

� Given (f, g) : N × L → M ×M , use transversality to find h : N × L → M ×M close to (f, g)
and transverse to the diagonal ∆M .

� Define [N, f ] ∩ [L, g] to be [I := h−1(∆M ), h|I ]. Prove that this is well-defined (i.e. it does not
depend on choices and it only depends on (N, f) and (L, g) up to bordism).
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� Let N be m-dimensional and L be a point. How does [N, f ] ∩ [L, g] relate to the degree of f?

Exercise 13. We can define oriented singular bordism by considering now pairs (N, f) with N
oriented. A nullbordant element (∂W, g|W ) is taken to have the boundary orientation given by the
orientation of W . Prove that the intersection pairing can be defined in this oriented setting as well.
How does this relate to the degree of a map?

4 Transversality in geometry

Exercise 14. A symplectic structure in a 2n-dimensional manifold M is a closed, non-degenerate
2-form ω. Non-degeneracy means ωn 6= 0 (i.e. at each point, ω, seen as a matrix, has non-zero
determinant). Prove that a generic closed 2-form is symplectic in the complement of a smooth
hypersurface H ⊂M . Hint: Perturb ω using exact 2-forms.

Exercise 15. A 1-form α in a (2n + 1)-dimensional manifold M is said to be a contact structure if
α ∧ dαn 6= 0 (i.e. dα is non-degenerate when restricted to the hyperplane field ker(α)). Prove that a
generic 1-form is contact in the complement of a smooth hypersurface H ⊂M .

Exercise 16. A 1-form α in a (2n+2)-dimensional manifold M is said to be an even-contact structure
if α∧ dαn 6= 0. Prove that a generic 1-form is even-contact in the complement of a discrete collection
of points A ⊂ M . Deduce that, if M is open, it has an even-contact structure. Hint: Its handle
dimension is at most 2n+ 1.

Exercise 17. Let M be a manifold. Prove that a generic symmetric 2-tensor g on M is non-degenerate
in the complement of a stratified hypersurface H ⊂ M . What is a reasonable stratification for H
(and what are the dimensions of the strata generically)? Hint: Think first about the linear case (i.e.
stratify the space of symmetric bilinear maps on a vector space).

5 Jet spaces

Exercise 18. Prove that the space of immersions is open (as a subset of the space of all maps in
the strong C1-topology). Then, you may want to prove the same statement for embeddings (but it is
much trickier!) Prove that the space of embeddings is not open in the C0-topology.

Exercise 19. Let us introduce coordinates (x, y, z) on Jr(Rn,Rm). Here x ∈ Rn are the domain
variables and y ∈ Rm the target variables. Given a multi-index I = (i1, · · · , in) of cardinality
|I| = i1 + · · · + in ≤ r, we write zIj for the variable representing the derivative ∂i11 · · · ∂inn of yj with
respect to the x-variables.

Given diffeomorphisms φ : Rn → Rn and ψ : Rm → Rm, we can produce a diffeomorphism of jet
space Φ : Jr(Rn,Rm)→ Jr(Rn,Rm) by setting

Φ(jrpf) := jrφ(p)(ψ ◦ f ◦ φ
−1).

We call this a point symmetry. When ψ is taken to be the identity, we call this a domain symmetry.

� Prove that point symmetries in J1(R,R) are indeed diffeomorphisms.

� Prove that the only subsets R ⊂ J1(R,R) invariant under point symmetries are J1(R,R) itself
and the empty set.

� Prove the analogous statements for Jr(Rn,Rm).

Exercise 20. Suppose that R ⊂ Jr(Rn,Rm) is invariant under domain symmetries. Prove that
π : R → Rn, the projection to the x-variables, is a fibre bundle. Can you characterise all such R in
the case n,m, r = 1?
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Exercise 21. Find a subset R ⊂ J1(R,R) such that:

� There is a section F : R→ R (here the domain corresponds to the x-variable).

� There is no function f : R→ R such that j1f takes values in R.

Hint: You can pick F first and then construct a suitable R.

Can you find an example with R open and invariant under domain symmetries?

6 Random exercises

Exercise 22. Let f : R→ R be a smooth function with ∂jf(0) = 0 for j < r and ∂rf(0) 6= 0. Then,
the Malgrange preparation theorem states that there is g non-vanishing such that f(x) = g(x)xr close
to zero.

Deduce that there is a diffeomorphism ψ : R → R, locally defined close to the origin, such that
f ◦ ψ = ±xr. We say that, thanks to the coordinate change ψ, we have put f in normal form close
to zero.

Prove that there is no normal form for functions flat at zero (i.e. smooth functions with ∂jf(0) = 0
for all j). I.e. exhibit various flat functions that cannot be transformed into one another by a local
change of coordinates.

The punchline here is that, locally, smooth functions resemble analytic functions when their Taylor
polynomials are non-vanishing, but may be very wild otherwise.

Exercise 23. Let M be the vector space of m-by-n matrices, m ≤ n. Write Mk ⊂ M for the
locus of matrices of rank exactly k ≤ m. Recall that the general linear group GLm acts on M by
right-multiplication. Similarly, GLn acts on M from the left.

� Prove that there is a transitive action of GLm ×GLn on Mk.

� Compute the isotropy of this action (i.e. pick an element in Mk and determine the subgroup H
fixing it).

� Deduce that Mk is smooth and diffeomorphic to the quotient (GLm ×GLn)/H.

Exercise 24. Let M be the space of m-by-n matrices; let m ≤ n. Consider now Ak ⊂M , the locus
of matrices of rank at most k ≤ m. Observe that this is an algebraic subvariety. Find examples of m,
n and k such that Ak is not smooth.
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