

Exercise sheet

Transversality and its applications. GQT minicourse

August 23, 2022

1 Weird functions and Sard

Exercise 1. Let $K \subset \mathbb{R}$ be a closed subset. Prove that there is a smooth function $f : \mathbb{R} \rightarrow \mathbb{R}$ whose zero set is exactly K . Strategy:

- Observe that the distance function $g : \mathbb{R} \rightarrow \mathbb{R}$ to K is continuous.
- Consider the sets $K_n := \{x \in \mathbb{R} \mid g(x) \geq 1/n\}$, where $n \in \mathbb{Z}^+$. Construct a function f_n that is identically 1 on K_n but zero on the complement of K_{n+1} . **Hint:** Convolve the indicator function of K_n against a suitably chosen bump function.
- Find constants a_n so that $f := \sum a_n f_n$ is the desired function. **Note:** To prove that f is smooth, you have to choose the a_n carefully.

Deduce that there is a smooth function on \mathbb{R} whose critical points are exactly K .

Exercise 2. Let $U \subset [0, 1]$ be an open dense subset with zero measure complement K . Prove that there is a C^1 function $f : [0, 1] \rightarrow [0, 1]$ whose critical *values* are exactly K . **Hint:** Consider a homeomorphism $\chi : [0, 1] \rightarrow [0, 1]$ that is smooth, a diffeomorphism when restricted to $(0, 1)$, and has all derivatives vanishing at the endpoints. In each component of U , use a suitable reparametrisation of χ .

Exercise 3. Let $K \subset \mathbb{R}$ be a subset such that $K + K$ contains a non-empty open subset of \mathbb{R} . Prove that there is no C^2 -function $f : \mathbb{R} \rightarrow \mathbb{R}$ whose singular values contain K . **Hint:** Construct a suitable function $\mathbb{R}^2 \rightarrow \mathbb{R}$ and apply Sard to it.

Exercise 4. Let C be the Cantor set. Prove that $C + C = [0, 2]$.

Exercise 5. Find a C^1 -function $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ whose set of critical values has positive measure.

Exercise 6. Let M be a smooth manifold. Let $f : M \rightarrow \mathbb{R}$ be a C^1 -function with locus of critical points $A \subset M$. Prove that f is constant along any piecewise C^1 curve $\gamma \subset A$.

Note: In “*A function not constant on a connected set of critical points*”, Whitney constructs a C^1 -function $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ that is not constant over path-components of the critical set. The caveat is that the critical set A of f is a non-rectifiable curve (i.e. we cannot connect all points in A by piecewise C^1 paths).

Exercise 7. Let M and N be m and n dimensional, respectively, with $m < n$. Determine the range of $\delta \in (0, 1]$ such that the image of any $f : M \rightarrow N$ of Hölder regularity δ has measure zero.

2 Handle dimension and transversality

Exercise 8. A *triangulation* of a manifold N is a homeomorphism $f : K \rightarrow N$ from a simplicial complex. In Differential Topology, we furthermore assume that f is smooth when restricted to all

simplices of K . You can prove that every smooth manifold N admits a triangulation. A possible strategy, due to Whitney, reads:

- Embed N into some euclidean space E .
- Produce a sufficiently fine triangulation T of E .
- In a tubular neighbourhood of N , make simplices transverse to N by applying transversality.
- Choose a nice subcomplex K of T , homotopy equivalent to N .
- The projection of K to N should be a homeomorphism.

You probably do not want to do this in detail. I recommend that you think about it, draw some pictures when N is a curve/surface embedded in \mathbb{R}^3 , and move on.

Exercise 9. We say that N has *handle dimension* at most n if it deformation retracts to an n -dimensional CW-complex $K \subset N$, called the *skeleton*, whose simplices are smoothly embedded.

- Find an example in which the handle dimension is smaller than the dimension, and the skeleton (giving that handle dimension) cannot be chosen to be a manifold.
- Prove that, if N is closed, its handle dimension is equal to its dimension. **Hint:** Cohomology.
- The following is very difficult but, if you have plenty of time: prove that every open manifold M of dimension m has handle dimension at most $m - 1$. **Idea:** Pick a triangulation and try to push M into a neighbourhood of the codimension-1 simplices.

