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1 Metric spaces

1.1 Path-connectedness

Exercise 1.1. Consider a continuous map f : X → Y between metric spaces. Show that, if f is
surjective and X is path-connected, then Y is path-connected.

Exercise 1.2. Let S be the unit circle in R2. Is S path-connected? Is R2 \S path-connected? Prove
your statements.

Exercise 1.3. Let A := {x = 0}∪ {y = 0} be the union of the axes in R2. Is A path-connected? Is
R2 \A path-connected?

Exercise 1.4. We consider the open subset U := R2 \ {(x, 0) ∈ R2 | x ≥ 0}. Show that U is open
and path-connected.

Exercise 1.5. Let U := R2 \ {(0, 0)} be the punctured plane. Show that U is open and path-
connected.

Exercise 1.6. We consider the open subset V := {(x, y) ∈ R2 | |y| > |x|}.

(a) Show that V is not path-connected.

(b) Show that V ∪ {(0, 0)} is path-connected.

Exercise 1.7. Fix n > 1. Let U ⊂ Rn be the complement of finitely many points. Show that:

• U is open.

• U is path-connected.

1.2 Homotopy of curves

Exercise 1.8. Consider a metric space (X, d) and a pair of points p and q. We denote by K the set
of continuous curves c : [0, 1] → X with c(0) = p and c(1) = q. We define the relation ∼ on K by
c ∼ d if c and d are homotopic relative endpoints.

(a) Show that c ∼ c.

(b) Show that c ∼ d =⇒ d ∼ c.

(c) Let c ∼ d and d ∼ e. Show that there exists a continuous map H : [0, 1]× [0, 2] → X with

H(s, 0) = c(s) and H(s, 2) = e(s).

(d) Show that ∼ is an equivalence relation on K.

(e) Formulate and prove similar statements for closed curves in X .
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2 (Multi)linear algebra

2.1 Linear maps

Exercise 2.1. Show that the following claims are equivalent for a covector α : Rn → R:

• α = 0.

• α attains a maximum.

• α attains a minimum.

Exercise 2.2. Consider the linear maps A,B,C,D : R2 → R2 given by the matrices

A =

(
2 0
0 1

)
,

B =

(
1 0
0 2

)
,

C =

(
2 1
0 2

)
,

and

D =

(
0 1
−1 0

)

• Is there a change of basis relating A and B? If so, provide it explicitly.

• Is there a change of basis relating B and C? If so, provide it explicitly.

• Can D be related to any of the other matrices by a change of basis? If so, provide it explicitly.

2.2 Kernels, images, annihilators

Exercise 2.3. Consider the covector α : R3 → R given by the expression α = (2 1 0).

• What is the dimension of the kernel of α? Find a basis for it.

• What is the dimension of the image of α? Find a basis for it.

• Give a basis for the annihilator of ker(α).

Exercise 2.4. Consider the linear map A : R3 → R2 given by the matrix:

A =

(
2 1 0
3 3 3

)
.

• Show that A is surjective.

• Show that the kernel of A has dimension 1. Find a vector spanning it.

• Give a basis for the annihilator of ker(A).
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Exercise 2.5. Consider the linear map A : R3 → R2 given by the matrix:

A =

(
2 1 0
4 2 0

)
.

• What is the dimension of the kernel of A? Find a basis for it.

• What is the dimension of the image of A? Find a basis for it.

• Give a basis for the annihilator of ker(A).

• Give a basis for the annihilator of im(A).

Exercise 2.6. Consider the linear map A : R3 → R3 given by the matrix:

A =

1 1 1
2 1 0
5 3 1

 .

• What is the dimension of the kernel of A? Find a basis for it.

• What is the dimension of the image of A? Find a basis for it.

• Give a basis for the annihilator of ker(A).

• Give a basis for the annihilator of im(A).

Exercise 2.7. Consider the covectors α1, α2, α3 : R3 → R given by α1 = (2 1 1), α2 =
(3 2 1), and α3 = (1 1 0). Consider the subspace S ⊂ Lin(R3,R) spanned by α1 and α2.

• Does S contain α3? If so, express α3 as a linear combination of α1 and α2.

• Find a basis for the annihilator S⊥ ⊂ R3.

• Extend the basis of S⊥ you just found to a basis of ker(α3).

2.3 Quadratic forms

Exercise 2.8. Consider the quadratic form Q : R2 → R given by the matrix:

A =

(
1 1
2 1

)
.

That is, Q(v) := vtAv.

• Write Q explicitly as a homogeneous polynomial of degree 2.

• Find a symmetric matrix B so that Q(v) := vtBv.

• Is Q non-degenerate?

• If so, determine whether Q is positive definite, negative definite, or indefinite.

• Is v = 0 a maximum/minimum for Q?
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• Find a change of basis C : R2 → R2 so that CtAC is diagonal.

Exercise 2.9. Consider the quadratic form Q : R3 → R given by the matrix:

A =

1 1 1
2 1 0
0 0 1

 .

• Write Q explicitly as a homogeneous polynomial of degree 2.

• Find a symmetric matrix B so that Q(v) := vtBv.

• Is Q non-degenerate?

• If so, determine whether Q is positive definite, negative definite, or indefinite.

• Is v = 0 a maximum/minimum for Q?

• Find a change of basis C : R2 → R2 so that CtAC is diagonal.

2.4 Polynomials

Exercise 2.10. Consider R3 with coordinates (x, y, z). Consider the polynomial function P : R3 →
R given by

P (x, y, z) := x2z + xyz + z2y + x+ yz + 1.

• What is the order of P ? Is P homogeneous?

• Write out the part of P that is homogeneous of order 2.

• For each monomial appearing in P (with non-zero coefficient), indicate the multi-index α it
corresponds to.

Exercise 2.11. Consider R3 with coordinates (x, y, z). Consider the polynomial function P : R3 →
R2 given by

P (x, y, z) = (P1, P2) := (x2z2 + xy2z + z2y2 + x4 + y3x, y2).

• What is the order of P ? Is P homogeneous?

• Write out the part of P that is homogeneous of order 2.

• For each monomial appearing in P1 (with non-zero coefficient), indicate the multi-index α it
corresponds to.
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3 Partial, directional, and total derivatives

3.1 Partial and directional derivatives

Exercise 3.1. Compute the partial derivatives Dxf , Dyf , and Dzf of the following functions:

(a) f(x, y, z) = z
x2+y2

, (x, y) ̸= (0, 0).

(b) f(x, y, z) = x2 + yz sin(x).

(c) f(x, y, x) = xy sin(y) log(x2 + 1).

Exercise 3.2. Compute the partial derivatives Dr and Dφ of the functions f, g : R2 → R:

(a) if f(r, φ) := r cos(φ),

(b) if g(r, φ) := r sin(φ).

We can put these two functions together as F := (f, g) : R2 → R2, yielding the so-called polar
coordinates. Show that F is partially differentiable and compute D1F and D2F .

Exercise 3.3. We define the polynomial function f : R2 → R by

f(x, y) := x3 + x2y + xy2 + y3.

Show that f is directionally differentiable at (1, 0) and compute the directional derivative Dvf(1, 0)
for every v ∈ R2.

Exercise 3.4. Let f : R2 → R be given by f(x, y) := x2y + yexy. Compute the following
directional derivatives:

(a) D(1,2)f(0, 0).

(b) D(0,0)f(1, 1).

(c) D(2,1)f(1, 1).

Exercise 3.5. The function f : R2 → R is defined by: f(x, y) := xy3 + ex cos(y). Show that f
is directionally differentiable in every direction v ∈ R2 at the point (1, 1). Provide a formula for
Dvf(1, 1).

Exercise 3.6. Consider the norm function ||x|| : Rn → R.

(a) Show that it is not directionally differentiable at x = 0.

(b) Prove that Dj∥x∥ =
xj

∥x∥ for each x ̸= 0.

