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Foreword

These lecture notes were developed by Erik van den Ban in 2020 for the (at the time) newly created
course Inleiding Analyse in Meer Variabelen. They were originally written in Dutch and were desig-
ned to follow naturally the lecture notes of the course Inleiding Analyse and to connect seamlessly to
the contents of the course Functies en Reeksen.

The text has since been updated by Álvaro del Pino. Even though the overall structure and learning
objectives have not changed, the current version (2025) was designed to address the comments
brought up in student evaluations along the years. Namely:

• Each chapter now includes a greater detail of discussion in order to motivate the material better.
More highlight is given to the main results and ideas.

• More examples have been added.

• Two chapters have been added to include necessary background on metric spaces (Chapter 1)
and linear algebra (Chapter 2).

• Some of the terminology (Chapters 6 and 7) has been updated and slightly expanded to emp-
hasise the key ideas and connect better to later courses.

We are looking forward to your comments to keep improving the lecture notes.

What will you learn in this course?

The overarching learning objective of the course Inleiding Analyse in Meer Variabelen is for you to
become familiar with the analysis of multivariate functions Rn → Rm.

In Chapter 2 we get familiar with the simplest examples of functions on Rn: the polynomials. These
include the linear functions and, as you will see, this chapter is largely about linear algebra. We
expect you to be familiar with large parts of it (Sections 2.1, 2.2, 2.3, and some of 2.5) but you will
also encounter new material.

In Chapter 1 we discuss metric spaces. The idea is that we should be very comfortable with the
continuity of functions before we look into their differentiability. The theory of continuity can be
found in Section 1.1; this is material that you have seen before in Inleiding Analyse. The rest of the
chapter will be new to you: it discusses paths in metric spaces and how these can be used to study
the “shape” of a metric space. These ideas play a fundamental role in Chapter 7 and will appear in
many later courses, including Functies en Reeksen, Topologie en Meetkunde, and Differentieerbare
variëteiten.

The theory of multivariate differentiation is developed in Chapters 3 and 4. The key insight behind
it is the concept of linearisation: Given a function f : Rn → Rm, the total derivative Df(x) is
the linear function that best approximates it at the point x. This leads naturally (eventually) to the
concept of k-order Taylor polynomial (“the polynomial of order k that best approximates f at x”).
Along the way we develop many useful results, including the chain rule, the mean value theorem, and
the commutativity of partial derivatives. An important motto to keep in mind is that our arguments
are usually a combination of linear algebra and using results from analysis in one variable.

In Chapter 6 we encounter the inverse function theorem. This is a major result that comes with a
crucial message (that appears in many forms across all of Mathematics): if U, V ⊂ Rn are two opens
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related by a change of coordinates ϕ : U → V , we can think of U and V as two incarnations of the
same object, up a change of perspective. This can be very useful, since the change of coordinates ϕ
can make some things simpler in V compared to U (and viceversa). The inverse function theorem
will allow us to construct such coordinate changes. This tool will allow us to initiate the theory
of submanifolds N ⊂ Rn; these can be thought as “the nicest closed subsets of Rn”. Our main
application will be in constrained optimisation: we will develop the method of Lagrange multipliers,
which will allow us to find the extrema of a function along a submanifold. (Sub)manifolds will
reappear in Inleiding Topologie, Analyse in meer variabelen and Differentieerbare variëteiten.

This wraps up the theory of differentiation. We will also look into the theory of integration in multiple
variables. The integration of continuous functions over hypercubes of Rn is developed in Chapter 5.
This sets the foundations for the theory of the multivariate Riemann integral. You will encounter a
more complete treatment in Analyse in meer variabelen, Differentieerbare variëteiten, and Maat en
integratie.

It turns out that in higher dimensions one can consider other types of integrals. In Chapter 7 we will
develop the integration of covector fields along paths. This will allow us to take a first look at the
extremely deep and surprising relation between Analysis and Topology. Namely, we will be able to
relate the shape of an open U ⊂ Rn to the analytic properties of its covector fields. This idea is
central in Mathematics. In the follow-up course Functies en Reeksen it will be crucial in the study of
holomorphic functions, leading to Cauchy’s integral theorem. In Physics you will encounter it in the
study of fields and their potentials. In Analyse in meer variabelen and Differentieerbare variëteiten
it will be generalised to higher differential forms, eventually leading to the construction of de Rham
cohomology, an important invariant of manifolds.

The lecture notes also include two “extra” chapters. These are not meant to be covered in the course.
They are meant to serve as a reference for later courses. Chapter 8 develops some of the basic theory
of series, which you will see in detail in Functies en Reeksen. Chapter 9 formalises the theory of
improper integrals, which you have seen informally already.

Throughout the lecture notes we will use blue boxes to highlight important examples and
computations.

We will use red boxes to highlight the central results of the course.
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Notation

As in the lecture notes Inleiding Analyse, we use the following notation, which may differ from the
notation used in the course Bewijzen in de Wiskunde.

