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1 Metric spaces

1.1 Path-connectedness

Exercise 1.1. Consider a continuous map f : X — Y between metric spaces. Show that, if f is
surjective and X is path-connected, then Y is path-connected.

Exercise 1.2. Let S be the unit circle in R2. Is S path-connected? Is R? \ S path-connected? Prove
your statements.

Exercise 1.3. Let A := {z = 0} U {y = 0} be the union of the axes in R?. Is A path-connected? Is
R2\ A path-connected?

Exercise 1.4. We consider the open subset U := R?\ {(x,0) € R? | z > 0}. Show that U is open
and path-connected.

Exercise 1.5. Let U := R?\ {(0,0)} be the punctured plane. Show that U is open and path-
connected.

Exercise 1.6. We consider the open subset V := {(x,y) € R? | |y| > |z|}.

(a) Show that V is not path-connected.
(b) Show that V' U {(0,0)} is path-connected.

Exercise 1.7. Fixn > 1. Let U C R" be the complement of finitely many points. Show that:

» U is open.

* U is path-connected.

1.2 Homotopy of curves

Exercise 1.8. Consider a metric space (X, d) and a pair of points p and q. We denote by K the set
of continuous curves ¢ : [0, 1] — X with ¢(0) = p and ¢(1) = ¢q. We define the relation ~ on K by
¢ ~ d if ¢ and d are homotopic relative endpoints.

(a) Show that ¢ ~ c.
(b) Showthatc ~d — d ~ c.

(c) Letc ~ dand d ~ e. Show that there exists a continuous map H : [0, 1] x [0,2] — X with

H(s,0) =c(s) and H(s,2)=e(s).

(d) Show that ~ is an equivalence relation on K.

(e) Formulate and prove similar statements for closed curves in X.



2 (Multi)linear algebra

2.1 Linear maps
Exercise 2.1. Show that the following claims are equivalent for a covector a : R" — R:

e a=0.
e (v attains a maximum.

e (v attains a minimum.

Exercise 2.2. Consider the linear maps A, B, C, D : R? — R? given by the matrices

()
p- ().
()
o=(%0)

* Is there a change of basis relating A and B? If so, provide it explicitly.

and

* Is there a change of basis relating B and C? If so, provide it explicitly.

* Can D be related to any of the other matrices by a change of basis? If so, provide it explicitly.
2.2 Kernels, images, annihilators
Exercise 2.3. Consider the covector o : R® — R given by the expressiona = (2 1 0).

* What is the dimension of the kernel of a? Find a basis for it.
* What is the dimension of the image of a? Find a basis for it.
* Give a basis for the annihilator of ker(«).

Exercise 2.4. Consider the linear map A : R? — R? given by the matrix:
2 10
A= <3 3 3) '

* Show that the kernel of A has dimension 1. Find a vector spanning it.

* Show that A is surjective.

* Give a basis for the annihilator of ker(A).



Exercise 2.5. Consider the linear map A : R? — R? given by the matrix:

2 10
A_<4 2 0)‘

What is the dimension of the kernel of A? Find a basis for it.

What is the dimension of the image of A? Find a basis for it.
* Give a basis for the annihilator of ker(A).
* Give a basis for the annihilator of im(A).
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Exercise 2.6. Consider the linear map A : R? — R? given by the matrix:

A=

(G20 R

11
10
3 1

e What is the dimension of the kernel of A? Find a basis for it.

What is the dimension of the image of A? Find a basis for it.
* Give a basis for the annihilator of ker(A).
* Give a basis for the annihilator of im(A).

Exercise 2.7. Consider the covectors a1, as, a3 : R® — R givenby a; = (2 1 1), ap =
(3 2 1),andaz = (1 1 0).Consider the subspace S C Lin(R3, R) spanned by a; and as.

* Does S contain a3? If so, express a3 as a linear combination of o1 and .
* Find a basis for the annihilator S+ ¢ R3.

« Extend the basis of S+ you just found to a basis of ker(a).

2.3 Quadratic forms

Exercise 2.8. Consider the quadratic form @ : R? — R given by the matrix:

11
A= <2 1) |
That is, Q(v) := v Awv.

* Write () explicitly as a homogeneous polynomial of degree 2.

« Find a symmetric matrix B so that Q(v) := v!Bv.

* Is @ non-degenerate?

* If so, determine whether () is positive definite, negative definite, or indefinite.

* Is v = 0 a maximum/minimum for Q)?



* Find a change of basis C' : R? — R? so that C* AC is diagonal.

Exercise 2.9. Consider the quadratic form @Q : R? — R given by the matrix:
111
A=12 1 0
00 1

* Write () explicitly as a homogeneous polynomial of degree 2.

e Find a symmetric matrix B so that Q(v) := v'Bw.

* Is @) non-degenerate?

* If so, determine whether () is positive definite, negative definite, or indefinite.
* Is v = 0 a maximum/minimum for Q)?

» Find a change of basis C' : R? — R? so that C* AC is diagonal.

2.4 Polynomials

Exercise 2.10. Consider R? with coordinates (, y, z). Consider the polynomial function P : R? —
R given by
P(z,y,2) =2’z +xyz+ 22y + = + yz + 1.
* What is the order of P? Is P homogeneous?

* Write out the part of P that is homogeneous of order 2.

* For each monomial appearing in P (with non-zero coefficient), indicate the multi-index « it
corresponds to.

Exercise 2.11. Consider R? with coordinates (, y, z). Consider the polynomial function P : R? —
R? given by
P(x,y,2) = (P, Py) := (222% + xy’z + 22y% + 2* + P2, 7).
* What is the order of P? Is P homogeneous?

* Write out the part of P that is homogeneous of order 2.

* For each monomial appearing in P; (with non-zero coefficient), indicate the multi-index « it
corresponds to.



3 Partial, directional, and total derivatives

3.1 Partial and directional derivatives

Exercise 3.1. Compute the partial derivatives D, f, D, f, and D, f of the following functions:

@ flz,y.2) = 2= (z,9) # (0,0).
b) f(z,y,2) = 2* + yzsin(z).
© f(z,y,2) = zysin(y) log(z* +1).

Exercise 3.2. Compute the partial derivatives D, and D,, of the functions f, g : R? — R:

(@) if f(r, ) := rcos(p),

(b) if g(r, ) := rsin(y).

We can put these two functions together as F' := (f,g) : R? — R2, yielding the so-called polar
coordinates. Show that F' is partially differentiable and compute D F' and Do F'.

Exercise 3.3. We define the polynomial function f : R> — R by
fla,y) =2 +a?y + xy® +y°.

Show that f is directionally differentiable at (1,0) and compute the directional derivative D, f(1,0)
for every v € R2.

Exercise 3.4. Let f : R?> — R be given by f(z,y) := zy + ye®. Compute the following
directional derivatives:

(@) D(1,2f(0,0).
() Do,0)f(1,1).
(©) D1y f(1,1).

Exercise 3.5. The function f : R? — R is defined by: f(z,y) := zy® + e, Show that f
is directionally differentiable in every direction v € R? at the point (1,1). Provide a formula for

DUf(17 1)'

Exercise 3.6. Consider the norm function ||z|| : R" — R.
(a) Show that it is not directionally differentiable at x = 0.