Exercise 10. Fix an m -dimensional manifold M . Consider N and L , submanifolds of handle dimensions n and l , respectively. Prove that, generically, $N \cap L = \emptyset$ if $n + l < m$. **Hint:** The claim follows once the skeletons are made disjoint. To prove this latter fact, use induction on the handle dimension and apply transversality to the cells.

Exercise 11. Let M be a manifold of handle dimension m and dimension n . Prove that M immerses into $\mathbb{R}^{\max(n, 2m)}$ and embeds into $\mathbb{R}^{\max(n, 2m+1)}$.

3 Bordism

Let us recall the construction of (unoriented, singular) bordism. The idea is to build a homology theory whose building blocks are manifolds and not simplices. We fix an m -dimensional manifold M (the upcoming definitions work for topological spaces as well, but then we would not have transversality).

We define $Z_n = Z_n(M)$ to be the set whose elements are pairs $(N, f : N \rightarrow M)$, with N a closed n -dimensional manifold and f a smooth map. Disjoint union defines a notion of addition in Z_n . An element in Z_n is *nullbordant* if it is of the form $(\partial W, g|_W)$, where W is an $(n+1)$ -manifold with boundary and $f : W \rightarrow M$ is a smooth map. This defines an equivalence relation in Z_n : two elements are *bordant* if their disjoint union is nullbordant. We denote the resulting set of equivalence classes by B_n ; addition descends to this quotient.

Exercise 12. We now use transversality to define an intersection pairing. Given $[N, f] \in B_n$ and $[L, g] \in B_l$, we define their intersection to be an element $[N, f] \cap [L, g] \in B_{n+l-m}$:

- Given $(f, g) : N \times L \rightarrow M \times M$, use transversality to find $h : N \times L \rightarrow M \times M$ close to (f, g) and transverse to the diagonal Δ_M .
- Define $[N, f] \cap [L, g]$ to be $[I := h^{-1}(\Delta_M), h|_I]$. Prove that this is well-defined (i.e. it does not depend on choices and it only depends on (N, f) and (L, g) up to bordism).

- Let N be m -dimensional and L be a point. How does $[N, f] \cap [L, g]$ relate to the degree of f ?

Exercise 13. We can define oriented singular bordism by considering now pairs (N, f) with N oriented. A nullbordant element $(\partial W, g|_W)$ is taken to have the boundary orientation given by the orientation of W . Prove that the intersection pairing can be defined in this oriented setting as well. How does this relate to the degree of a map?

4 Transversality in geometry

Exercise 14. A symplectic structure in a $2n$ -dimensional manifold M is a closed, non-degenerate 2-form ω . Non-degeneracy means $\omega^n \neq 0$ (i.e. at each point, ω , seen as a matrix, has non-zero determinant). Prove that a generic closed 2-form is symplectic in the complement of a smooth hypersurface $H \subset M$. **Hint:** Perturb ω using exact 2-forms.

Exercise 15. A 1-form α in a $(2n+1)$ -dimensional manifold M is said to be a contact structure if $\alpha \wedge d\alpha^n \neq 0$ (i.e. $d\alpha$ is non-degenerate when restricted to the hyperplane field $\ker(\alpha)$). Prove that a generic 1-form is contact in the complement of a smooth hypersurface $H \subset M$.

Exercise 16. A 1-form α in a $(2n+2)$ -dimensional manifold M is said to be an even-contact structure if $\alpha \wedge d\alpha^n \neq 0$. Prove that a generic 1-form is even-contact in the complement of a discrete collection of points $A \subset M$. Deduce that, if M is open, it has an even-contact structure. **Hint:** Its handle dimension is at most $2n+1$.

Exercise 17. Let M be a manifold. Prove that a generic symmetric 2-tensor g on M is non-degenerate in the complement of a stratified hypersurface $H \subset M$. What is a reasonable stratification for H (and what are the dimensions of the strata generically)? **Hint:** Think first about the linear case (i.e. stratify the space of symmetric bilinear maps on a vector space).

5 Jet spaces

Exercise 18. Prove that the space of immersions is open (as a subset of the space of all maps in the strong C^1 -topology). Then, you may want to prove the same statement for embeddings (but it is much trickier!). Prove that the space of embeddings is not open in the C^0 -topology.