We write N = {0, 1, 2, . . .}; thus we also consider 0 as a natural number. Furthermore, we write N∗

or Z+ for N \ {0}.

If A and B are sets, then A ⊂ B means that every element of A also belongs to B. In Bewijzen in
de Wiskunde, the notation A ⊆ B was customary. Moreover, we use the notation A ⊊ B to express
A ⊂ B and A ̸= B.

For two points a, b ∈ Rn, we define the closed line segment [a, b] in Rn with endpoints a and b as the
set of points

[a, b] := {a+ t(b− a) | 0 ≤ t ≤ 1}.

Such an interval consists of a single point if a = b. Similarly, we write

(a, b) := [a, b] \ {a, b} = {a+ t(b− a) | 0 < t < 1}

for the open line segment. Do observe that these intervals are not meant to be oriented, so there
is no preferred start or end point. In particular [a, b] = [b, a]. We use these definitions still in the
one-dimensional case n = 1.

Finally, we also use the notation a := b to indicate that “a is defined to be equal to b”. This differs
from =, which is an equality that we establish via computation, not definitionally.
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1 Metric spaces

The goal of this course is to get familiar with the theory of differentiation and integration of func-
tions Rn → Rm. As such, we will mostly work with functions that are differentiable at least once.
However, as we go along, we will often face the following situation: before we show a function is
differentiable, we will need to prove that it is continuous.

Continuity is thus an important theme for us. It turns out that continuity is best discussed in the more
general setting of metric spaces, which is what this chapter is about. In this chapter we will:

• Recall the sum/product/composition rules for continuity.

• Discuss the idea of uniform continuity. It will be important in Chapter 5.

• Develop the theory of paths/loops and their homotopies.

The first two items were worked out in detail in the course Inleiding Analyse, so we will just recall
some key facts. Regarding the third item: the main idea is that we are trying to understand a bit more
about the shape of metric spaces. To do so, we “test” our metric space using paths and loops. You will
learn much more about this in Inleiding Topologie and Topologie en Meetkunde. Our main motivation
in this course is the following: the shape of a domain U ⊂ Rn has important consequences regarding
the properties of its functions (Chapter 3) and covector fields (Chapter 7).

1.1 Continuity

The contents of this section appeared already in Inleiding Analyse.

Definition 1.1. A metric space is pair consisting of a set X and a distance function d : X ×X →
[0,∞) satisfying

• d(x, y) = 0 if and only if x = y.

• Symmetry: d(x, y) = d(y, x).

• Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z). △

Using the distance we can define the open ball of center x ∈ X and radius r > 0:

B(x, r) := {x′ ∈ X | d(x′, x) < r}

and the corresponding closed ball:

B̄(x, r) := {x′ ∈ X | d(x′, x) ≤ r}.

More generally, we will also use the notation:

Definition 1.2. Let X be a metric space. A subset U ⊂ X is open if for each x ∈ U there is δ > 0
so that B(x, δ) ⊂ U . A neighbourhood of a point x ∈ X is an open containing it. A subset K ⊂ X
is closed if its complement Kc := X \K is open. △

More generally, a point a ∈ V ⊂ X is internal if there is some δ > 0 such that the open ball
B(a, δ) ⊂ X is contained in V . The collection of all such points of V is called the interior of V and
is denoted by inw(V ). The subset V is open if the equality V = inw(V ) holds.
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1.1.1 Continuity

Distance functions also allow us to discuss continuity. Namely:

Definition 1.3. A function f : (X, dX) → (Y, dY ) between metric spaces is continuous at a point
x ∈ X if

lim
x′→x

dY (f(x
′), f(x)) = 0.

A function is continuous if it is continuous at all points. △

This definition can be spelled out in various equivalent ways. Given x ∈ X ...

• and ε > 0, there is δ > 0 such that for all x′ ∈ X it holds that

dX(x, x′) < δ =⇒ dY (f(x), f(x
′)) < ε.

• and ε > 0, there is δ > 0 such that f(B(x, δ)) ⊂ B(f(x), ε).

• and a neighbourhood V ⊂ Y of f(x) there is δ > 0 such that f(B(x, δ)) ⊂ V .

• and a neighbourhood V ⊂ Y of f(x) there is a neighbourhood U of x such that f(U) ⊂ V .

Example 1.4. In this course we will focus on the metric spaces (Rn, dstd), where dstd is the usual
Euclidean distance

dstd(x, y) := ||x− y|| =

(
n∑

i=1

(xi − yi)
2

)1/2

.

An important remark is that very often we will consider open subspaces U ⊂ Rn, which are metric
spaces as well once we restrict dstd. For simplicity we will henceforth write Rn and implicitly assume
it is endowed with dstd. △

The following statements will be our main tools to check whether a map is continuous:

Proposition 1.5. Fix a metric space (X, dX). Suppose f, g : X → Rn and h : X → R are
continuous. Then:

• Sum rule: f + g : X → Rn is also continuous.

• Product rule: hf : X → Rn is also continuous.

• Quotient rule: If h is nowhere zero then 1/h : X → R \ {0} is also continuous.