3.2 Total differentiability

Exercise 3.7. Show that there does not exist a function f : Rn → R that satisfies the following
conditions: f is differentiable at 0 ∈ Rn and Dvf(0) > 0 for every v ∈ Rn with v ̸= 0.
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Exercise 3.8. Find all totally differentiable functions f : Rn → R such that Dvf(p) ≥ 0 for every
p ∈ Rn and v ̸= 0 ∈ Rn.

Exercise 3.9. Show that each of the following functions is totally differentiable everywhere and
compute the total differential.

(a) The function f : R2 → R3 defined by f(x, y) := (x+ y, x2 + y2, x y).

(b) The function g : R3 → R defined by g(x, y, z) := x y z + x y + x.

(c) The function φ : R → R3 defined by φ(x) := (1, x, x2).

Recall: You must prove total differentiability. To do so, the strategy is to (1) compute the partial
derivatives and put them together to come up with a candidate for Df and either (2) prove that said
candidate fulfills the definition of total derivative or (2’) invoke the theorem telling us that continuous
partial differentiability implies total differentiability. For this exercise, make sure you understand
both approaches.

Exercise 3.10. The maps g : R3 → R2 and h : R2 → R2 are defined by

g(x, y, z) := (x z, log(y2 + ez)), h(x, y) := (x+ y, x y).

Compute the total derivative of h ◦ g in two ways:

(a) directly, i.e., by computing the partial derivatives of h ◦ g;

(b) using the chain rule.

Exercise 3.11. The maps f : R2 → R3 and g : R3 → R2 are defined by

f(x, y) := (x2, y, x y), g(x, y, z) := (x y z, z sin(x y)).

Compute the Jacobian matrices of f ◦ g and g ◦ f . Prove that these fulfill the definition of total
derivative.

Exercise 3.12. Consider the function f : R2 → R defined by the expression f(x, y) := cos(x) sin(y).

• Prove that f is totally differentiable at all points. Note: You can use the fact, proven in earlier
courses, that the sine and the cosine are differentiable functions of one variable.

• Compute the differential Df : R2 → Lin(R2,R).

• Compute the critical points of f .

• Draw schematically the level sets of f , indicating where the critical points are.

• For each critical point, determine whether it is a (local) maximum, a (local) minimum, or
neither.
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3.3 Stationary points

Exercise 3.13. Consider the function f : R2 → R defined by f(x, y) =
(
1− x2

) (
1− y2

)
.

a) Compute all stationary points of f .

b) Determine at all stationary points whether f has a local maximum, a local minimum, or neither.
Hint: draw the zero level set of f and the regions where f > 0, resp. f < 0.

Exercise 3.14. The function f : R2 → R is defined by f(x, y) = x y (x+ y − 1).

a) Prove that f has four stationary points.

b) Prove that f has an extremum at exactly one of these points. Hint: draw the zero level set of f
and the regions where f > 0, resp. f < 0.

Exercise 3.15. Consider the polynomial function

f(x, y) =
1

3
x3 − x+ x y2

of two variables. Compute the partial derivatives Dxf and Dyf and determine the stationary points.
Investigate whether f attains a maximum and/or minimum on the right half-plane

V+ = {(x, y) | x ≥ 0},

respectively on the left half-plane

V− = {(x, y) | x ≤ 0}.

If so, also compute the maximum, resp. minimum. Finally, answer the same questions with f repla-
ced by g(x, y) := 1

3x
3 − x− x y2.

3.4 Total derivatives of multilinear maps

Exercise 3.16. Given are two fixed vectors b and c in Rn. Prove that each of the maps f below
is totally differentiable at every point a of Rn by using the definition of total differentiability. Also
compute Df(a)h for each point a ∈ Rn and vector h ∈ Rn:

a) f(x) = ⟨b, x⟩,

b) f(x) = ⟨b, x⟩ ⟨c, x⟩,

c) f(x) = ⟨x, x⟩,

d) f(x) = ⟨b, x⟩ c,

e) f(x) = ⟨x, x⟩x.

Exercise 3.17. Suppose f : Rn → Rp and g : Rn → R are totally differentiable functions at
a ∈ Rn. Prove that F : Rn → Rp, defined by

F (x) := g(x)f(x)

is also totally differentiable at a and prove that the total derivative DF (a) is given by the formula:

DF (a)(h) = g(a)Df(a)(h) + f(a)Dg(a)(h).
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Exercise 3.18. Suppose f : Rn → Rp and g : Rn → Rp are totally differentiable functions at
a ∈ Rn. Prove that F : Rn → R, defined by

F (x) := ⟨f(x), g(x)⟩

is also totally differentiable at a and prove that the total derivative DF (a) is given by the formula:

DF (a)(h) = ⟨Df(a)(h), g(a)⟩+ ⟨f(a), Dg(a)(h)⟩.

Exercise 3.19. Let f : Rn → R be the function f(x) = ||x||2. Let G := fIdRn : Rn → Rn.

(a) Show that G is differentiable and bijective.

(b) Prove that DG(0) = 0 but detDG(p) ̸= 0 for every p ̸= 0.

(c) Prove that G−1 is not differentiable at 0.

Exercise 3.20. Let A be a symmetric n-by-n matrix. Consider the function f : Rn → R given by
f(x) = xtAx, i.e. the associated quadratic form. Recall that we see x ∈ Rn as a column vector and
xt denotes its transpose, which is a row vector. Then:

• Write out f in terms of the coefficients Aij of the matrix A. Prove that f is a polynomial of
order (at most) 2 and is thus twice differentiable.

• Compute Df in terms of the coefficients Aij .

• Compute the second derivatives of f .

• Show that f has a critical point at the origin.

• Show that f has other critical points if and only if A has zero determinant.

3.5 Chain rule

Exercise 3.21. The functions f : R2 → R and g : R2 → R2 are defined by

f(x, y) := x+ y2, g(x, y) := (x y, x+ y).

a) Compute the derivatives of f ◦ g and of g ◦ f .

b) Verify that the chain rule holds for the composition f ◦ g.

Exercise 3.22. Let f : R3 → R be defined by f(x, y, z) := x2 + y2 + z2. Consider ϕ : R2 → R3

defined by ϕ(u, v) := (u+ v, uv, u− v). Let h = f ◦ ϕ.

• Compute h(u, v).

• Compute the differential of h using the definition.

• Compute the differential of h using the chain rule.

Exercise 3.23. Let f : R2 → R be defined by f(x, y) := cos(x2 + y2). Let ϕ : R → R2 be defined
by ϕ(t) := (cos t, sin t). Let h = f ◦ ϕ.

• Compute h(t).

• Compute the derivative of h using the definition.

• Compute the derivative of h using the chain rule.
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3.6 Badly-behaved functions

Exercise 3.24. Let f : R → R be defined by

f(x) =

{
x2 sin 1

x (x ̸= 0),

0 (x = 0).

(a) Show that f is differentiable everywhere.

(b) Show that f ′ is not continuous at 0.

Exercise 3.25. Show that the function f : R2 → R defined by

f(x, y) =

{
xy

x2+y2
(x, y) ̸= (0, 0),

0 (x, y) = (0, 0).

has directional derivatives in every direction v ∈ R2, but is not continuous at 0.

3.7 Growth

Exercise 3.26. (a) Prove that if f : R → R is differentiable and supx∈R |f ′(x)| < ∞, then f
grows at most linearly. I.e. there is a linear function that provides an upper bound for f .

(b) Prove that if f : Rn → R is differentiable and supx∈Rn ||Df(x)|| < ∞, then f grows at most
linearly.

Exercise 3.27. Prove that if f : R → R is differentiable and there is a constant C > 0 such that
|f ′(x)| ≤ C|f(x)| for all x ∈ R, then f = 0.

3.8 Functional equations

Exercise 3.28. Suppose that f : R → R is continuous and satisfies

f(x+ y) = f(x)f(y), (x, y ∈ R).

(a) Show that either f = 0 or f > 0.

(b) Show that either f = 1 or f(x) = eax for some a ∈ R.