(b) Prove that Djl|z|| = [ for each z # 0.

3.2 Total differentiability

Exercise 3.7. Show that there does not exist a function f : R” — R that satisfies the following
conditions: f is differentiable at 0 € R™ and D, f(0) > 0 for every v € R™ with v # 0.



Exercise 3.8. Find all totally differentiable functions f : R™ — R such that D, f(p) > 0 for every
peR”and v # 0 € R™.

Exercise 3.9. Show that each of the following functions is totally differentiable everywhere and
compute the total differential.

(a) The function f : R? — R? defined by f(z,y) := (z +y, 2> + 9%,z y).

(b) The function g : R> — R defined by g(z, y, 2) :=xyz +zy + 2.

(c) The function ¢ : R — R3 defined by () := (1, z, 2?).
Recall: You must prove total differentiability. To do so, the strategy is to (1) compute the partial
derivatives and put them together to come up with a candidate for D f and either (2) prove that said
candidate fulfills the definition of total derivative or (2’) invoke the theorem telling us that continuous

partial differentiability implies total differentiability. For this exercise, make sure you understand
both approaches.

Exercise 3.10. The maps g : R? — R? and h : R? — R? are defined by

9(z, y, 2) = (z 2, log(y” +¢%)),  h(z,y) = (z +y, zy).

Compute the total derivative of h o g in two ways:

(a) directly, i.e., by computing the partial derivatives of & o g;
(b) using the chain rule.

Exercise 3.11. The maps f : R? — R3 and g : R? — R? are defined by

fl,y) =%y, zy),  glx,y, 2) = (zyz, 2 sin(zy)).

Compute the Jacobian matrices of f o g and g o f. Prove that these fulfill the definition of total
derivative.

Exercise 3.12. Consider the function f : R? — R defined by the expression f(z, ) := cos(z) sin(y).

* Prove that f is totally differentiable at all points. Note: You can use the fact, proven in earlier
courses, that the sine and the cosine are differentiable functions of one variable.

+ Compute the differential D f : R? — Lin(R?,R).

» Compute the critical points of f.

» Draw schematically the level sets of f, indicating where the critical points are.

* For each critical point, determine whether it is a (local) maximum, a (local) minimum, or
neither.



3.3 Stationary points

Exercise 3.13. Consider the function f : R? — R defined by f(z, y) = (1 — x2) (1 — y2).

a) Compute all stationary points of f.

b) Determine at all stationary points whether f has a local maximum, a local minimum, or neither.
Hint: draw the zero level set of f and the regions where f > 0, resp. f < 0.

Exercise 3.14. The function f : R> — R is defined by f(z, y) =2y (z +y — 1).

a) Prove that f has four stationary points.

b) Prove that f has an extremum at exactly one of these points. Hint: draw the zero level set of f
and the regions where f > 0, resp. f < 0.

Exercise 3.15. Consider the polynomial function
1
fay) =520 — vt oy

of two variables. Compute the partial derivatives D, f and D, f and determine the stationary points.
Investigate whether f attains a maximum and/or minimum on the right half-plane

Vi ={(z,y) |z =0},
respectively on the left half-plane
Ve ={(z, y) | v <0}

If so, also compute the maximum, resp. minimum. Finally, answer the same questions with f repla-
ced by g(x,y) := %ZL‘S —z—xy’

3.4 Total derivatives of multilinear maps

Exercise 3.16. Given are two fixed vectors b and ¢ in R™. Prove that each of the maps f below
is totally differentiable at every point a of R™ by using the definition of total differentiability. Also
compute D f(a)h for each point a € R™ and vector h € R™:

a) f(x) = (b, x),

b) f(z) = (b, ) (¢, z),
o f(z)=(z,z),

d) f(z) = (b, ),

e) f(z) = (z, 2)x

Exercise 3.17. Suppose f : R® — RP and g : R" — R are totally differentiable functions at
a € R™. Prove that F' : R® — RP, defined by

F(z) := g(x)f ()

is also totally differentiable at a and prove that the total derivative D F(a) is given by the formula:

DF(a)(h) = g(a)Df(a)(h) + f(a)Dg(a)(h).



Exercise 3.18. Suppose f : R* — RP and g : R® — RP are totally differentiable functions at
a € R™. Prove that F' : R® — R, defined by

Fz) := (f(z), g(z))
is also totally differentiable at a and prove that the total derivative D F'(a) is given by the formula:
DF(a)(h) = (Df(a)(h), g(a)) + (f(a), Dg(a)(h)).
Exercise 3.19. Let f : R® — R be the function f(z) = ||z]|%. Let G := fIdgn : R® — R™.
(a) Show that G is differentiable and bijective.
(b) Prove that DG(0) = 0 but det DG(p) # 0 for every p # 0.

(c) Prove that G~! is not differentiable at 0.

Exercise 3.20. Let A be a symmetric n-by-n matrix. Consider the function f : R" — R given by
f(z) = 2t Az, i.e. the associated quadratic form. Recall that we see z € R™ as a column vector and
2! denotes its transpose, which is a row vector. Then:

» Write out f in terms of the coefficients A;; of the matrix A. Prove that f is a polynomial of
order (at most) 2 and is thus twice differentiable.

« Compute D f in terms of the coefficients A;;.

» Compute the second derivatives of f.

Show that f has a critical point at the origin.

Show that f has other critical points if and only if A has zero determinant.

3.5 Chain rule

Exercise 3.21. The functions f : R> — R and g : R? — R? are defined by
fla,y) =+ gle,y) = (zy, v +y).
a) Compute the derivatives of f o g and of g o f.

b) Verify that the chain rule holds for the composition f o g.

Exercise 3.22. Let f : R* — R be defined by f(z,vy, 2) := 2% + y? + 2%. Consider ¢ : R? — R3
defined by ¢(u,v) := (u+ v,uv,u —v). Leth = f o ¢.

 Compute h(u,v).
» Compute the differential of / using the definition.

» Compute the differential of & using the chain rule.

Exercise 3.23. Let f : R? — R be defined by f(z,y) := cos(z? + 32). Let ¢ : R — R? be defined
by ¢(t) := (cost,sint). Leth = f o ¢.

» Compute h(t).
» Compute the derivative of h using the definition.

» Compute the derivative of h using the chain rule.



3.6 Badly-behaved functions

Exercise 3.24. Let f : R — R be defined by

{x2 sinl  (x#0),

J@ =1, (z = 0)

(a) Show that f is differentiable everywhere.
(b) Show that f’ is not continuous at 0.

Exercise 3.25. Show that the function f : R? — R defined by

wzafyz (z,y) # (0,0),
0 (z,y) = (0,0).

f(z,y) —{

has directional derivatives in every direction v € R?, but is not continuous at 0.

3.7 Growth

Exercise 3.26.  (a) Prove that if f : R — R is differentiable and sup,cp |f'(z)| < oo, then f
grows at most linearly. Le. there is a linear function that provides an upper bound for f.

(b) Prove that if f : R™ — R is differentiable and sup,cg~ || D f(x)|| < oo, then f grows at most
linearly.