Suppose moreover that we have metric spaces (Y, dY ) and (Z, dZ) and continuous functions
ϕ : X → Y and ψ : Y → Z. Then:

• Composition rule: ψ ◦ ϕ : X → Z is also continuous.

If you want to work out the proof for yourself, you may want to establish the following lemma first:

Lemma 1.6. Let (X, d) be a metric space. A function f = (f1, · · · , fn) : X → Rn is continuous if
and only if each entry fn is continuous.
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In particular, given two continuous functions g, h : X → R it follows that (g, h) : X → R2 is also
continuous.

An important result, which will use frequently, is that:

Lemma 1.7. Consider metric spaces (X, dX) and (Y, dY ), a continuous map f : X → Y , and
closed subset Z ⊂ Y . Then the preimage f−1(Z) is a closed subset of X .

A particularly relevant example is the case of the level set f−1(y) associated to a point y ∈ Y . The
study of level sets of differentiable functions is an important topic, which will be one of the focuses
of Chapter 6.

1.1.2 Uniform continuity

Suppose f : (X, dX) → (Y, dY ) is a continuous function. What this means is that, for a given x ∈ X ,
if we want to land ε-close to its image f(x), we should pick points x′ ∈ X that are δ-close to x. That
is, the quantity δ not only depends on ε, it also depends on x. We can therefore denote it as δ(ε, x)
and think of it as a function (0,∞)×X → (0,∞).

We can ask ourselves the following question: “Fix ε > 0. Is there a δ > 0 that works for this ε and
all x?” This is the same as asking whether we can choose the function δ(ε, x) to be independent of
x. This is not always the case:

Example 1.8. Consider the function f : R → R given by f(x) = x2. Since f ′(x) = 2x, the
function f has larger slope as x grows; i.e. it is becoming steeper as x→ ∞. This means that
δ(ε, x) will get smaller the larger x is. Let us work it out. We want |f(x+h)− f(x)| < ε and
we have to find δ so that |(x+ h)− x| = |h| < δ implies it. We bound:

|f(x+ h)− f(x)| = |(x+ h)2 − x2| = |2xh+ h2| ≤ 2|x||h|+ |h|2 ≤ 2|x|δ + δ2,

which tells us that we want both terms smaller than ε/2. Bounding the second implies δ <√
ε/2, which does not depend on x. However, bounding the first one implies δ < ε/(4|x|),

which indeed goes to zero as |x| grows. △

The reason why we couldn’t find a δ that worked for all x at once (for a given ε) was because f was
becoming more and more steep as we went to infinity in R. However, what if we focus on metric
spaces that “don’t have an infinity”, so functions cannot become arbitrarily steep?

Definition 1.9. A metric space (X, d) is (sequentially) compact if every sequence {xi}∞i=0 in X
has a convergent subsequence. △

You should imagine this as saying that X has no infinity, since sequences cannot escape. The most
important examples are given by the Bolzano-Weierstrass theorem:

Proposition 1.10. SupposeX ⊂ Rn is a closed and bounded subset. ThenX is a sequentially
compact metric space (with the standard Euclidean distance).

Finally, we define:
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Definition 1.11. A function f : (X, dX) → (Y, dY ) between metric spaces is uniformly conti-
nuous if for every ε > 0 there is some δ > 0, depending only on ε, such that for all x, x′ ∈ X:

dX(x′, x) < δ =⇒ dY (f(x
′), f(x)) < ε. △

In Chapter 5 we will need the following variation. The idea is that sometimes we are working with
functions f defined over a non-compact metric space (for instance, Rn) but we focus on the behaviour
of f close to a subspace A that is compact:

Definition 1.12. Fix metric spaces (X, dX) and (Y, dY ), as well as a subspace A ⊂ X , and a
function f : X → Y . We will say that f is uniformly continuous along A if for every ε > 0 there
is some δ > 0, depending only on ε, such that for all x ∈ X and all a ∈ A we have:

dX(x, a) < δ =⇒ dY (f(x), f(a)) < ε. △

Which allows us to establish:

Proposition 1.13. Consider metric spaces (X, dx) and (Y, dY ), a sequentially compact sub-
space A ⊂ X , and a continuous function f : X → Y . Then f is uniformly continuous along
A.

Proof. You have seen this statement in Analyse for the special caseA = X . The proof of the general
case is very similar.

We assume that the conclusion does not hold and will show that this leads to a contradiction. The
negation of the conclusion gives that there exists ε > 0 such that for every δ = 1/j > 0 there exists
aj ∈ A and xj ∈ X with dX(xj , aj) < 1/j which do not satisfy the estimate dY (f(xj), f(aj)) < ε,
i.e., for which dY (f(xj), f(aj)) ≥ ε.