Exercise 3.29. Suppose that f : Rn → R is differentiable and satisfies

f(x+ y) = f(x) + f(y), (x, y ∈ Rn).

(a) Show that f is linear.

(b) Show that if f is also continuous, then f(x) = ⟨a, x⟩ for some a ∈ Rn.

Exercise 3.30. Let U := R2 \ {(0, 0)} be the punctured plane. Show that there exists a unique
partially differentiable f : U → R satisfying f(1, 0) = 1 and

Df(x, y) =
(x y)

∥(x, y)∥2
.
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3.9 Extra

Exercise 3.31. Suppose that f : Rn → R is differentiable and homogeneous of degree k, i.e.

f(λx) = λkf(x), (λ > 0, x ∈ Rn).

Show that
⟨∇f(x), x⟩ = kf(x).

Exercise 3.32. Let f : Rn → R be a homogeneous polynomial of degree 2, i.e.

f(x) =
n∑

i,j=1

aijxixj .

(a) Show that f(x) = xtAx for a symmetric matrix A.

(b) Show that ∇f(x) = 2Ax.

(c) Show that ∇2f(x) = 2A.

Exercise 3.33. Let f : Rn → R be defined by f(x) = ∥x∥.

(a) Show that f is differentiable at every x ̸= 0 and compute ∇f(x).

(b) Show that f is not differentiable at 0.

Exercise 3.34. Let f : R2 → R be defined by f(x, y) =
√

|xy|.

(a) Show that f is differentiable at every (x, y) with xy ̸= 0.

(b) Show that f is not differentiable at (0, 0).
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4 Derivatives of higher order

4.1 Computing higher partial derivatives

Exercise 4.1. We consider the function f : R2 → R defined by f(0, 0) := 0 and by

f(x, y) :=
|x|xy√
x2 + y2

if (x, y) ̸= (0, 0).

(a) Show that D1f(0, y) exists for all y ∈ R and determine the function y 7→ D1f(0, y).

(b) Show that D2f(x, 0) exists for all x ∈ R and determine the function x 7→ D2f(x, 0).

(c) Show that D2D1f(0, 0) and D1D2f(0, 0) exist but are not equal to each other.

How can (c) be reconciled with the theorem on switching of partial derivatives?

4.2 Stationary points and extrema

Exercise 4.2. Determine all local extrema of the functions f : R2 → R defined below.

(a) f(x, y) = ex
2−y2 − 2x2 − y2;

(b) f(x, y) = x2 − xy + y2 + exy;

(c) f(x, y) = 2x2 + xy + y2 + exy;

(d) f(x, y) = e−x2−y2(x2 + 2y2).

Determine, for each extremum, whether it is a maximum or minimum and whether it is local or
global. Does the function have any other critical points?

Exercise 4.3. Let f : R2 → R be the function given by f(x, y) := (1− x2)(1− y2).

• Show that f is smooth.

• Determine all stationary points of f .

• Determine, for each stationary point, whether it is a minimum, a maximum, or neither.

• Determine, for each maximum/minimum, whether it is local or global.

Exercise 4.4. We consider a smooth function g : R → R. The functions f, F : R2 → R are defined
by f(x, y) := x2 + y2 and F := g ◦ f .

(a) Prove that F is smooth.

(b) Compute the first and second order derivatives of F in terms of the partial derivatives of g.

(c) Determine the stationary points of F in terms of those of g.

(d) Determine, for each critical point, whether it is a minimum, a maximum, or neither. Determine,
for each maximum/minimum, whether it is local or global.
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Exercise 4.5. Let f, g : R → R be smooth functions. We consider the function F : R2 → R
defined by F (x, y) = f(x+ g(y)).

(a) Give the first and second order partial derivatives of F in terms of the partial derivatives of f
and g.

(b) Show that F is a C2-function.

(c) Determine the critical points of F in terms of f and g.

(d) Determine, for each critical point, whether it is a minimum, a maximum, or neither. Determine,
for each maximum/minimum, whether it is local or global.

4.3 Hessian

Exercise 4.6. Let U ⊂ Rn be open, and f : U → R a C2-function.

(a) Show that g := gradf is a C1-function U → Rn.

(b) Show that for all x ∈ U we have:
Dg(x) = Hf (x).

Exercise 4.7. (a) Show that every polynomial function f : Rn → R of degree at most 2 can be
uniquely written as

f(x) = a+ ⟨b, x⟩+ 1

2
⟨Cx, x⟩ (x ∈ Rn).

Here a ∈ R is a constant, b ∈ Rn a constant vector and C ∈Mn(R) a symmetric n×n-matrix.

(b) Show that for every x ∈ Rn it holds that gradf(x) = b + Cx. Define now v : Rn → Rn by
v(x) = gradf(x).

(c) Show that v is totally differentiable at every x ∈ Rn with total derivative Dv(x) : Rn →
Rn, h 7→ Ch.

(d) Show that Hf (x) = C for all x ∈ Rn.

Exercise 4.8. Given is a polynomial function p : Rn → R of degree at most 2. Let a ∈ Rn. Show
that the following statements are equivalent:

(1) Dαp(a) = 0 for all α ∈ Nn with |α| ≤ 2.

(2) limx→a ∥x− a∥−2p(x) = 0.

(3) p = 0.

Exercise 4.9. Let C be a symmetric 2× 2 matrix. We assume that detC ̸= 0. From linear algebra
it is known that there exist an orthonormal basis {v1, v2} of R2 and λ1, λ2 ∈ R \ {0} such that

Cvj = λjvj , (j = 1, 2).

We assume that detC < 0. Then λ1λ2 < 0. After possibly reordering, we may therefore assume that
λ1 > 0 and λ2 < 0.
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(a) Show that there exist vectors u, v ∈ R2 such that

⟨Cu, u⟩ > 0 and ⟨Cv, v⟩ < 0

Now let U ⊂ R2 be open and f : U → R a C2-function with a stationary point a ∈ U. Assume
further that detHf (a) < 0.

(b) Show that there exist two vectors u, v ∈ R2 of length 1 and a δ > 0 such that for all x ∈ B(a; δ)
it holds that

⟨Hf (x)u, u⟩ > 0, and ⟨Hf (x)v, v⟩ < 0.

(c) Let u satisfy (b). Show that for t ∈ R we have:

0 < |t| < δ =⇒ f(a+ tu) > f(a).

(d) Show that f has no local extremum at a.

4.4 Taylor polynomials

Exercise 4.10. Consider the function f : R2 → R given by f(x, y) := sin(xy). Compute its third
order Taylor polynomial at (0, 0). Indicate clearly the homogeneous terms.

Hint: you could try to do this directly by computing all derivatives up to order three. A quicker
approach is to: (1) compute the third order Taylor polynomial of the sine, (2) compute the third order
Taylor polynomial of xy, (3) compose them, (4) discard terms of order greater than 3.

Exercise 4.11. Consider the function f : R2 → R given by f(x, y) := sin(xy), from the previous
exercise. Let R(x) be the remainder of its second order Taylor polynomial at (0, 0). Provide a finite
upper bound for |R(x)| over the unit ball.

Exercise 4.12. Consider the function f : R2 → R given by f(x, y) := ex sin(y).

• Compute its third order Taylor polynomial at (1, 0), indicating clearly the homogeneous terms.

• Let R(x) be the remainder of its second order Taylor polynomial at (0, 0). Provide a finite
upper bound for |R(x)| over the ball of radius 1 centered at (1, 0).

4.5 Extra

Exercise 4.13. Given is a C2 function g : R2 → R and a twice differentiable function f : R → R.
Show that

∂2f(g(x, y))

∂x ∂y
=
∂2f(g(x, y))

∂y ∂x
.

Warning: we have not assumed that the second derivative f ′′ of f is continuous.