Exercise 3.27. Prove that if f : R — R is differentiable and there is a constant C' > 0 such that
|f'(x)] < C|f(x)| forall z € R, then f = 0.

3.8 Functional equations

Exercise 3.28. Suppose that f : R — R is continuous and satisfies
fle+y)=Ff@)fly),  (z,yeR).
(a) Show that either f = 0or f > 0.

(b) Show that either f = 1 or f(z) = e®* for some a € R.

Exercise 3.29. Suppose that f : R™ — R is differentiable and satisfies
flet+y) = fl@)+ ), (z,yeR)

(a) Show that f is linear.
(b) Show that if f is also continuous, then f(z) = (a, z) for some a € R™.

Exercise 3.30. Let U := R?\ {(0,0)} be the punctured plane. Show that there exists a unique
partially differentiable f : U — R satisfying f(1,0) = 1 and

_(z w)
DIt = 1



3.9 Extra

Exercise 3.31. Suppose that f : R" — R is differentiable and homogeneous of degree £, i.e.
fOx) =Mf(z), (A>0,zeR").

Show that
(Vf(x),z) =kf(2).

Exercise 3.32. Let f : R” — R be a homogeneous polynomial of degree 2, i.e.

f(x) = Z aijxixj.

ij=1

(a) Show that f(z) = 2! Ax for a symmetric matrix A.
(b) Show that Vf(x) = 2Ax.
(c) Show that V2 f(z) = 2A.

Exercise 3.33. Let f : R™ — R be defined by f(z) = ||z||.

(a) Show that f is differentiable at every x # 0 and compute V f(z).
(b) Show that f is not differentiable at 0.

Exercise 3.34. Let f : R? — R be defined by f(z,y) = \/|zy|.

(a) Show that f is differentiable at every (x, y) with zy # 0.

(b) Show that f is not differentiable at (0, 0).
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4 Derivatives of higher order

4.1 Computing higher partial derivatives

Exercise 4.1. We consider the function f : R> — R defined by £(0,0) := 0 and by

|z|zy

V2 + 2

(a) Show that Dy f(0,y) exists for all y € R and determine the function y — D1 f(0,y).

fz,y) = it (z,y) # (0,0).

(b) Show that Dy f(x,0) exists for all z € R and determine the function = — Dy f(x, 0).

(c) Show that D2 D1 f(0,0) and D1 D2 f(0,0) exist but are not equal to each other.

How can (c) be reconciled with the theorem on switching of partial derivatives?

4.2 Stationary points and extrema

Exercise 4.2. Determine all local extrema of the functions f : R? — R defined below.

@) fla,y) = eV =227 — ¢
(b) f(z,y) =2 — 2y +y° +€*;
(©) flz,y) =22% + zy + y? + e,
(d) flzy)=e "V (a2 +2¢7).

Determine, for each extremum, whether it is a maximum or minimum and whether it is local or
global. Does the function have any other critical points?

Exercise 4.3. Let f : R? — R be the function given by f(z,y) := (1 — 22)(1 — 3?).

Show that f is smooth.
* Determine all stationary points of f.
* Determine, for each stationary point, whether it is a minimum, a maximum, or neither.
* Determine, for each maximum/minimum, whether it is local or global.
Exercise 4.4. We consider a smooth function g : R — R. The functions f, F : R? — R are defined
by f(z,y) ;=2 +y?>and F :=go f.
(a) Prove that F' is smooth.
(b) Compute the first and second order derivatives of F' in terms of the partial derivatives of g.
(c) Determine the stationary points of F' in terms of those of g.

(d) Determine, for each critical point, whether it is a minimum, a maximum, or neither. Determine,
for each maximum/minimum, whether it is local or global.
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Exercise 4.5. Let f,g : R — R be smooth functions. We consider the function F' : R> — R
defined by F(z,y) = f(z + g(y)).

(a) Give the first and second order partial derivatives of F’ in terms of the partial derivatives of f
and g.

(b) Show that F' is a C?-function.
(¢) Determine the critical points of F' in terms of f and g.

(d) Determine, for each critical point, whether it is a minimum, a maximum, or neither. Determine,
for each maximum/minimum, whether it is local or global.

4.3 Hessian
Exercise 4.6. Let U C R" be open, and f : U — R a C?-function.

(a) Show that g := gradf is a C''-function U — R".

(b) Show that for all x € U we have:
Dyg(z) = Hy(x).

Exercise 4.7. (a) Show that every polynomial function f : R™ — R of degree at most 2 can be
uniquely written as

f(z) :a—i-(b,a:)—i-%(C:v,@ (x € R"™).

Here a € R is a constant, b € R™ a constant vector and C € M, (R) a symmetric n X n-matrix.

(b) Show that for every = € R" it holds that gradf(z) = b + Cx. Define now v : R" — R"™ by
v(z) = gradf(x).

(c) Show that v is totally differentiable at every x € R”™ with total derivative Dv(x) : R" —
R"™, h — Ch.

(d) Show that Hy(x) = C for all z € R™.

Exercise 4.8. Given is a polynomial function p : R” — R of degree at most 2. Let a € R"™. Show
that the following statements are equivalent:

(1) D%p(a) = 0 for all & € N™ with || < 2.
(2) limg_q ||z — al| %p(x) = 0.
(3) p=0.

Exercise 4.9. Let C be a symmetric 2 x 2 matrix. We assume that det C' # 0. From linear algebra
it is known that there exist an orthonormal basis {v1, v2} of R? and A1, Ao € R\ {0} such that

C?Jj = )\jUj, (] = 1,2).

We assume that det C' < 0. Then A1 Ao < 0. After possibly reordering, we may therefore assume that
A1 > 0and Ay < 0.
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(a) Show that there exist vectors u, v € R? such that

(Cu,u) >0 and (Cv,v)<0

Now let U C R? be open and f : U — R a C?-function with a stationary point a € U. Assume
further that det H¢(a) < 0.

(b) Show that there exist two vectors u, v € R? of length 1 and a § > 0 such that for all 2 € B(a; )
it holds that
(H¢(z)u,u) >0, and (Hf(x)v,v) <0.

(c) Let u satisfy (b). Show that for ¢ € R we have:

O<|t|] <o = fla+tu)> f(a).

(d) Show that f has no local extremum at a.

4.4 Taylor polynomials
Exercise 4.10. Consider the function f : R? — R given by f(z,y) := sin(xy). Compute its third
order Taylor polynomial at (0, 0). Indicate clearly the homogeneous terms.

Hint: you could try to do this directly by computing all derivatives up to order three. A quicker
approach is to: (1) compute the third order Taylor polynomial of the sine, (2) compute the third order
Taylor polynomial of zy, (3) compose them, (4) discard terms of order greater than 3.

Exercise 4.11. Consider the function f : R? — R given by f(x,y) := sin(xy), from the previous
exercise. Let R(z) be the remainder of its second order Taylor polynomial at (0, 0). Provide a finite
upper bound for |R(x)| over the unit ball.

Exercise 4.12. Consider the function f : R? — R given by f(z,7) := e®s™®),

» Compute its third order Taylor polynomial at (1, 0), indicating clearly the homogeneous terms.