We have thus a sequence {aj}∞j=1 in A and another sequence {xj}∞j=1 in X . Since A is compact,
we deduce that {aj}∞j=1 has a convergent subsequence {aji}∞i=1 with limit a∞ ∈ A. This means that
limi→∞ dX(aji , a∞) = 0. Using the triangular inequality we deduce:

dX(xji , a∞) ≤ dX(xji , aji) + dX(aji , a∞) ≤ 1/ji + dX(aji , a∞) → 0

as i→ ∞. We can also use the reverse triangular inequality and the continuity of f to show:

dY (f(xji), f(a∞)) ≥ dY (f(xji), f(aji))− dY (f(aji), f(a∞)) ≥ ε− dY (f(aji), f(a∞)) → ε

as i → ∞. However, this is a contradiction with the continuity of f : we have found a sequence of
points {xji} in X approaching a∞, but whose values f(xji) do not approach f(a∞).

Example 1.14. We saw that f : R → R given by f(x) = x2 is not uniformly continuous. However,
we can consider the subspace [0, 1] ⊂ R, which is bounded and closed and therefore compact by
Proposition 1.10. According to Proposition 1.13, given ε we can find a δ that works for all x ∈ [0, 1].
Indeed, we computed that we needed δ < ε/(4|x|), whose minimum (for x ∈ [0, 1]) is ε/4. △

1.1.3 Neighbourhoods of uniform radius

In later chapters we will need the following technical result:

Lemma 1.15. Let (X, d) be a metric space, and letU ⊂ X be open. LetA ⊂ U . IfA is sequentially
compact, then there exists a δ > 0 such that for all a ∈ A we have B(a; δ) ⊂ U .
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You should think of this as yet another example of uniform continuity. Given a point a inside an open
U we can always find some δ, depending on a, so the δ-ball centered at a is contained in U . The
point is whether this δ can be chosen uniformly (i.e independently of a as the point a ranges over the
open subset A).

Proof. We give a proof by contradiction. Suppose that no such δ > 0 exists. Then, for every integer
n ≥ 1, there exists an ∈ A such that the ball B(an; 1/n) is not contained in U , i.e., it contains a
point yn ∈ X \ U . By construction, d(an, yn) < 1/n for all n.

By the sequential compactness of A, there exists a subsequence anj with a limit a ∈ A. From
d(ynj , anj ) <

1
nj

and the triangular inequality it follows that:

d(ynj , a) ≤ d(ynj , anj ) + d(anj , a) → 0

as j → ∞. It follows that ynj → a. Therefore, a is a limit point of the set X \ U . Since X \ U is
closed we deduce that a ∈ X \ U , which is a contradiction.

1.2 Paths

In this section we explore what paths and loops tell us about the shape of a metric space. This will be
relevant in Chapters 3 and Chapter 7.

Definition 1.16. Suppose [a, b] ⊂ R is an interval and X is a metric space. A continuous map
γ : [a, b] → X is said to be a path or curve. The point γ(a) ∈ X is the initial point of γ. We say that
γ(b) is the endpoint. △

It is convenient to think of t ∈ [a, b] as the time variable of the curve γ. The image γ(t) ∈ X can
then be interpreted as the position of the trajectory γ at time t. The curve γ gives thus the position
as a function of time. We can also say that γ describes a motion in the space X .

When X = Rn we can also consider differentiable paths; see Definition 3.50.

1.2.1 Operations on paths

Given a path, we can run it at a different speed:

Definition 1.17. Let γ : [a, b] → X be a path. A reparametrisation of γ is another path ν :
[c, d] → X satisfying

ν = γ ◦ ρ,

where ρ : [c, d] → [a, b] is a continuous, increasing bijection. △

You should think of ρ as a change of coordinates telling us that γ and ν are pretty much the same
curve, just expressed differently.

We can also run a curve in the opposite direction:

Definition 1.18. Given a continuous curve γ : [0, 1] → X we define its reverse to be the curve
γ̄ : [0, 1] → X defined by the expression γ̄(t) := γ(1− t). △
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It is immediate that the starting point of γ is the final point of γ̄ and viceversa.

If a curve finishes at a point x ∈ X and another curve starts at x, we can run one first and then the
other:

Definition 1.19. Suppose γ0, γ1 : [0, 1] → X are continuous curves. We say that they are con-
catenable if γ0(1) = γ1(0). We then define their concatenation γ1 · γ0 : [0, 1] → X using the
expression

γ1 · γ0(t) =
{
γ0(2t) als t ∈ [0, 12 ],
γ1(2t− 1) als t ∈ [12 , 1].

△

The reader should verify that the resulting curve is indeed continuous.

1.2.2 Path-connectedness

You may recall the following definition from Inleiding Analyse:

Definition 1.20. A metric space X is path-connected if, given any two points p, q ∈ X , we can
find a continuous path γ : [0, 1] → X with initial point γ(0) = p and endpoint γ(1) = q. △

When studying the shape of X , being path-connected is one of the first properties you could check.
A main example is the following:

Lemma 1.21. Rn is path-connected.

Proof. Given points x, y ∈ Rn we can consider the straight line segment [x, y] ⊂ Rn. It can be
expressed as the image of the curve γ : [0, 1] → Rn given by γ(t) = x+ t(y−x). For completeness,
let us spell out why it is continuous. Its ith component is γi(t) = xi + t(yi − xi), which is a linear
function [0, 1] → R so, as seen in Inleiding Analyse, γi is continuous. The result then follows from
Lemma 1.6.