Exercise 4.14. Let U ⊂ Rn and V ⊂ Rp be open subsets, f ∈ Ck(U,Rp) and g ∈ Ck(V,Rq) such
that f(U) ⊂ V. Show that g ◦ f ∈ Ck(U,Rq). Hint: reduce to q = 1 and use induction on k.
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Exercise 4.15. Let F be the space of functions f : R2 → R. For h1, h2 ∈ R \ {0} we define the
linear maps ∆j : F → F , for j = 1, 2, by

∆jf(x) =
f(x+ hjej)− f(x)

hj
, (x ∈ R2),

for f ∈ F . Show that for all f ∈ F it holds that:

∆1(∆2f) = ∆2(∆1f).

Exercise 4.16. Let U be an open subset of Rn. A vector field on U is a map U → Rn. If f : U → R
is a differentiable real-valued function on U , then the gradient gradf : U → Rn of f is a vector field
on U .

If v : U → Rn is a differentiable vector field, then the divergence div(v) : U → R of v is defined as

(div(v))(x) :=

n∑
i=1

∂vi(x)

∂xi
.

Now let n = 3. Then we define the vector field rot(v) : U → R3 by

(rot(v))1 = D2v3 −D3v2, (rot(v))2 = D3v1 −D1v3, (rot(v))3 = D1v2 −D2v1.

The vector field rot(v) is called the curl of v.

a) Show that for every C2 function f on U we have: rot(gradf) = 0.

b) Show that for every C2 vector field v on U we have: div(rotv) = 0.
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5 Multivariate Riemann integral

Preliminary instructions: improper integrals

In the exercises below, you will encounter “improper” integrals of the type∫ ∞

a
f(x)dx

Here, a ∈ R and f : [a,∞) → R is a function that is locally Riemann-integrable, i.e., Riemann-
integrable over [a, β] for every β ≥ a. The integral is called convergent if the limit

∫ β
a f(x)dx exists

as β → ∞. In that case we define∫ ∞

a
f(x)dx := lim

β→∞

∫ β

a
f(x)dx.

A non-convergent integral is called divergent.

We can similarly define convergence of integrals over unbounded intervals of the form (−∞, b], over
open intervals (a, b), or over the whole real line (−∞,∞). Write I for such an open and assume
that f : I → R is locally Riemann-integrable, i.e., integrable over any closed interval of the form
[α, β] ⊂ I . Then we can say that

∫
I f(x)dx is convergent if the integrals

∫ β
α f(x)dx have a limit as

α and β go to the ends of I (possibly ±∞).

5.1 Continuity

Exercise 5.1. Let f(x, y) := e−xyy : R2 → R. Prove that:

• f is continuous,

• for every y ≥ 0 the improper integral

F (y) :=

∫ ∞

0
e−xyydx

exists,

• but the function F : [0,∞) → R is not continuous at 0.

5.2 Computing integrals

Exercise 5.2. Compute
∫ A
0 (x2 + t)−2dx for t > 0 by differentiating with respect to t the integral∫ A

0 (x2 + t)−1dx.

Exercise 5.3. Compute the improper integral
∫∞
0 (x2 + t)−2dx and verify that it equals minus the

derivative with respect to t of the improper integral
∫∞
0 (x2 + t)−1dx.

Exercise 5.4. Compute
∫∞
0 (x2 + 1)−2dx and

∫∞
0 (x2 + 1)−3dx.

Exercise 5.5. Define f : R → R by:

f(a) =

∫ 1

0

e−a2(1+t2)/2

1 + t2
dt.

15



a) Prove that f(0) = π/4. Prove by differentiating with respect to a, followed by a substitution,
that

f ′(a) = −e−a2/2

∫ a

0
e−x2/2 dx, a > 0.

Define g : R → R by:

g(a) = f(a) +

(∫ a

0
e−x2/2 dx

)2

/2.

b) Prove that g′ = 0 on R. Conclude that g(a) = g(0) = π/4 for all a ∈ R.

c) Prove that for every a ∈ R we have 0 ≤ f(a) ≤ e−a2/2. Prove that f(a) → 0 as a → ∞.
Finally, use this to prove that ∫ ∞

−∞
e−x2/2 dx =

√
2π.

This is a well-known formula of Gauss.

Exercise 5.6. Let

F (x) :=

∫ π/2

0
log(1 + x cos2 θ) dθ, x > −1.

Prove, by differentiating with respect to x and using the substitution t = sin θ/ cos θ, that

F ′(x) =
1

x

∫ ∞

0

(
1

t2 + 1
− 1

t2 + 1 + x

)
dt =

π

2

√
1 + x− 1

x
√
1 + x

.

Compute F (x). Hint: write G(u) = F (u2 − 1) and study G′(u). What is F (0)?

Exercise 5.7. Consider the function f : (0,∞) × (0, 1) → R given by f(x, t) :=
tx − 1

ln(t)
. Define

F (x) :=
∫ 1
0 f(x, t)dt : (0,∞) → R. The goal of this exercise is to show that F (x) = ln(x + 1).

However, a priori it is not even clear that F (x) is well-defined. Indeed, we must pay attention to the
fact that f(x, 0) and f(x, 1) are not defined.

To address this, we introduce the auxiliary functionG(x, s) :=
∫ 1−s
s f(x, t)dt : (0,∞)× (0, 1/2) →

R.

• Show that f is C1. Hint: Don’t forget to study the function (x, t) 7→ tx first.

• Show that G is continuous Hint: Consider the function h(s, z) := z(1 − 2s) + s. Use this to
make a change of variable that replaces t ∈ [s, 1− s] with z ∈ [0, 1].

• Prove that G is C1.

• Compute DxG(x, s).

• Show that there is a unique continuous functionH : (0,∞)×[0, 1/2) → R such thatH(x, s) =
DxG(x, s) for each s ̸= 0.

• Use H to show that F (x) := lims→0G(x, s) is indeed ln(x+ 1).

16



5.3 Differentiation under the integral sign

Exercise 5.8. Let f : R2 → R be the function f(x, y) = sin(x)5y + cos(y)x. Define the function
F (y) :=

∫ 1
0 f(x, y)dx.

• Show that F : R → R is smooth.

• Compute DF .

• Show that |F (y)| ≤ |y|+ 1
2 .

Exercise 5.9. Let f : R2 → R be the function f(x, y) := x2 + sin(y)5y. Define the function
F (x, y) :=

∫ y
0 f(x, a)da.

• Show that F : R2 → R is a C2-function.

• Compute the total derivative of F .

• Determine the critical points of F .

Exercise 5.10. Let f : R2 → R be C1. Consider the function F : R2 → R defined by:

F (x, y) :=

∫ x2

0
f(x2 + y, x+ t)dt.

• Prove that F is continuous.

• Prove that F is C1.

• Compute its total differential DF , written in terms of the derivatives of f .

Hint: Whenever you are asked to show that a function is Ck, it is often helpful to write it as a
composition/product/sum of simpler functions. In this case, you may want to consider:

h : R3 → R2, h(x, y, t) := (x2 + y, x+ t)

g : R3 → R, g := f ◦ h

G : R3 → R, G(x, y, s) :=

∫ s

0
g(x, y, t)dt

Exercise 5.11. Let f : R2 → R be continuous. Suppose that f is differentiable with respect to the
first variable and that D1f : R2 → R is continuous. Define

F (x) :=

∫ x

a
f(x, y)dy.

a) Prove that F is continuously differentiable and that

F ′(x) = f(x, x) +

∫ x

a
Dxf(x, y)dy.

b) Prove that ∫ c

a
f(c, y)dy =

∫ c

a
f(x, x)dx+

∫ c

a

∫ x

a
Dxf(x, y)dydx.
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Exercise 5.12. Prove successively

∂

∂x

(
e−x sin t cos(x cos t)

)
=

1

x

∂

∂t

(
e−x sin t sin(x cos t)

)
, (x ̸= 0),

d

dx

∫ π/2

0
e−x sin t cos(x cos t)dt = −sinx

x
, (x ̸= 0),∫ y

0

sinx

x
dx =

π

2
−
∫ π/2

0
e−y sin t cos(y cos t)dt, (y > 0),∣∣∣∣∣

∫ π/2

0
e−y sin t cos(y cos t)dt

∣∣∣∣∣ ≤
∫ ϵ

0
e−y sin tdt+

∫ π/2

ϵ
e−y sin tdt

≤ ϵ+
π

2
e−y sin ϵ, (0 < ϵ < π/2),

lim
y→∞

∫ y

0

sinx

x
dx =

π

2
.