 Let R(x) be the remainder of its second order Taylor polynomial at (0,0). Provide a finite
upper bound for | R(x)| over the ball of radius 1 centered at (1, 0).

4.5 Extra

Exercise 4.13. Given is a C? function ¢ : R?> — R and a twice differentiable function f : R — R.

Show that
P flg(z, y) _ *flg(z, y))
dxroy  Oyoxr

Warning: we have not assumed that the second derivative f” of f is continuous.

Exercise 4.14. Let U C R™ and V C RP be open subsets, f € C*(U,RP) and g € C*¥(V,R9) such
that f(U) C V. Show that go f € C*(U,RY). Hint: reduce to ¢ = 1 and use induction on k.
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Exercise 4.15. Let F be the space of functions f : R? — R. For h1, hy € R\ {0} we define the
linear maps A; : 7 — F, for j = 1,2, by

f(z+hje;) — f(z)
h; ’

A () = )

for f € F. Show that for all f € F it holds that:
A1(Azf) = Aa(Arf).
Exercise 4.16. Let U be an open subset of R"™. A vector fieldon U isamapU — R". If f : U - R

is a differentiable real-valued function on U, then the gradient gradf : U — R" of f is a vector field
onU.

If v: U — R" is a differentiable vector field, then the divergence div(v) : U — R of v is defined as

(div(v Z aglxl

Now let n = 3. Then we define the vector field rot(v) : U — R? by

(rot(v))l = Dovg — D3vo, (I‘Ot(’l)))z = D3v; — Djvs, (I‘Ot(v))g = Djvy — Dov1.

The vector field rot(v) is called the curl of v.

a) Show that for every C2 function f on U we have: rot(gradf) = 0.

b) Show that for every C? vector field v on U we have: div(rotv) = 0.
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S Multivariate Riemann integral

Preliminary instructions: improper integrals

In the exercises below, you will encounter “improper” integrals of the type

/aoo f(x)dx

Here, a € R and f : [a,00) — R is a function that is locally Riemann-integrable, i.e., Riemann-
integrable over [a, (] for every 3 > a. The integral is called convergent if the limit | f f(z)dx exists
as 8 — oo. In that case we define

/a  f(@)dz = lim / ? Hayde,

B—00
A non-convergent integral is called divergent.

We can similarly define convergence of integrals over unbounded intervals of the form (—oo, b], over
open intervals (a,b), or over the whole real line (—oo,00). Write I for such an open and assume
that f : I — R is locally Riemann-integrable, i.e., integrable over any closed interval of the form
[or, B] C I. Then we can say that [, f(z)dx is convergent if the integrals [ f f(x)dx have a limit as
« and 8 go to the ends of I (possibly +00).

5.1 Continuity
Exercise 5.1. Let f(z,y) := e"®y : R? — R. Prove that:

 f is continuous,

» for every y > 0 the improper integral

exists,

* but the function F : [0,00) — R is not continuous at 0.

5.2 Computing integrals

Exercise 5.2. Compute fOA(x2 + t)~2dx for t > 0 by differentiating with respect to ¢ the integral
A 2 -1
Jo @ +t)" da.

Exercise 5.3. Compute the improper integral fooo(a:2 + t)~2dx and verify that it equals minus the
derivative with respect to ¢ of the improper integral fooo (2 4 t) " da.

Exercise 5.4. Compute [ (2% 4+ 1) 2dz and [;°(2? + 1) *da.

Exercise 5.5. Define f : R — R by:

1 g—a?(1+t%)/2
fla) = /0 e O
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a) Prove that f(0) = 7/4. Prove by differentiating with respect to a, followed by a substitution,
that

f'(a) = e_“2/2/ e 2dzr, a>0.
0

Define g : R — R by:
a 2
g(a) = f(a) + </ e /2 dx) /2.
0

b) Prove that ¢’ = 0 on R. Conclude that g(a) = g(0) = 7/4 for all a € R.

¢) Prove that for every a € R we have 0 < f(a) < e %°/2. Prove that f(a) — 0 as a — oc.
Finally, use this to prove that

/ e~ /2 dy = V2.

This is a well-known formula of Gauss.
Exercise 5.6. Let
w/2
F(x) ::/ log(1 + zcos> ) dh, x> —1.
0
Prove, by differentiating with respect to x and using the substitution ¢t = sin 6/ cos 6, that
1

reon > 1 1 rmyl+x—1
T Jo t*+1 t*+1+cx 2 z/1+x

Compute F(x). Hint: write G(u) = F(u? — 1) and study G’(u). What is F'(0)?

tr—1

In(t)

F(z) = fol f(z,t)dt : (0,00) — R. The goal of this exercise is to show that F'(z) = In(z + 1).
However, a priori it is not even clear that F'(x) is well-defined. Indeed, we must pay attention to the
fact that f(x,0) and f(x, 1) are not defined.

Exercise 5.7. Consider the function f : (0,00) x (0,1) — R given by f(z,t) := . Define

To address this, we introduce the auxiliary function G(z, s) := fslfs f(z,t)dt : (0,00) x (0,1/2) —
R.
* Show that f is C''. Hint: Don’t forget to study the function (x,t) + ¢ first.

* Show that G is continuous Hint: Consider the function h(s, z) := z(1 — 2s) 4 s. Use this to
make a change of variable that replaces ¢ € [s,1 — s] with z € [0, 1].

e Prove that G is C.
» Compute D,G(x,s).

* Show that there is a unique continuous function H : (0, 00) %[0, 1/2) — Rsuch that H(z, s) =
D,G(x,s) for each s # 0.

* Use H to show that F'(z) := lims_,0 G(z, s) is indeed In(z + 1).
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5.3 Differentiation under the integral sign

Exercise 5.8. Let f : R? — R be the function f(z,y) = sin(x)®y + cos(y)x. Define the function
1
Fy) = [y f(z,y)da.

e Show that F' : R — R is smooth.
e Compute DF.
» Show that |F(y)| < |y| + 3.

Exercise 5.9. Let f : R> — R be the function f(z,y) := 22 + sin(y)%y. Define the function
Fla,y) = [ f(a. a)da.

* Show that F' : R? — R is a C?-function.
» Compute the total derivative of F'.
* Determine the critical points of F'.

Exercise 5.10. Let f : R> — R be C'. Consider the function F' : R? — R defined by:
Cl?2
F(z,y) = / f(@? +y,x+t)dt.
0

e Prove that I is continuous.
e Prove that F'is C.

» Compute its total differential D F', written in terms of the derivatives of f.

Hint: Whenever you are asked to show that a function is C¥, it is often helpful to write it as a
composition/product/sum of simpler functions. In this case, you may want to consider:

h:R3 = R? h(z,y,t):=(x*+yz+1)
g:R* =R, g:=foh

S
G:R>= R, Gz,y,s):= / g(x,y,t)dt
0

Exercise 5.11. Let f : R? — R be continuous. Suppose that f is differentiable with respect to the
first variable and that D; f : R? — R is continuous. Define

€T
F(z) = / fz,y)dy.
a
a) Prove that F' is continuously differentiable and that
x
F(@) = f@a)+ [ Dufa)dy.
a

b) Prove that

/acf(c’y)dy—/:f(%m)dwr/: /az D, f(z,y)dydz.
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Exercise 5.12. Prove successively

: 1 :
(’*)ax (e7*"  cos(z cost)) = 338875 (e7™*™'sin(z cost)), (z#0),
d [™? _ . i
a /., e TS cos(xcost)dt = _81230’ (z #0),

Y g /2 .
/ T e = g - / e ¥ cos(ycost)dt, (y >0),
0 0

x
€ /2
< / e Y sintdt + / e Y sin tdt
0 €

e7¥sine (0 <e<m/2),

w/2 )
/ e VS cos(y cost)dt
0

IN

€+

Y

Yy o
. sin x
lim der =

N

Note: in the course “Functions and Series,” the limit is computed in a very different way.