The exact same proof shows:

Lemma 1.22. Suppose U ⊂ Rn is convex. I.e. for any two points x, y ∈ U it holds that the
straight segment [x, y] is in U . Rn is path-connected. Then U is path-connected.

In order to tackle more complicated examples, we will use the following auxiliary lemma, which
follows from the constructions of paths we introduced earlier:

Proposition 1.23. Let X be a metric space. Then the following properties hold for any points
x, y, z ∈ X:

• Reflexivity: There is a path from x to x.

• Symmetry: Given a path from x to y, there is a path from y to x.

• Transivity: Given a path from x to y and a path from y to z, there is a path from x to z.

I.e. being connected by a path is an equivalence relation.
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Proof. The constant path γ(t) = x goes from x to x. If γ goes from x to y then the reverse path γ̄
(Definition 1.18) goes from y to x. Lastly, if γ goes from x to y and ν from y to z, their concatenation
ν · γ (Definition 1.19) goes from x to z.

Notation 1.24. We will write π0(X) for the set of equivalence classes described by Proposition
1.23. Equivalently, π0(X) is the number of path-connected pieces into which you can decompose
X . △

Proposition 1.23 can be used to address the following more involved example:

Lemma 1.25. Suppose U ⊂ Rn is star-shaped. I.e. there exists a point x0 ∈ U such that for
every x ∈ U it holds that the straight segment [x, x0] is in U . Then U is path-connected.

Proof. By assumption, there is a path from x0 to any other x. Using transitivity (Proposition
1.23) we deduce that there are paths between any two points (namely, by passing via x0).

Exercise 1.26. Consider a finite collection of points K ⊂ R2. Show that R2 \ K is path-
connected. △

In R it is possible for us to fully characterise which subsets are path-connected:

Lemma 1.27. Let V ⊂ R be a subset. The following statements are equivalent:

(a) V is path-connected;

(b) V is an interval.

Proof. We recall that an interval in R can be characterized as a subset I ⊂ R with the property
that for every pair of points a, b ∈ I with a < b we have [a, b] ⊂ I . In particular, a single point is
considered to be an interval.

Assume (a) holds. Let p, q ∈ V with p < q. Then there exists a curve γ : [0, 1] → V with γ(0) = p
and γ(1) = q. By the intermediate value theorem for continuous functions, γ([0, 1]) ⊃ [p, q], hence
[p, q] ⊂ V . From this we see that V is an interval.

Now assume (b) holds. Then for every pair of points p, q ∈ V with p < q, the segment [p, q] is
contained in V . The mapping γ : [0, 1] → [p, q], t 7→ p+ t(q − p) is continuous. This shows that (a)
holds.

I.e. the easiest example of a non-path-connected metric space is a collection of disjoint intervals in
R.

1.2.3 Locally constant functions

Proposition 1.23 is our main tool to prove that a metric space X is path-connected. However, how do
we prove that it is not? In light of Lemma 1.27, we are particularly interested in the case where X is
a subset of Rn with n > 1. It turns out that the answer has to do with the study of locally constant
functions X → Y , as we will see now.

Definition 1.28. Suppose X and Y are metric spaces. A function f : X → Y is locally constant if
for each a ∈ X there exists a neighbourhood V ∋ a such that f |V is constant. △
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A natural question then is whether every locally constant functionX → Y is in fact constant globally.
The following lemma handles the case of an interval, which will be the key to handle general spaces
X:

Lemma 1.29. A locally constant function f : [a, b] ⊂ R → Y is constant.

Proof. Zij y := f(0) ∈ Y . Consider the level set S := f−1(y) ⊂ [a, b]. According to Lemma 1.7,
it is closed, since f is continuous. At the same time, it is also open, since f is locally constant.

Observe that S contains y and is thus non-empty. Assume for contradiction that S ̸= [a, b]. Its
complement Sc = [a, b] \ S is thus non-empty and bounded, so it has an infimum s0. There are now
two cases. If s0 ∈ S, every point close to s0 is also in S, because S is open; this contradicts that s0
was the infimum. If s0 ∈ Sc, then every nearby point is in Sc, since Sc is open (because S is closed);
this contradicts that s0 was the infimum.

Now we can test locally constant functions with paths:

Proposition 1.30. Let X and Y be metric spaces. Let f : X → Y be a locally constant
function. If X is path-connected, then f is constant.

Proof. Let p, q be a pair of points in X . Then there exists a continuous curve γ : [0, 1] → X with
γ(0) = p and γ(1) = q. We claim that g := f ◦γ : [0, 1] → Y is locally constant. From this, Lemma
1.29 implies that f(p) = g(0) = g(1) = f(q), so f is constant.