Exercise 19. Let us introduce coordinates (x, y, z) on $J^r(\mathbb{R}^n, \mathbb{R}^m)$. Here $x \in \mathbb{R}^n$ are the domain variables and $y \in \mathbb{R}^m$ the target variables. Given a multi-index $I = (i_1, \dots, i_n)$ of cardinality $|I| = i_1 + \dots + i_n \leq r$, we write z_j^I for the variable representing the derivative $\partial_1^{i_1} \dots \partial_n^{i_n}$ of y_j with respect to the x -variables.

Given diffeomorphisms $\phi : \mathbb{R}^n \rightarrow \mathbb{R}^n$ and $\psi : \mathbb{R}^m \rightarrow \mathbb{R}^m$, we can produce a diffeomorphism of jet space $\Phi : J^r(\mathbb{R}^n, \mathbb{R}^m) \rightarrow J^r(\mathbb{R}^n, \mathbb{R}^m)$ by setting

$$\Phi(j_p^r f) := j_{\phi(p)}^r (\psi \circ f \circ \phi^{-1}).$$

We call this a *point symmetry*. When ψ is taken to be the identity, we call this a *domain symmetry*.

- Prove that point symmetries in $J^1(\mathbb{R}, \mathbb{R})$ are indeed diffeomorphisms.
- Prove that the only subsets $\mathcal{R} \subset J^1(\mathbb{R}, \mathbb{R})$ invariant under point symmetries are $J^1(\mathbb{R}, \mathbb{R})$ itself and the empty set.
- Prove the analogous statements for $J^r(\mathbb{R}^n, \mathbb{R}^m)$.

Exercise 20. Suppose that $\mathcal{R} \subset J^r(\mathbb{R}^n, \mathbb{R}^m)$ is invariant under domain symmetries. Prove that $\pi : \mathcal{R} \rightarrow \mathbb{R}^n$, the projection to the x -variables, is a fibre bundle. Can you characterise all such \mathcal{R} in the case $n, m, r = 1$?

Exercise 21. Find a subset $\mathcal{R} \subset J^1(\mathbb{R}, \mathbb{R})$ such that:

- There is a section $F : \mathbb{R} \rightarrow \mathcal{R}$ (here the domain corresponds to the x -variable).
- There is no function $f : \mathbb{R} \rightarrow \mathbb{R}$ such that $j^1 f$ takes values in \mathcal{R} .

Hint: You can pick F first and then construct a suitable \mathcal{R} .

Can you find an example with \mathcal{R} open and invariant under domain symmetries?

6 Random exercises

Exercise 22. Let $f : \mathbb{R} \rightarrow \mathbb{R}$ be a smooth function with $\partial^j f(0) = 0$ for $j < r$ and $\partial^r f(0) \neq 0$. Then, the Malgrange preparation theorem states that there is g non-vanishing such that $f(x) = g(x)x^r$ close to zero.

Deduce that there is a diffeomorphism $\psi : \mathbb{R} \rightarrow \mathbb{R}$, locally defined close to the origin, such that $f \circ \psi = \pm x^r$. We say that, thanks to the coordinate change ψ , we have put f in *normal form* close to zero.

Prove that there is no normal form for functions flat at zero (i.e. smooth functions with $\partial^j f(0) = 0$ for all j). I.e. exhibit various flat functions that cannot be transformed into one another by a local change of coordinates.

The punchline here is that, locally, smooth functions resemble analytic functions when their Taylor polynomials are non-vanishing, but may be very wild otherwise.

Exercise 23. Let M be the vector space of m -by- n matrices, $m \leq n$. Write $M_k \subset M$ for the locus of matrices of rank exactly $k \leq m$. Recall that the general linear group GL_m acts on M by right-multiplication. Similarly, GL_n acts on M from the left.

- Prove that there is a transitive action of $\mathrm{GL}_m \times \mathrm{GL}_n$ on M_k .
- Compute the isotropy of this action (i.e. pick an element in M_k and determine the subgroup H fixing it).
- Deduce that M_k is smooth and diffeomorphic to the quotient $(\mathrm{GL}_m \times \mathrm{GL}_n)/H$.

Exercise 24. Let M be the space of m -by- n matrices; let $m \leq n$. Consider now $A_k \subset M$, the locus of matrices of rank *at most* $k \leq m$. Observe that this is an algebraic subvariety. Find examples of m , n and k such that A_k is not smooth.