Note: in the course “Functions and Series,” the limit is computed in a very different way.

5.4 Switching in the order of integration

Exercise 5.13. a) Show that the function (x, y) 7→ y/(x2 + y2) is continuous on [0, 1]× [1, 2].

b) Verify by direct calculation that∫ 2

1

∫ 1

0

y

x2 + y2
dx dy =

∫ 1

0

∫ 2

1

y

x2 + y2
dy dx.

Exercise 5.14. Let a, b, c, d ∈ R with 0 ≤ a < b and 0 < c < d.

a) Show that the function f : (x, y) 7→ 1/(x+ y) is continuous on [a, b]× [c, d].

b) Verify by direct calculation that∫ b

a

∫ d

c

1

x+ y
dy dx =

∫ d

c

∫ b

a

1

x+ y
dx dy.

Exercise 5.15. Consider the function f : [0, 1]2 → R given by f(x, y) := exyy.

a) Show that the function F : [0, 1] → R given by F (x) :=
∫ 1
0 f(x, s)ds is smooth.

b) Show that the function G : [0, 1]2 → R given by G(x, y) :=
∫ yx2

0 f(x, s)ds is smooth.

c) Compute
∫ 1
0 F (t)dt.
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6 The inverse function theorem and its applications

6.1 Diffeomorphisms

Exercise 6.1. Recall that the spherical coordinates

Φ : U := (0,∞)× (−π, π)× (−π
2
,
π

2
) → R3

are defined as
Φ(r, ϕ, θ) := r(cos θ cosϕ, cos θ sinϕ, sin θ).

Show that
detDΦ(r, ϕ, θ) = r2 cos θ, ((r, ϕ, θ) ∈ U).

Exercise 6.2. Recall that the hyperbolic functions cosh, sinh : R → R are defined by

cosh t :=
et + e−t

2
, sinh t :=

et − e−t

2
.

This allows us to define coordinates F : U := (0,∞)× R → R2 using the expression:

F (ρ, t) = ρ(cosh t, sinh t).

(a) Compute detDF (ρ, t).

(b) Show that F is a diffeomorphism from U onto an open subset V of R2. Determine V .

Exercise 6.3. Consider the map f : U := (0,∞)× R → R2 defined by

f(r, t) = r(tanh t,
1

cosh t
).

(a) Show that f is a C1 map and that

detDf(r, t) = − r

cosh t
.

(b) Show that f is a diffeomorphism from U onto the upper half-plane V := {x ∈ R2 | x2 > 0}.

Exercise 6.4. Consider the set U of points x ∈ R2 with n(x) := 1 + x1 + x2 ̸= 0 and the function
f : U → R2 defined by

f(x) =
x

n(x)
.

(a) Show that U is an open subset of R2.

(b) Show that f is injective.

(c) Show that

detDf(x) =
1

n(x)3
(x ∈ U).

(d) According to the inverse function theorem, f is a diffeomorphism from U onto an open subset
V of R2. Verify this by explicitly determining V and f−1 : V → U .
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Exercise 6.5. Consider the map f : U = Rn \ {0} → Rn given by f(x) = ∥x∥−2x.

(a) Show that U = Rn \ {0} is an open subset of Rn.

(b) Show that f is a diffeomorphism from U onto itself.

(c) Assume n = 2 and compute the Jacobian detDf(x) for all x ∈ R2.

We now indicate a method to compute the Jacobian for general n ≥ 2.

(d) Show that detDf(r, 0, . . . , 0) = −r−2n for all r > 0.

(e) Let A : Rn → Rn be an orthogonal linear map. Show that for all x ∈ U

A ◦Df(x) = Df(Ax) ◦A.

Hint: consider A ◦ f .

(f) Find a formula expressing detDf(x) in terms of the norm ∥x∥, for x ∈ U. Hint: from linear
algebra it is known that for each x ∈ U there exists an orthogonal map A such that Ae1 =
∥x∥−1x.

Notation 6.6. For the following exercises, we introduce the following auxiliary notation: Given a
function g : Rn → Rn, we say that a subset U ⊂ Rn is good for g if:

• U is open and path-connected.

• g|U : U → g(U) is a C1-diffeomorphism.

• U is maximal: i.e. there is no V ⊃ U , strictly larger than U , satisfying the previous two
properties.

Exercise 6.7. Let f : R2 → R2 be the function f(x, y) := (x(1 − x), y2). Let p = (1, 1) ∈ R2.
Find an open U ⊂ R2 that is good for f and contains p.

Exercise 6.8. Let f : R2 → R2 be the function f(x, y) := (cos(x), x sin(y)). For each p ∈ R2,
either: (1) find an open U ⊂ R2 that is good for f and contains p or (2) show that such a U cannot
exist.

Exercise 6.9. Given x ∈ R, consider the function fx(t) := t3+ tx : R → R. Then, for each x ∈ R:

• Draw the function fx. Since this depends on x, draw a handful of cases (it is enough if you
draw it for x = 0, for some x positive, and for some x negative).

• Compute the critical points of fx.

• Show that if t is critical, there is no U ⊂ R containing it that is good for fx.

• Find all the U ⊂ R that are good for fx. Describe fx(U) explicitly.

• Show that the list of good U you provide is complete. I.e. there are no other open subsets that
are good for fx.
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Consider then the function F : R2 → R2 given by

F (x, t) := (x, t3 + tx) = (x, fx(t)).

Then:

• Compute the points (x, t) where the determinant ofDF (x, t) vanishes. Recall that such a point
is said to be critical.

• Show that if (x, t) is critical, there is no U containing it that is good for F .

• Find two different subsets U,U ′ ⊂ R2 that are good for F .

Hint: For the last item, look at the good subsets of each fx and see whether you can put some of
them together to produce U and U ′.

6.2 Submanifolds

Exercise 6.10. Show that the unit sphere S = {x ∈ Rn | ∥x∥2 = 1} is a submanifold.

Exercise 6.11. Let A : Rn → Rp be a surjective linear map. Show that the linear subspace N =
{x ∈ Rn | A(x) = 0}, the kernel, is a submanifold.

Exercise 6.12. Let A : Rn → Rp be a linear map that is not surjective. Show that the linear
subspace N = {x ∈ Rn | A(x) = 0}, the kernel is not a regular level set of A. Prove that you can
find some other linear map B : Rn → Rq, with q < p, such that N is a regular level set of B.

Exercise 6.13. Show that the ellipsoid Mc = {x ∈ R3 | x2 + 2y2 + 3z2 = c} is a submanifold for
every c ̸= 0. Draw it for various c, noting that it is empty for c < 0.

Exercise 6.14. Show that the hyperboloid Mc = {x ∈ R3 | x2+ y2− z2 = c} is a submanifold for
every c ̸= 0. Draw Mc for various values of c. Prove that:

• For c > 0, the submanifold Mc is path-connected.

• For c < 0, the submanifold Mc is not path-connected.

• M0 is path-connected but becomes disconnected if you remove the points in which it fails to
be a submanifold.

Exercise 6.15. Show that the paraboloid Mc = {x ∈ R3 | x2 + 2y2 = c+ z} is a submanifold for
every c. Draw it for various values of c.

Exercise 6.16. Let f : Rn → R be a C1 function. Show that the graph

graph(f) = {x ∈ Rn+1 | xn+1 = f(x1, · · · , xn)}

is a submanifold.
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6.3 Lagrange Multipliers

Exercise 6.17. Let f : R3 → R be the function f(x, y, z) := 2x2+y2+3z2. Consider the function
g : R3 → R given by g(x, y, z) := x2 − y2 − z2. Define Ma := g−1(a) for each a ∈ R.