The proof of the claim is as follows. Let t0 ∈ [0, 1]. Since f is locally constant, there exists a
δ > 0 such that f is constant on the ball B(γ(t0), δ). From the continuity of γ, there exists an open
neighborhood J of t0 in [0, 1] such that γ(J) ⊂ B(γ(t0), δ). It follows that g = f ◦ γ is constant on
J and thus locally constant.

We now spell out some consequences regarding the shape of metric spaces.

Corollary 1.31. Suppose (X, d) is a path-connected metric space. Suppose Y ⊂ X is both closed
and open. Then Y is either the emptyset or X itself.

Proof. X is the disjoint union of Y and its complement Y c. Consider then the function χ : X → R
that is identically zero over Y and identically one over Y c. We claim that this function is locally
constant. Indeed, given a point y ∈ Y , we see that Y itself is a neighbourhood with f |Y constant.
The same is true for Y c. According to Proposition 1.30, χ is constant, so it must attain only one
value. This means that either Y or Y c must be empty.

Corollary 1.32. Suppose X ⊂ Rn is the disjoint union of two non-empty opens. Then X is not
path-connected.

Proof. Denote the opens that form X as {Xi}i=1,2. Define χ : X → R to have value i on Xi. This
is a locally constant function, since each Xi is open. However, it is clearly not constant, so X is not
path-connected (Proposition 1.30).

Corollary 1.33. Suppose X ⊂ Rn is the disjoint union of two non-empty closed subsets. Then X is
not path-connected.

Proof. Let X1 and X2 be the two claimed closed subsets. For contradiction, suppose that X is
path-connected and take a path γ : [0, 1] → X starting at X1 and finishing at X2. This partitions
[0, 1] into the closed subsets Ji = γ−1(Xi), which are closed (Lemma 1.7). Since J1 and J2 are the
complement of each other, they are also open. This contradicts 1.31.
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1.3 Homotopies of paths and loops

Up until now we have studied whether a metric space X may be decomposable into path-connected
pieces. We will now study whether X may have a “hole” somewhere. The example you should keep
in mind is the following: R2 and R2 \ {0} are both path-connected, but the latter has a hole in the
middle.

In order to detect said hole, we will do the following: Imagine that there is a closed piece of string
(a closed curve) that goes around, i.e. it is “tied” to it. It will remain tied regardless of any pushing
and pulling (i.e. even if we deform the curve). Thus: in order to detect that the hole is there, what we
actually show is that closed curves are getting “stuck” somewhere.

This idea is fundamental. It is the focus in Topologie en Meetkunde (where it is studied in an alge-
braic/topological way). In this course we will, naturally, study it from an analytical perspective. We
will see that we can use covector fields to see whether a closed curve is tied to something (because, in
some sense, the covector field itself is tied as well!). However, this has to wait until Chapter 7. In this
chapter we just introduce the relevant terminology. These ideas will be revisited, from the perspective
of complex analysis, in Functies en reeksen. You will also encounter them if you study Physics: the
presence of holes in a space has important consequences in how fields in it behave.

1.3.1 Homotopies

The following concept encapsulates the idea of deforming a curve:

Definition 1.34. Fix a metric space X . Let γ0, γ1 : [a, b] → X be a pair of continuous paths. A
homotopy from γ0 to γ1 is a continuous function

Γ : [a, b]× [0, 1] → X

satisfying for each t ∈ [a, b]:

Γ(t, 0) = γ0(t) and Γ(t, 1) = γ1(t). △

In this situation we write γs : [a, b] → X for the path t 7→ Γ(t, s). As such, a homotopy can be
understood as a continuous deformation starting at the curve γ0 and finishing γ1, passing through the
intermediate curves γs.

Observe that this definition is not so useful yet. A homotopy allows us to deform a curve letting their
endpoints move freely. I.e. we cannot tie it to anything. This is formalised by the following exercise:

Exercise 1.35. Fix a metric space X and let γ : [a, b] → X be a path. Show that γ is homotopic
to the constant path ν with value γ(a). Hint: Show first that the identity path ι : [a, b] → [a, b] is
homotopic to the constant path with value a. △

Because of this, we should constrain the endpoints of the curves. This can be done in two ways. The
first option reads:

Definition 1.36. A curve γ[a, b] → X is closed if γ(a) = γ(b). A closed curve is also called a
loop. △

The second situation is that:

9



Definition 1.37. Let γ0, γ1 : [a, b] → X be continuous curves. The curves γ0 and γ1 are said to
have the same endpoints if:

γ0(a) = γ1(a) and γ0(b) = γ1(b). △

It may seem that this is not very helpful if we want to wrap our curves around a hole. However,
you should imagine the following situation: in R2 \ {0} imagine γ0 going from (1, 0) to (−1, 0)
by passing above the hole. Similarly, imagine γ1 going from (1, 0) to (−1, 0) but passing below.
Neither of them surrounds the hole per se, but in Chapter 7 we will nonetheless detect that they are
“on a different side”. One could do more complicated things: i.e. consider γ2 that goes from (1, 0)
to (−1, 0) but makes a whole loop around zero along the way.