5.4 Switching in the order of integration

Exercise 5.13. a) Show that the function (z,y) + y/(z* + y?) is continuous on [0, 1] x [1, 2].

b) Verify by direct calculation that
2 1 1 2
Y Y
———dxdy = ————dydx.
) wtaen= [ [ atpe
Exercise 5.14. Leta,b,c,d e Rwith0 <a <band0 < c < d.

a) Show that the function f : (x,y) — 1/(z + y) is continuous on [a, b] X [c, d].

b) Verify by direct calculation that

bopd d b1
dydx = dx dy.
[ gie= [ [ ey

Exercise 5.15. Consider the function f : [0, 1]> — R given by f(z,y) := e™Yy.

a) Show that the function F' : [0, 1] — R given by F'(z) := fol f(x, s)ds is smooth.
b) Show that the function G : [0,1]%> — R given by G(x,y) := ny2 f(z, s)ds is smooth.

¢) Compute fol F(t)dt.
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6 The inverse function theorem and its applications

6.1 Diffeomorphisms

Exercise 6.1. Recall that the spherical coordinates
O :U = (0,00) x (—m,7) X (—g, g) — R3
are defined as
O(r, ¢, 0) := r(cos b cos ¢, cos 0 sin ¢, sin 0).
Show that
det D®(r, $,0) = r? cos b, ((r,¢,0) € U).
Exercise 6.2. Recall that the hyperbolic functions cosh, sinh : R — R are defined by

t —t t —t
e +e e —e

, sinht :=
2 2

cosht =

This allows us to define coordinates F' : U := (0, 00) x R — R? using the expression:

F(p,t) = p(cosht,sinht).

(a) Compute det DF'(p, t).
(b) Show that F' is a diffeomorphism from U onto an open subset V' of R2. Determine V.

Exercise 6.3. Consider the map f : U := (0,00) x R — R? defined by

1
t) = r(tanht, ——).
f(r,t) =r(tan ’cosht)

(a) Show that f is a C'' map and that

r
cosht

det Df(r,t) = —

(b) Show that f is a diffeomorphism from U onto the upper half-plane V := {x € R? | 5 > 0}.

Exercise 6.4. Consider the set U of points x € R? with n(z) := 1 + 21 + 22 # 0 and the function
f : U — R? defined by

x
f(x) = m
(a) Show that U is an open subset of R?.
(b) Show that f is injective.
(c) Show that
1
D = .
det D f(x) (@) (x €U)

(d) According to the inverse function theorem, f is a diffeomorphism from U onto an open subset
V of R2. Verify this by explicitly determining V and f=! : V — U.

19



Exercise 6.5. Consider the map f : U = R\ {0} — R" given by f(z) = ||z| 2.

(a) Show that U = R™ \ {0} is an open subset of R".
(b) Show that f is a diffeomorphism from U onto itself.

(c) Assume n = 2 and compute the Jacobian det D f(x) for all z € R?.
We now indicate a method to compute the Jacobian for general n > 2.

(d) Show that det Df(r,0,...,0) = —r~2" forall r > 0.

(e) Let A: R™ — R" be an orthogonal linear map. Show that for all x € U
Ao Df(x) = Df(Al’) o A.
Hint: consider Ao f.

(f) Find a formula expressing det D f(x) in terms of the norm ||z||, for x € U. Hint: from linear
algebra it is known that for each x € U there exists an orthogonal map A such that Ae; =
|~ .

Notation 6.6. For the following exercises, we introduce the following auxiliary notation: Given a
function g : R™ — R", we say that a subset U C R" is good for g if:

» U is open and path-connected.

* glu : U — g(U) is a C*-diffeomorphism.

e U is maximal: i.e. there is no V D U, strictly larger than U, satisfying the previous two
properties.

Exercise 6.7. Let f : R? — R2? be the function f(x,y) := (z(1 — z),%?). Letp = (1,1) € R2
Find an open U C R? that is good for f and contains p.

Exercise 6.8. Let f : R? — R2 be the function f(z,y) := (cos(z), zsin(y)). For each p € R?,
either: (1) find an open U C R? that is good for f and contains p or (2) show that such a U cannot
exist.

Exercise 6.9. Given z € R, consider the function f, () := t3+tz : R — R. Then, for each € R:

* Draw the function f,. Since this depends on x, draw a handful of cases (it is enough if you
draw it for x = 0, for some x positive, and for some = negative).

» Compute the critical points of f,.

* Show that if ¢ is critical, there is no U C R containing it that is good for f.

* Find all the U C R that are good for f,. Describe f,(U) explicitly.

» Show that the list of good U you provide is complete. L.e. there are no other open subsets that
are good for f.

20



Consider then the function F' : R? — R? given by
F(z,t) := (2,8 + tx) = (=, f(t)).

Then:

» Compute the points (z, t) where the determinant of D F'(x,t) vanishes. Recall that such a point
is said to be critical.

Show that if (z, t) is critical, there is no U containing it that is good for F'.

Find two different subsets U, U’ C R? that are good for F.

Hint: For the last item, look at the good subsets of each f, and see whether you can put some of
them together to produce U and U’.

6.2 Submanifolds

Exercise 6.10. Show that the unit sphere S = {x € R" | ||x||?> = 1} is a submanifold.

Exercise 6.11. Let A : R” — RRP be a surjective linear map. Show that the linear subspace N =
{z € R" | A(x) = 0}, the kernel, is a submanifold.

Exercise 6.12. Let A : R™ — RP be a linear map that is not surjective. Show that the linear
subspace N = {x € R" | A(x) = 0}, the kernel is not a regular level set of A. Prove that you can
find some other linear map B : R” — RY, with ¢ < p, such that [V is a regular level set of B.

Exercise 6.13. Show that the ellipsoid M, = {x € R3 | 22 4+ 2y + 322 = ¢} is a submanifold for
every ¢ # 0. Draw it for various ¢, noting that it is empty for ¢ < 0.

Exercise 6.14. Show that the hyperboloid M. = {x € R3 | 22 +y? — 2? = ¢} is a submanifold for
every ¢ # 0. Draw M, for various values of c. Prove that:

* For ¢ > 0, the submanifold M, is path-connected.

* For ¢ < 0, the submanifold M, is not path-connected.

* M) is path-connected but becomes disconnected if you remove the points in which it fails to
be a submanifold.

Exercise 6.15. Show that the paraboloid M. = {x € R | 2? 4 2y? = c + 2} is a submanifold for
every c. Draw it for various values of c.