• Show that Ma, for each a ̸= 0, is a submanifold.

• Find the maxima and minima of f |Ma , for each a. Determine whether they are local or global.

• Compute the Lagrange multipliers for each critical point of f |Ma .

Exercise 6.18. Let f : R3 → R be the function f(x, y, z) := sin(x). Consider the function
g : R3 → R given by g(x, y, z) := x2 + y2 + z2. Define Ma := g−1(a), a ∈ R.

• Determine for each a ̸= 0 whether Ma is a submanifold.

• Determine the critical points of f |Ma using the Lagrange multiplier method.

• For each a, find the maxima and minima of f |Ma . Determine whether they are local or global.

Exercise 6.19. Consider the following data in R3:

• The function f(x, y, z) := x2 + y2 − z : R3 → R.

• The function g(x, y, z) := z − 1 : R3 → R.

• The function (f, g) : R3 → R2 that they form together.

• The open U := {(x, y, z) ∈ R3 | x2 + y2 < 1}, its closure Ū = {(x, y, z) ∈ R3 | x2 + y2 ≤
1}, and its boundary ∂U = {(x, y, z) ∈ R3 | x2 + y2 = 1}.

Then:

a. Show that A := U ∩ f−1(0) is a submanifold of U . What is its dimension?

b. Show that B := U ∩ g−1(0) is a submanifold of U . What is its dimension?

c. Show that C := (f, g)−1(0) is a submanifold of R3. What is its dimension? Show that it is
contained in ∂U .

Consider now the function h : R3 → R given by h(x, y, z) := x2 − y2.

d. Draw A, B, and C. In a separate picture, draw some of the level sets of h (say, a positive level
set, a negative level set, and the zero level set). For the next two items it may be convenient
to compare these two pictures (perhaps by making further pictures in which you show how
different level sets of h interact with A, B, and C).

e. Using Lagrange multipliers, determine the critical points of h|A, h|B , and h|C .

f. Determine the minima/maxima of h|A∪B∪C . State whether they are local or global.

Exercise 6.20. Let A be a symmetric n × n matrix with real coefficients. Consider the function
f : Rn → R defined by

f(x) = ⟨Ax, x⟩.
Let S = {x ∈ Rn | ∥x∥2 = 1}.
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(a) Show that there exists a ∈ S such that f(x) ≤ f(a) for all x ∈ S.

(b) Show that there exists λ ∈ R such that Aa = λa. Hint: use the Lagrange method with g(x) =
∥x∥2 − 1.

Exercise 6.21 (Continuation of Opgave 6.20). Now consider several elements a1, . . . , ak ∈ S such
that a1, . . . , ak are linearly independent. Let V be the linear subspace a⊥1 ∩· · ·∩a⊥k of Rn and assume
that A(V ) ⊂ V.

(a) Show that there exists b ∈ S ∩ V such that f(x) ≤ f(b) for all x ∈ V.

(b) Let b be as in (a). Show that there exists λ ∈ R such that Ab = λb. Hint: use the Lagrange
method with suitable functions g, g1, . . . , gk and use that A(V ) ⊂ V.

(c) Prove that there exists an orthonormal set of vectors a1, . . . , an ∈ Rn and real constants
λ1, . . . , λn such that

Aaj = λjaj , (1 ≤ j ≤ n).

Exercise 6.22. Consider the parabola P ⊂ R2 given by the equation x21 − 4x2 = 0.

(a) Show that for every t ∈ R the function x 7→ dt(x) = ∥x− (0, t)∥ attains a minimum on P .

(b) Predict how the function t 7→ d((0, t), P ) behaves on R and sketch the expected graph.

(c) Compute d((0, t), P ) for every t ∈ R using the Lagrange method. Compare the obtained result
with your prediction in (b).

Exercise 6.23. Given a1, . . . , ak ∈ R, show that the function f : x 7→
∑k

j=1 ajxj attains a maxi-
mum and a minimum on the unit sphere S = {x ∈ Rn | ∥x∥ = 1}. Determine these maximum and
minimum values in two ways:

(a) using the Lagrange method;

(b) using the Cauchy-Schwarz inequality.

Exercise 6.24. Consider the plane V in R3 given by the equation ⟨b, x⟩ = c, with b ∈ R3 \ {0} and
c ∈ R. Determine the point on V with minimal distance to a given a ∈ R3. Verify your answer for
c = 0.

Exercise 6.25. Given two planes V and W in R3 given by the equations V : ⟨a, x⟩ = p and
W : ⟨b, x⟩ = q, with a, b ∈ R3 linearly independent and p, q ∈ R, determine the point x ∈ V ∩W
with the smallest distance to the origin.

Exercise 6.26. (a) Determine the maximum of (x1x2 · · ·xn)2 under the condition ∥x∥2 = 1.

(b) Use (a) to show that for all a1, . . . , an > 0:

(a1 · · · an)1/n ≤ 1

n
(a1 + · · ·+ an).

6.4 Extra

Exercise 6.27. Consider U = V = R2; we introduce these names to clearly distinguish the source
and target of the change of coordinates ϕ : U → V given by ϕ(x, y) := (x, y + x). Denote the
coordinates in V by (a, b), to distinguish them from (x, y) ∈ U .
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• Compute the differential Dϕ : U → Lin(U, V ).

• Verify that ϕ is a C∞-diffeomorphism.

Suppose we are given a smooth vector field X : U → U . We want to produce a vector field Y : V →
V corresponding to X under ϕ, via:

Y (a, b) := Dϕ(ϕ−1(a, b))(X(ϕ−1(a, b))) : V → V. (6.1)

• Write the entries Y1 and Y2 of Y explicitly in terms of the entries of X . Show that Y is C∞.

Consider the function f : U −→ R given by f(x, y) := x and its gradient grad(f) : U → U .
Compute grad(f) and show it is smooth.

• Compute f ◦ ϕ−1 : V → R.

• Apply Equation 6.1 to X = grad(f) and ϕ to produce a vector field Y : V → V . Write it
explicitly.

• Verify that Y ̸= grad(f ◦ ϕ−1).

Exercise 6.28. Let H := {x ∈ Rn | x1 + · · · + xn = a} with a > 0. Consider the subsets
H+ := {x ∈ H | xj ≥ 0 for all j} and H++ := {x ∈ H | xj > 0 for all j}. Let f : Rn → R be
defined by f(x) :=

∑n
j=1 x

k
j , k ∈ {2, 3, . . .}. Show that f attains its minimum mn := n1−kak on

H+.

(a) Show that f attains the value mn on H+.

(b) Show that f attains a minimal value µn on H+.

(c) Show that µ1 = m1.

(d) Show that the minimum µn is attained in H++.

(e) Use Lagrange multipliers to show that µn = mn.

(f) Interpret this geometrically for k = 2.

Exercise 6.29 (Hadamard’s Estimate). Let Mn denote the set of real n × n matrices x = (xij).
Identify Mn with Rn2

. For a differentiable function f : Mn → R, the gradient gradf : Mn → Mn

is defined componentwise.

(a) Show that f(x) := det(x) is differentiable with gradient

(gradf(x))ij = (−1)i+jDij(x),

where Dij(x) is the determinant of the matrix obtained by deleting row i and column j.

(b) Show that for gi(x) := ∥Ri(x)∥2 (the squared norm of the i-th row), its gradient is

(gradgi(x))jk = 2δijxjk.

Let d1, . . . , dn > 0 and define

Si := {x ∈Mn | ∥Ri(x)∥2 = d2i }.
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(c) Show that f attains a maximum M > 0 on S := S1 ∩ · · · ∩ Sn, and that if f(x) = M , there
exist λ1, . . . , λn ̸= 0 such that

xc = diag(λ1, . . . , λn)xt.

(d) Show that for such x, xtx = diag(d21, . . . , d
2
n) and conclude M = d1 · · · dn.