What we can do now is deform curves keeping these constraints:

Definition 1.38. labeldef:loopHomotopy Suppose γ0, γ1 : [a, b] → U are loops. Let Γ : [a, b] ×
[0, 1] → U be a homotopy from γ0 to γ1. We say that Γ is a homotopy of loops if for each s ∈ [0, 1]
we have that:

Γ(a, s) = Γ(b, s).

Said differently, we require each curve γs = Γ(−, s) to be a loop. △ 

0

E
In

Tt
0 o 7

a b Jo

Figuur 1: A homotopy of loops (i.e. closed curves).

Regarding the second situation:

Definition 1.39. Suppose γ0, γ1 : [a, b] → U are curves with the same endpoints. Let Γ : [a, b] ×
[0, 1] → U be a homotopy from γ0 to γ1. We say that Γ is a homotopy relative endpoints is for each
s ∈ [0, 1] we have that:

Γ(a, s) = γs(a) = γ0(a) and Γ(b, s) = γs(b) = γ0(b). (1.1)

That is, all the curves throughout the homotopy have the same endpoints. △

1.3.2 Simply-connected metric spaces

A particularly important situation is the following:
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Figuur 2: A homotopy relative endpoints.

Definition 1.40. Let (X, d) be a metric space. A closed curve γ : [a, b] → X is nullhomotopic or
contractible if there is a homotopy of loops Γ : [a, b]× [0, 1] → X from γ to a constant curve. △

Informally, this means that γ was not tied to anything, since we were able to push it down to a point.
If we have a metric space in which we cannot tie curves at all, we say that:

Definition 1.41. A metric space (X, d) is simply-connected if the following conditions hold:

(a) X is path-connected.

(b) Each loop γ : [a, b] → X is nullhomotopic. △

Our main example reads:

Proposition 1.42. Every star-shaped subset U ⊂ Rn is simply-connected. In particular, Rm

itself, balls, cubes, and other convex subsets are simply-connected.

Proof. Recall that U is path-connected, as shown in Lemma 1.25.

Pick a point x0 ∈ U with the property [x, x0] ⊂ U for all x ∈ U . Define a map G : U × [0, 1] → U
using the formula:

G(x, s) = (1− s)x+ sx0.

This function is continuous and contracts the whole of U to a single point, since G(x, 0) = x and
G(x, 1) = x0 for all x ∈ U . One then says that U is a contractible space. This is enough to show
that every loop γ : [a, b] → U is contractible. Indeeed, the map (t, s) 7→ G(γ(x), s) is a homotopy
Γ : [a, b]× [0, 1] → U of loops with γ0 = γ and γ1 identically constant with value x0.

Proving that a subset U ⊂ Rn is not simply-connected is much more difficult, and requires the
machinery of Chapter 7. The main application there will be to show that R2 \ {0} is indeed not
simply-connected (Theorem 7.8).

Exercise 1.43. Prove that the following conditions are equivalent for a metric space (X, d):

• X is simply-connected.
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• Any two loops γ, ν : [a, b] → X are homotopic to each other as loops. △

The following tells us that, in a simply-connected space, there is a unique way, up to homotopy, of
going from one point to another.

Proposition 1.44. Suppose (X, d) is simply-connected. Then any two curves γ0, γ1 : [a, b] →
X with the same endpoints (e.g. starting at some x = γ0(a) = γ1(a) and finishing at some
y = γ0(b) = γ1(b)) are homotopic relative endpoints.

Proof. Consider the concatenation γ̄1 · γ0. This is a loop that is nullhomotopic, since X is simply-
connected. Let Γ be the corresponding nullhomotopy of loops. Consider the curves η0, η1 : [0, 1] →
[0, 1]2 given by η0(t) = (t/2, 0) and η1(t) = (1− t/2, 0). By construction, Γ ◦ ηi = γi. We also see
that the upper side of the square yields the constant curve t 7→ Γ(t, 1). The sides s 7→ Γ(0, s) and
s 7→ Γ(1, s) are constant as well, with value the initial point x.

We can use Γ to construct a homotopy relative endpoints now. To homotope γ0, we homotope η0
instead. Consider the rectangle Rs0 = {s ≤ s0, t ≤ 1/2}. Its lower side is η0. Let us denote
the other three sides as the curve νs0 . We can orient the curve so that it has the same endpoints as
η0. By construction, Rs0 provides a homotopy relative endpoints between η0 and νs0 . In particular,
γ0 = Γ ◦ η0 is homotopic relative endpoints to Γ ◦ ν1.

In the same manner, consider the rectangles Ss0 = {s ≤ s0, t ≥ 1/2}. The lower side is η1 and the
other three sides define a curve βs0 with the same endpoints. It follows that γ1 is homotopic relative
endpoints to Γ ◦ β1. The argument now concludes by noting that Γ ◦ β1 and Γ ◦ ν1 are the same
curve.