Exercise 6.16. Let f : R” — R be a C'! function. Show that the graph

graph(f) = {z € R" | 21 = f(a1,- -, 20)}

is a submanifold.
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6.3 Lagrange Multipliers

Exercise 6.17. Let f : R3 — R be the function f(z,y, z) := 222 +y% +322. Consider the function
g :R3 = R given by g(x,v, 2) := 22 — y?> — 2°. Define M, := g~ '(a) for each a € R.

» Show that M,, for each a # 0, is a submanifold.

* Find the maxima and minima of f|y;,, for each a. Determine whether they are local or global.

* Compute the Lagrange multipliers for each critical point of f|y,.

Exercise 6.18. Let f : R3 — R be the function f(x,y,2) := sin(z). Consider the function
g :R® — R given by g(z,y, 2) := 22 + y? + 22. Define M, := g '(a),a € R.

* Determine for each a # 0 whether M, is a submanifold.

* Determine the critical points of f|s, using the Lagrange multiplier method.

* For each a, find the maxima and minima of f|s,. Determine whether they are local or global.

Exercise 6.19. Consider the following data in R3:

s The function f(z,y,z) := 2? + 9% — 2 : R? - R.
* The function g(z,y,2) := 2 — 1 : R? —» R.
* The function (f, g) : R — R? that they form together.
e The open U := {(x,y,2) € R® | 22 +y? < 1},itsclosure U = {(z,y,2) € R? | 22 +¢> <
1}, and its boundary OU = {(z,y,2) € R? | 22 +y? = 1}.
Then:

a. Show that A := U N f~1(0) is a submanifold of U. What is its dimension?

b. Show that B := U N g~%(0) is a submanifold of U. What is its dimension?

c. Show that C' := (f,¢)~1(0) is a submanifold of R3. What is its dimension? Show that it is
contained in OU.

Consider now the function h : R? — R given by h(z,y, 2) := 22 — y>.

d. Draw A, B, and C. In a separate picture, draw some of the level sets of h (say, a positive level
set, a negative level set, and the zero level set). For the next two items it may be convenient
to compare these two pictures (perhaps by making further pictures in which you show how
different level sets of A interact with A, B, and C).

e. Using Lagrange multipliers, determine the critical points of |4, h|p, and h|c.

f. Determine the minima/maxima of h|4puc. State whether they are local or global.

Exercise 6.20. Let A be a symmetric n x n matrix with real coefficients. Consider the function
[ R™ — R defined by

f(z) = (Az, z).
Let S = {z € R" | ||z|]® = 1}.
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(a) Show that there exists a € .S such that f(z) < f(a) forall z € S.

(b) Show that there exists A € R such that Aa = A\a. Hint: use the Lagrange method with g(z) =
l2f* - 1.

Exercise 6.21 (Continuation of Opgave 6.20). Now consider several elements a1, ..., a; € S such
that ay, ..., ay are linearly independent. Let V' be the linear subspace af n-- -ﬁaﬁ of R™ and assume
that A(V) C V.

(a) Show that there exists b € S NV such that f(x) < f(b) forallz € V.

(b) Let b be as in (a). Show that there exists A\ € R such that Ab = A\b. Hint: use the Lagrange
method with suitable functions g, g1, . . ., g5 and use that A(V) C V.

(c) Prove that there exists an orthonormal set of vectors aq,...,a, € R™ and real constants
A1, ..., Ay such that
Aaj = )\ja]‘, (1 S] S n)

Exercise 6.22. Consider the parabola P C R? given by the equation 22 — 4z = 0.

(a) Show that for every ¢ € R the function z +— di(z) = ||x — (0, ¢)|| attains a minimum on P.
(b) Predict how the function ¢ — d((0,t), P) behaves on R and sketch the expected graph.

(c) Compute d((0,t), P) for every t € R using the Lagrange method. Compare the obtained result
with your prediction in (b).

Exercise 6.23. Given ay,...,a; € R, show that the function f : z — 25:1 a;x; attains a maxi-
mum and a minimum on the unit sphere S = {x € R" | ||z|| = 1}. Determine these maximum and
minimum values in two ways:

(a) using the Lagrange method;

(b) using the Cauchy-Schwarz inequality.

Exercise 6.24. Consider the plane V in R? given by the equation (b, z) = ¢, with b € R3\ {0} and
¢ € R. Determine the point on V' with minimal distance to a given a € R3. Verify your answer for
c=0.

Exercise 6.25. Given two planes V and W in R? given by the equations V : (a,z) = p and
W : (b,z) = q, with a,b € R linearly independent and p, ¢ € R, determine the point z € VN W
with the smallest distance to the origin.

Exercise 6.26.  (a) Determine the maximum of (2123 - - - 2,,)? under the condition ||z||? = 1.

(b) Use (a) to show that for all aq,...,a, > O:

1
(al : "an)l/n < *(al + - +an)-

3

6.4 Extra
Exercise 6.27. Consider U = V = R?; we introduce these names to clearly distinguish the source

and target of the change of coordinates ¢ : U — V given by ¢(z,y) := (z,y + ). Denote the
coordinates in V' by (a, b), to distinguish them from (z,y) € U.
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 Compute the differential D¢ : U — Lin(U, V).

* Verify that ¢ is a C°*°-diffeomorphism.
Suppose we are given a smooth vector field X : U — U. We want to produce a vector field Y : V' —
V' corresponding to X under ¢, via:

Y (a,b) := Dp(¢  (a, b)) (X (¢ Y(a,b)) : V = V. (6.1)
* Write the entries Y7 and Y5 of Y explicitly in terms of the entries of X. Show that Y is C'*°.

Consider the function f : U — R given by f(x,y) := z and its gradient grad(f) : U — U.
Compute grad(f) and show it is smooth.

» Compute fogp™1: V — R.

* Apply Equation 6.1 to X = grad(f) and ¢ to produce a vector field Y : V' — V. Write it
explicitly.

o Verify that Y # grad(f o ¢~ 1).

Exercise 6.28. Let H := {x € R" | 1 + --- + ©, = a} with @ > 0. Consider the subsets
Hy :={x e H|xz; >0forall j} and Hyy := {x € H | z; > Oforall j}. Let f : R* — R be
defined by f(z) == >0, 1‘;‘, k € {2,3,...}. Show that f attains its minimum m,, := n'~*a* on
H,.

(a) Show that f attains the value m,, on H,.

(b) Show that f attains a minimal value p,, on H .

(c) Show that p11 = m;.

(d) Show that the minimum g, is attained in H .

(e) Use Lagrange multipliers to show that u,, = m,,.

(f) Interpret this geometrically for k = 2.

Exercise 6.29 (Hadamard’s Estimate). Let M, denote the set of real n x n matrices z = (x;5).
Identify M, with R™. For a differentiable function [+ M, — R, the gradient gradf : M,, — M,
is defined componentwise.

(a) Show that f(x) := det(x) is differentiable with gradient

(gradf(x))ij = (=1)" Dyj(),
where D;;(x) is the determinant of the matrix obtained by deleting row 4 and column j.