(e) Prove Hadamard’s inequality for every x ∈Mn:

| detx| ≤ ∥R1(x)∥ · · · ∥Rn(x)∥.
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7 Line integrals of covector fields

7.1 Computing line integrals

Exercise 7.1. Compute the line integrals
∫
γ α for the following covector fields and curves in R2 or

R3.

(a) α(x, y, z) = (x, y, xy − z) and γ(t) = t(1, 2, 4), with 0 ≤ t ≤ 1.

(b) α(x, y) = (x2−y2, 2xy) and γ a piecewiseC1 parametrization of the boundary of the rectangle
R := {0 ≤ x, y ≤ a}, traversed counterclockwise, a > 0.

(c) α(x, y, z) = (y, z, x) and γ a C1 parametrization of the intersection of the sphere {x2 + y2 +
z2 = a2} with the cylinder {x2 + y2 = 1

2a
2, z > 0}, where a > 0.

Exercise 7.2. Consider the vector field α : R3 → Lin(R3,R) defined by α(x, y, z) = (yz, xz, xy),
and the curve γ : [0, π] → R3 defined by γ(t) = (cos t, sin t, sin2 t).

(a) Compute the line integral
∫
γ α by direct calculation.

(b) Show that α is closed, and find a potential on R3.

(c) Compute the line integral
∫
γ α again using the potential from (b).

Exercise 7.3. Define the covector field α : R3 −→ Lin(R3,R) by α(x, y, z) := (y, x, z2). Let
γ : [0, 1] −→ R3 be the curve γ(t) := (t2, t3, t).

• Compute
∫
γ α.

• Does α have a primitive?

Exercise 7.4. Let v : R3 −→ Lin(R3,R) be the covector field α(x, y, z) := (cos(z), sin(z), 0).
Let γ : [0, 1] −→ R3 be the curve γ(t) := (t, 0, 0).

• Does α have a potential? If yes, describe one explicitly.

• Is there a C1 curve ν : [0, 1] −→ R3 such that ν(0) = γ(0), ν(1) = γ(1), and
∫
γ v(p)dp ̸=∫

ν v(p)dp?

Exercise 7.5. Consider a C1 curve γ : [0, 1] −→ Rn and a continuous vector field α : Rn −→
Lin(Rn,R). Define γs := γ|[0,s] : [0, s] → Rn. Let h : [0, 1] → R be the function defined by
h(s) :=

∫
γs
α.

• Show that h is a C1 function. Compute its derivative.

• Suppose that α is the total derivative of a function f : Rn → R. Show that h is identically zero
if and only if there exists a c ∈ R such that γ(t) ∈ f−1(c) for every t ∈ [0, 1].

Exercise 7.6. Let U ⊂ Rn be an open set and α : U → Lin(Rn,R) a closed covector field. Let
γ : [a, b] → U be a continuous curve. Show that

f(τ) :=

∫
γ|[a,τ ]

α

defines a potential f : [a, b] → R of α along γ.
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7.2 (Non-)simply sonnected spaces

Exercise 7.7. The goal of this opgave is to show that U := R2 \ {0} is not simply connected. This
is similar to the proof given in the lecture notes. The difference is that we will now use paths relative
endpoints, instead of loops.

On U consider the covector field v : U → R2 defined by

α(x) = ∥x∥−2(−x2 x1).

(a) Show that α is closed.

(b) Let c± : [0, π] → U be defined by c±(t) = (cos t,± sin t). Compute the integrals∫
c+

α

∫
c−

α.

(c) Prove that c+ and c− are not homotopic relative endpoints.

(d) Show that α has no potential.

(e) Conclude that U is not simply connected.

Exercise 7.8. Write U := R2 \ {0} for the complement of the origin in R2. Let γ ∈ C∞([0, 1], U)
be a loop.

a. Given any positive real number r, define γr(t) := rγ(t). Show that it is a smooth loop.

b. Show that γ and γr are homotopic as loops for all r > 0.

Suppose now that α ∈ C∞(U,Lin(R2,R)) is a closed covector field. Assume that
∫
γ α = C, with

C ̸= 0. Then:

c. Show that α has no potential.

d. Show that
∫
γr
α = C for every r > 0.

Suppose that β ∈ C∞(R2,Lin(R2,R)) is a covector field such that β|U = α.

e. Show that β is also closed. Hint: Consider the function R2 → Lin(R2,Lin(R2,R)) given by
x 7→ Dβ(x)− (Dβ(x))t, where the second term is the transpose.

f. Deduce that such a β cannot exist.

Fix a point q ∈ R2, different from the origin. Write Uq := R2 \ {0, q} for the complement of q in U .

g. Construct a covector field αq ∈ C∞(Uq,Lin(R2,R)) and a loop ηq ∈ C∞([0, 1], Uq) such that∫
ηq
αq = C but

∫
ηq
α = 0.

h. Conclude that ηq is not contractible but ηq and γ are not homotopic as loops in Uq.

Exercise 7.9. The goal of this opgave is to show that U := Rn \{0} is simply connected for n ≥ 3.
Let γ : [0, 1] → Rn \ {0} be a closed continuous curve.

27



(a) Show that there exists r > 0 such that ∥γ(t)∥ ≥ r for all t ∈ [0, 1].

(b) Show that for x, y ∈ Rn \B(0; r)

∥x− y∥ < r =⇒ 0 /∈ [x, y].

(c) Show that there exists δ > 0 such that for all t1, t2 ∈ [0, 1]

|t1 − t2| < δ =⇒ 0 /∈ [γ(t1), γ(t2)].

Hint: use a theorem on uniform continuity from Introduction to Analysis.

(d) Show that γ is homotopic in U to a closed piecewise linear curve c : [0, 1] → U , meaning there
exists a partition 0 = t0 < t1 < . . . < tk = 1 such that for each 1 ≤ j ≤ k

c(tj−1 + τ(tj − tj−1)) = c(tj−1) + τ(c(tj)− c(tj−1)), (τ ∈ [0, 1]).

(e) Show that for each 1 ≤ j ≤ k there exists a unit vector nj such that nj ⊥ c(tj−1) and
nj ⊥ c(tj).

(f) Show that there exists p ∈ Rn with ⟨p, nj⟩ ≠ 0 for all 1 ≤ j ≤ k.

(g) Show that for all ξ ∈ c([0, 1]), 0 /∈ [p, ξ].

(h) Show that c is homotopic in U to the constant curve t 7→ p.

(k) Conclude that U is simply connected.

7.3 Extra

Exercise 7.10. The length L(γ) of a C1 curve γ : [a, b] → Rn is defined by

L(γ) =

∫ b

a
∥γ′(t)∥ dt.

(a) Let ϕ : [c, d] → [a, b] be a monotone C1 map. Show that the reparametrization γ ◦ ϕ : [c, d] →
Rn is a C1 curve and satisfies

L(γ ◦ ϕ) = L(γ).

(b) Show that for every continuous vector field v defined on γ([a, b]), there exists a constantM > 0
such that ∥v(x)∥ ≤M for all x ∈ γ([a, b]).

(c) Show that for v and M as in (b): ∣∣∣∣∫
γ
v(x) · dx

∣∣∣∣ ≤ L(γ)M.

(d) Explain how the above extends to piecewise C1 curves in Rn, and prove the corresponding
statements.

Exercise 7.11. Let O =]0,∞[×R and consider the polar coordinates map Φ : O → R2 given by
Φ(r, ϕ) = (r cosϕ, r sinϕ). Previously, the inverse function theorem was used to show that for each
(r0, ϕ0) ∈ O there exists an open neighborhood U ⊂ O such that Φ(U) is open in R2 and Φ is a C1

diffeomorphism from U onto Φ(U).
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(a) Show that for each x0 ∈ R2 \ {0} there exists an open set U ⊂ O such that Φ(U) is an open
neighborhood of x0 and Φ : U → Φ(U) is a diffeomorphism.