(b) Show that for g;(z) := || R;(x)||? (the squared norm of the i-th row), its gradient is
(gradg;(x)) jk = 205 -
Letd,...,d, > 0 and define

Si={z € My | | Ri(w)|* = d7}.
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(c) Show that f attains a maximum M > Oon S := Sy N---N Sy, and that if f(x) = M, there
exist A1, ..., A\n # 0 such that

2¢ = diag(\q, ..., \)2".

(d) Show that for such z, z'x = diag(d?,...,d2) and conclude M = d; - - - d,.

(e) Prove Hadamard’s inequality for every x € M,:

| det x| < [[Ry()]] - - [ Rn(2)]|

25



7 Line integrals of covector fields

7.1 Computing line integrals

Exercise 7.1. Compute the line integrals fﬂ/ « for the following covector fields and curves in R? or
R3.
(@) a(z,y,2) = (x,y,xzy — z) and y(t) = ¢(1,2,4), with 0 < ¢ < 1.

(b) alx,y) = (22—y?,22y) and v a piecewise C'! parametrization of the boundary of the rectangle
R :={0 < z,y < a}, traversed counterclockwise, a > 0.

(¢) a(r,y,z) = (y,2,7) and v a C! parametrization of the intersection of the sphere {22 + y* +
2% = a?} with the cylinder {22 + y* = 3a?, 2 > 0}, where a > 0.

Exercise 7.2. Consider the vector field o : R? — Lin(R3, R) defined by a(x,y, 2) = (yz, 2z, zy),
and the curve v : [0, 7] — R? defined by v(t) = (cost,sint,sin? ).

(a) Compute the line integral f7 « by direct calculation.

(b) Show that « is closed, and find a potential on R3.

(c) Compute the line integral f,y « again using the potential from (b).

Exercise 7.3. Define the covector field o : R* — Lin(R3 R) by «a(z,y, 2) := (y,z,2?). Let
v : [0,1] — R3 be the curve y(t) := (2,3, ¢).

» Compute f7 a.
* Does a have a primitive?

Exercise 7.4. Let v : R3 — Lin(R3,R) be the covector field a(x,y, z) := (cos(z),sin(z),0).
Let v : [0,1] — R3 be the curve ¥(t) := (¢,0,0).
* Does « have a potential? If yes, describe one explicitly.

* Is there a C" curve v : [0,1] — R? such that (0) = 7(0), v(1) = v(1), and [ v(p)dp #
J, v(p)dp?

Exercise 7.5. Consider a C! curve v : [0,1] — R" and a continuous vector field o : R" —
Lin(R",R). Define 75 := v[jo,q : [0,8] — R". Let h : [0,1] — R be the function defined by
h(s) := f'Ys a.

+ Show that h is a C'! function. Compute its derivative.

» Suppose that « is the total derivative of a function f : R” — R. Show that h is identically zero
if and only if there exists a ¢ € R such that v(¢) € f~!(c) forevery t € [0, 1].

Exercise 7.6. Let U C R" be an open set and o : U — Lin(R",R) a closed covector field. Let
7 : [a,b] — U be a continuous curve. Show that

defines a potential f : [a,b] — R of « along .
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7.2 (Non-)simply sonnected spaces

Exercise 7.7. The goal of this opgave is to show that U := R? \ {0} is not simply connected. This
is similar to the proof given in the lecture notes. The difference is that we will now use paths relative
endpoints, instead of loops.

On U consider the covector field v : U — R? defined by

a(z) = ||z 2~z 21).

(a) Show that « is closed.

(b) Let ¢y : [0, 7] — U be defined by c4(t) = (cost, +sint). Compute the integrals

/Qa o

(c) Prove that c; and c_ are not homotopic relative endpoints.
(d) Show that « has no potential.
(e) Conclude that U is not simply connected.

Exercise 7.8. Write U := R?\ {0} for the complement of the origin in R%. Let v € C°°([0, 1], U)
be a loop.

a. Given any positive real number r, define ~,.(¢) := r~y(t). Show that it is a smooth loop.

b. Show that v and ~, are homotopic as loops for all > 0.

Suppose now that a € C°°(U, Lin(R?,R)) is a closed covector field. Assume that fv a = C, with
C # 0. Then:

c. Show that a has no potential.

d. Show that [ a = C forevery r > 0.

Suppose that 3 € C*°(R?, Lin(R?, R)) is a covector field such that 3|y = o

e. Show that 3 is also closed. Hint: Consider the function R? — Lin(R?, Lin(R?,R)) given by
x — DB(x) — (DB(z))!, where the second term is the transpose.

f. Deduce that such a 3 cannot exist.
Fix a point ¢ € R?, different from the origin. Write U, := R?\ {0, ¢} for the complement of ¢ in U.

g. Construct a covector field a,; € C*°(Uy, Lin(R?,R)) and a loop 1, € C°°(]0, 1], U,) such that
fnq ag = C but f"?q a=0.

h. Conclude that 7, is not contractible but 7, and -y are not homotopic as loops in Uj,.

Exercise 7.9. The goal of this opgave is to show that U := R™\ {0} is simply connected for n > 3.
Let v : [0,1] — R™\ {0} be a closed continuous curve.
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(a) Show that there exists » > 0 such that ||y(¢)|| > r forall ¢ € [0, 1].
(b) Show that for z,y € R"™ \ B(0;r)

le—yll <r = 0¢ [z,y].

(c) Show that there exists 6 > 0 such that for all ¢1,t5 € [0, 1]
t1 —ta| <0 = 0 ¢ [y(t1),~(t2)]-
Hint: use a theorem on uniform continuity from Introduction to Analysis.

(d) Show that +y is homotopic in U to a closed piecewise linear curve ¢ : [0, 1] — U, meaning there
exists a partition 0 = tg < t; < ... <t = lsuchthatforeachl < j <k

c(tj—1 +7(t; = tj—1)) = c(tj—1) + 7(c(t;j) — c(tj—1)), (7 €[0,1]).

(e) Show that for each 1 < j < k there exists a unit vector n; such that n; L c(t;_1) and
nj 1 C(tj).

(f) Show that there exists p € R™ with (p,n;) # 0forall1 < j < k.
(g) Show that for all £ € ¢([0,1]), 0 ¢ [p, &].
(h) Show that c is homotopic in U to the constant curve ¢ — p.

(k) Conclude that U is simply connected.

7.3 Extra

Exercise 7.10. The length L(7y) of a C! curve 7 : [a,b] — R™ is defined by
b
/
L) = [ Il

(a) Let ¢ : [¢,d] — [a, b] be a monotone C'' map. Show that the reparametrization y o ¢ : [¢, d] —
R™ is a O curve and satisfies
L(yo¢) = L(%).

(b) Show that for every continuous vector field v defined on ([a, b)), there exists a constant M > 0
such that ||v(z)|| < M for all x € v([a, b]).

/yv(m) - dz

(d) Explain how the above extends to piecewise C'' curves in R”, and prove the corresponding
statements.

(c) Show that for v and M as in (b):

< L(v)M.