Denote the inverse of Φ|U by Ψ and define the function ψ = ψU : Φ(U) → R by ψ(x1, x2) =
Ψ(x1, x2)2.

(b) Show that ψ is a C1 function on Φ(U) and that Φ(∥x∥, ψ(x)) = x for all x ∈ Φ(U).

(c) Show that the vector field ∇ψ on Φ(U) equals v, where the vector field v : R2 \ {0} → R2 is
given by

v(x) = ∥x∥−2(−x2, x1).

Hint: use a formula for DΨ(x).

Let R : [0, 1] →]0,∞[ and ϕ : [0, 1] → R be two continuous functions. Define the continuous curve
γ : [0, 1] → R2 \ {0} by

γ(t) = R(t)(cosϕ(t), sinϕ(t)).

(d) Show that f(t) = ϕ(t) defines a potential of v along γ.

(e) Compute
∫
γ v(x) · dx.
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8 Extra: Reeksen

8.1 Reeksen

Exercise 8.1. Ga na of de volgende reeksen convergent of divergent zijn;

(a)
∑

n≥1
2n

n! ; (b)
∑

n≥1 cos
1
n4 ; (c)

∑
n≥2

1
(logn)n ;

(d)
∑

n≥1
(2n)!
(n!)2

; (e)
∑

n≥1 sin
1
n3 ; (f)

∑
n≥1 sin

1
n .

Exercise 8.2. Beschouw de reeks
∑

k≥1 ak in R met ak = (−1)k+1 1
k .

(a) Bewijs dat de reeks convergent is.

(b) Bewijs dat de reeks niet absoluut convergent is.

(c) Definieer een bijectie k 7→ n(k) van N+ = {1, 2, . . .} op zichzelf, zo dat de reeks∑
k≥1

an(k)

convergent is met som 0.

Exercise 8.3. Toon aan dat de reeks ∑
n≥2

log

(
1− 1

n2

)
convergent is. Hint: majoreer door Taylor met rest te gebruiken.

8.2 Reeksen met een parameter

Exercise 8.4. (a) Bepaal alle a ∈ R waarvoor de reeks
∑

k≥1
log k
ka convergent is. Hint: gebruik

het bekende feit dat limk→∞ k−≥ log k = 0 voor ≥> 0.

(b) Beantwoord dezelfde vraag voor de reeks
∑

k≥2
1

ka log k .

Exercise 8.5. Beschouw de reeks
∑∞

n=1

sin(n)

n
zn, z ∈ C.

• Toon aan dat de reeks convergeert als |z| < 1.

• Toon aan dat er een z is zodat de reeks divergeert.

Exercise 8.6. Voor welke complexe waarden z ∈ C zijn de volgende reeksen convergent?

•
∑∞

n=0

n

(3n+ 1)!
zn.

•
∑∞

n=0

n2 + n

n2 + 1
zn.

Exercise 8.7. Voor welke reële waarden van x zijn de volgende reeksen convergent?

(a)
∑

n≥1
cos(xn)

n2 ; (b)
∑

n≥1

√
n+cosnx
n2+1

; (c)
∑

n≥1
xn

x2+n2 .
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8.3 Extra

Exercise 8.8. Laat met een resultaat uit het dictaat zien dat er een constante C > 0 en een rij (rn)
reële getallen bestaan zo dat

n∑
k=1

1

k
= log n+ C + rn, lim

n→∞
rn = 0.

(a) Toon aan dat
2n∑
k=1

(−1)k+1

k
= log 2 + r2n − rn.

(b) Toon dat
∑

k≥1
(−1)k+1

k convergent is en dat

∞∑
k=1

(−1)k+1

k
= log 2.

Exercise 8.9. Gegeven zijn complexe rijen (ak)k≥0 en (bk)k≥0. We definiëren

Bn :=

n∑
k=0

bk, (n ≥ 0).

(a) Toon aan dat voor alle n ≥ 0 geldt:

n∑
k=0

akbk =
n−1∑
k=0

(ak − ak+1)Bk + anBn.

Hint: schrijf bk = Bk −Bk−1, voor k ≥ 1.

In het vervolg veronderstellen we dat (ak) een monotoon dalende rij positieve reële getallen is met
limk→∞ ak = 0. Verder veronderstellen we dat eenM > 0 bestaat zo dat |Bn| ≤M voor alle n ≥ 0.

(b) Toon aan dat de reeks
∑

k≥0(ak − ak+1)Bk convergent is en dat∣∣∣∣∣
∞∑
k=0

(ak − ak+1)Bk

∣∣∣∣∣ ≤ a0M.

(c) Toon aan dat de reeks
∑

k≥0 akbk convergent is en dat∣∣∣∣∣
∞∑
k=0

akbk

∣∣∣∣∣ ≤ 2a0M.

(d) Toon aan dat de reeks ∑
k≥0

akz
k

convergent is voor alle z ∈ C met |z| ≤ 1, z ̸= 1. Geef een voorbeeld waaruit blijkt dat de
reeks divergent kan zijn voor z = 1.
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9 Extra: Oneigenlijke integralen

Exercise 9.1. Gegeven is een continue functie f : [0, 1] → R. Toon aan dat de integraal∫ 1

0
f(t) tx(1− t)y dt

convergent is voor x, y > −1, en op dat gebied een continue functie van (x, y) definieert.

Exercise 9.2. Gegeven is een continue functie f : [0, 1] → R met f(0) = 1. Toon aan dat de
integraal ∫ 1

0

f(t)

t
dt

divergeert.

Exercise 9.3. Toon aan de oneigenlijke integraal∫ ∞

0

sin t

t
√
t
dt

convergeert.

Exercise 9.4. (a) Toon aan dat de oneigenlijke integraal∫ ∞

1

cosx

x2
dx

convergeert.

(b) Toon aan dat de oneigenlijke integraal ∫ ∞

0

sin t

t
dt

convergeert. Hint: dit lukt niet met het majorantie-criterium. Beschouw de integraal
∫ β
1

sin t
t dt

en gebruik partiële integratie om de integraal te vergelijken met de integraal in (a).

Exercise 9.5. We bekijken nogmaals de volgende oneigenlijke integraal uit Opgave 2.6:

F (t) :=

∫ ∞

0

1

x2 + t
dx, (t > 0).

Gebruik in de volgende onderdelen direct de behandelde stellingen over oneigenlijke integratie.

(a) Laat zien dat de integraal convergeert voor iedere t > 0.

(b) Bewijs dat de functie F continu differentieerbaar is, met afgeleide

F ′(t) = −
∫ ∞

0

1

(x2 + t)2
dx.

(c) Toon aan dat voor k ∈ N geldt dat∫ ∞

0

1

(1 + x2)k+1
dx =

(2k)!π

22k+1(k!)2
.

32



Exercise 9.6. (a) Laat zien dat door

f(x) =

∫ ∞

−∞
e−t2 cos(xt) dt

een continu differentieerbare functie gedefinieerd wordt.

(b) Toon aan dat xf(x) = −2f ′(x) voor alle x ∈ R.

(c) Toon aan dat
f(x) =

√
πe−x2/4,

voor alle x ∈ R. Hint: differentieer de functie g(x) = f(x)ex
2/4.

Exercise 9.7. In deze opgave zullen we laten zien dat de integraal∫ ∞

0

sinx

x
dx

niet absoluut convergent is. We doen dit door middel van een tegenspraak. Veronderstel dus dat de
integraal wel absoluut convergent is.

(a) Toon aan dat uit de aanname volgt dat de integraal∫ ∞

1

(sinx)2

x
dx

convergent is.

(b) Toon aan dat voor alle R > 1 geldt dat∫ R

1

(sinx)2

x
dx ≥

∫ R+π/2

1+π/2

(cosx)2

x
dx.

(c) Toon aan dat uit de aanname ook volgt dat de integraal∫ ∞

1

(cosx)2

x
dx

convergeert.

(d) Laat zien dat (a) en (c) tot een tegenspraak leiden.
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