Exercise 7.11. Let O =]0, 00| xR and consider the polar coordinates map ® : O — R? given by
®(r,¢) = (rcos ¢, rsin ¢). Previously, the inverse function theorem was used to show that for each
(10, ¢0) € O there exists an open neighborhood U C O such that ®(U) is open in R? and ® is a C*
diffeomorphism from U onto ®(U).
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(a) Show that for each 20 € R? \ {0} there exists an open set U C O such that ®(U) is an open
neighborhood of z° and ® : U — ®(U) is a diffeomorphism.

Denote the inverse of ®|;; by ¥ and define the function ¢ = ¢y : ®(U) — R by ¢(z1,22) =
\I/(l'l,aﬁg)g.
(b) Show that 1 is a C! function on ®(U) and that ®(||z||,(z)) = x for all z € ®(U).

(c) Show that the vector field Vi) on ®(U) equals v, where the vector field v : R? \ {0} — R? is
given by
v(z) = el (=22, 21).

Hint: use a formula for DV (x).
Let R : [0,1] —]0,00[and ¢ : [0, 1] — R be two continuous functions. Define the continuous curve
7 :[0,1] = R*\ {0} by
(t) = R(t)(cos ¢(t), sin (1))

(d) Show that f(t) = ¢(t) defines a potential of v along .

(e) Compute [ v(z) - dz.
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8 Extra: Reeksen

8.1 Reeksen

Exercise 8.1. Ga na of de volgende reeksen convergent of divergent zijn;

(a) ZnZl %, (b) anl cos #5 (c) ZnZQ W;

(d) >n>1 5121?))2" (e) > ,>1sin X (f) 3,spsin L

Exercise 8.2. Beschouw de reeks Y, -, a; in R met a, = (—1)*"1 1.

(a) Bewijs dat de reeks convergent is.
(b) Bewijs dat de reeks niet absoluut convergent is.

(c) Definieer een bijectie k +— n(k) van Ny = {1,2,...} op zichzelf, zo dat de reeks
D nik)
k>1

convergent is met som 0.

Exercise 8.3. Toon aan dat de reeks
1
E log <1 — 2)
n
n>2

convergent is. Hint: majoreer door Taylor met rest te gebruiken.

8.2 Reeksen met een parameter

log k

Exercise 8.4. (a) Bepaal alle a € R waarvoor de reeks | k>1 ke

het bekende feit dat lim,_,~, k== log k = 0 voor >> 0.

convergent is. Hint: gebruik

(b) Beantwoord dezelfde vraag voor de reeks k>2 m.

s Sin(n)
n=1

Exercise 8.5. Beschouw de reeks ) 2", z€C.

n
» Toon aan dat de reeks convergeert als |z| < 1.
* Toon aan dat er een z is zodat de reeks divergeert.

Exercise 8.6. Voor welke complexe waarden z € C zijn de volgende reeksen convergent?

n
L] oo S —
2n=o (3n+ 1)!271'

2
o N°tn
¢ Zn:() n2+1zn'

Exercise 8.7. Voor welke re€le waarden van x zijn de volgende reeksen convergent?

(2) Yoy U (b) 3o Yibrosne, (€) Ynni 85
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8.3 Extra

Exercise 8.8. Laat met een resultaat uit het dictaat zien dat er een constante C' > 0 en een rij (1)
re€le getallen bestaan zo dat

n

1
Z—:logn+0+rm lim r, = 0.
P k n—00

(a) Toon aan dat
2n k+1
-1
(=1) = log2 + ro, — .
k=1

(b) Toondat k>1 % convergent is en dat

(_1 k+1

WE

= log 2.

B
Il

1

Exercise 8.9. Gegeven zijn complexe rijen (ax)x>0 en (bx)r>0. We definiéren

n
B, = b, (n>0).
k=0

(a) Toon aan dat voor alle n > 0 geldt:
n—1
Zakbk = Z CLk — ak+1)Bk + aan.
k=0

Hint: schrijf by, = By, — Bp_1, voor k > 1.

In het vervolg veronderstellen we dat (ax) een monotoon dalende rij positieve reéle getallen is met
limg_, o ar = 0. Verder veronderstellen we dat een M > 0 bestaat zo dat | B,,| < M voor alle n > 0.

(b) Toon aan dat de reeks ) ;- (ar — ax41)B}), convergent is en dat

o0

Z ar — ap+1) By

k=

< apM.

(c) Toon aan dat de reeks » >0 @kby convergent is en dat

Z arby,

k=0

< 2a0M.

(d) Toon aan dat de reeks

S ot

k>0

convergent is voor alle z € C met |z| < 1, z # 1. Geef een voorbeeld waaruit blijkt dat de
reeks divergent kan zijn voor z = 1.
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9 Extra: Oneigenlijke integralen

Exercise 9.1. Gegeven is een continue functie f : [0, 1] — R. Toon aan dat de integraal

1
/ FO) (= 1) di
0
convergent is voor z,y > —1, en op dat gebied een continue functie van (x, y) definieert.

Exercise 9.2. Gegeven is een continue functie f : [0,1] — R met f(0) = 1. Toon aan dat de

integraal
1
[19
o ¢t

Exercise 9.3. Toon aan de oneigenlijke integraal
/ sin gt
0 tVt

Exercise 9.4. (a) Toon aan dat de oneigenlijke integraal

oo
COS X
5 dx
1 X

divergeert.

convergeert.

convergeert.

(b) Toon aan dat de oneigenlijke integraal

* sint
/ st
0 t

convergeert. Hint: dit lukt niet met het majorantie-criterium. Beschouw de integraal || 16 %nt dt
en gebruik parti€le integratie om de integraal te vergelijken met de integraal in (a).

Exercise 9.5. We bekijken nogmaals de volgende oneigenlijke integraal uit Opgave 2.6:

* 1
F(t) = —d t>0).
0= [ e >0
Gebruik in de volgende onderdelen direct de behandelde stellingen over oneigenlijke integratie.

(a) Laat zien dat de integraal convergeert voor iedere ¢ > 0.

(b) Bewijs dat de functie F' continu differentieerbaar is, met afgeleide

/ o 1
F(t):—/o mdx.

(c) Toon aan dat voor k£ € N geldt dat
o0 1 (2R)Im
o (1 a2yt T gy
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Exercise 9.6. (a) Laat zien dat door
e 2
flx) = / e ¥ cos(xt) dt
—0o0
een continu differentieerbare functie gedefinieerd wordt.

(b) Toon aan dat x f(z) = —2f'(x) voor alle z € R.

(c) Toon aan dat ,
fla) = Vre ™/,
voor alle z € R. Hint: differenticer de functie g(z) = f(z)e®"/*.

Exercise 9.7. In deze opgave zullen we laten zien dat de integraal

0o -
SN x
dx
0 X

niet absoluut convergent is. We doen dit door middel van een tegenspraak. Veronderstel dus dat de
integraal wel absoluut convergent is.

(a) Toon aan dat uit de aanname volgt dat de integraal

/°° (sinx)? da
1 €T

convergent is.

(b) Toon aan dat voor alle R > 1 geldt dat

R (o 2 R+m/2 2
/ (sinz) e > / (cosx) .
1 1

x +ﬂ-/2 x

(c) Toon aan dat uit de aanname ook volgt dat de integraal

e 2
/ (cosx) de
1 x

(d) Laat zien dat (a) en (c) tot een tegenspraak leiden.

convergeert.
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