Do note that, in the proof above, we did not need to explicitly exhibit a homotopy relative endpoints
between η0 and νs0 . Since both had the same endpoints and a rectangle is convex, Proposition 1.42
implies that a homotopy relative endpoints exists.
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2 Linear algebra

The goal of this course is to study multivariate functions. I.e. functions Rn → Rm, which have thus n
inputs andm outputs. To do so, it is best that we first get familiar with the “easiest” examples thereof.
These are, in order, the constant functions, the linear functions, and the polynomial functions.

The goals of this chapter are to:

• Review the linear algebra that we will use during the rest of the course. A lot of it you have
seen already in earlier courses.

• Explain how to write and manipulate multivariate polynomial expressions.

• Explain how changes of basis can help to simplify an expression. You are already familiar with
this in the linear setting (where you know it as diagonalisation), but we will be particularly
interested in the bilinear setting (e.g. the study of second order polynomials).

This last point is extremely important and will reappear many times in this course. Changing coordi-
nates allows us to “find the right perspective” so the situation under study simplifies.

In this chapter we will use blue boxes not just for examples, but also to spell out how different
abstract linear algebra concepts look in terms of matrices.

2.1 Vector spaces and linear maps

The main objects of study in linear algebra are vector spaces V which, in this course, will always be
finite-dimensional and given over the real numbers R.

Example 2.1. Our favourite family of vector spaces are the Euclidean spaces Rn, as n ranges
over the natural numbers. We will write ei for for the ith coordinate vector:

0
...
0
1
0
...
0


∈ Rn;

i.e. the only non-zero entry is the ith one. Together, they form the standard basis {e1, · · · , en}
of Rn. We will stick to the following convention: vectors will always be written as colums.
This is important when we perform calculations. △
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With that said, columns take some space. Because of this, we will sometimes write (a1, . . . , an)
for the column vector  a1

...
an

 .

The use of commas indicate that it is meant to be a column. Row vectors will be written
without commas.

Given two vector spaces V and W , we can study linear maps A : V → W . Recall that a map is
linear if

A(v + λv′) = A(v) + λA(v′)

for every two vectors v, v′ ∈ V and every scalar λ ∈ R. That is, the map A is compatible with the
operations (vector addition and scalar multiplication) in V and W .

Notation 2.2. Consider two vector spaces V and W . We write Lin(V,W ) for the set of linear maps
from V to W . △

A particularly important example of linear map is the following:

Definition 2.3. A linear map B : V → W is a (linear) isomorphism if there is another linear map
C :W → V such that:

• C ◦B : V → V is the identity in V .

• B ◦ C :W →W is the identity in W .

If this is the case, we say that V and W are isomorphic. △

Example 2.4. Elements in A ∈ Lin(Rn,Rm) can be thought as n-times-m matrices (i.e. a
matrix with n colums and m rows):a11 · · · an1

...
a1m · · · anm

 .

Applying the linear map A to a vector v ∈ Rn will then amount to performing the usual
multiplication Av between a matrix (on the left) and a column vector (on the right, with n
entries), producing a new column vector (now with m entries). In particular, note that A(ei) is
the ith column of A.

A linear map A ∈ Lin(Rn,Rn) is an isomorphism if and only if the corresponding matrix is
invertible, which is equivalent to its determinant being non-zero. △

2.1.1 Choosing a basis

V and W being isomorphic means that they are pretty much the same vector space, just expressed
differently. In particular, since they are “the same”, we can transfer data from one to the other. For
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instance, consider the following construction. Fix a linear map A : V → V and an isomorphism
B : W → V . Then B−1 ◦ A ◦ B : W → W is also a linear map. In fact, it is the copy of A, under
the isomorphism B. This is precisely what change of basis is for a matrix, as we now explain.

First, recall that working with arbitrary vector spaces is no different than working with Rn:

Lemma 2.5. Every real vector space V of dimension n is isomorphic to Rn.

However, you should remember that the identification between V and Rn is not unique. Namely:

Lemma 2.6. Suppose V is a real vector space of dimension n. Given a basis {v1, · · · , vn} of V
we can define a linear isomorphism A : Rn → V by setting A(ei) = vi. Equivalently, A sends the
column vector a1...

an

 ∈ Rn

to
∑

i aivi ∈ V .

Conversely, given an isomorphism B : Rn → V we can define a basis {B(e1), · · · , B(en)} of V .

These two processes are inverses to each other and define a bijective correspondence between bases
of V and isomorphisms Rn → V .

To summarise: given any V you can say “let me take a basis ” {v1, · · · , vn}. This identifies V with
Rn, allowing you to write elements of v as columns. In particular, the ith basis element vi will be
represented by the ith coordinate vector ei.

You can also write linear maps A ∈ Lin(V, V ) as matrices. Indeed, if you fix an isomorphism
B : Rn → V , then B−1 ◦A ◦B ∈ Lin(Rn,Rn) can be seen as a matrix. However, do not forget that
this depends on B (i.e. on the basis chosen on V )!

Example 2.7. Bases are important even if we work in Rn. Namely, consider a basis {v1, · · · , vn}
in Rn, possibly different from the standard one. Suppose we consider a linear map A ∈
Lin(Rn,Rn) that in the standard basis is represented by a matrix M . What is the matrix M ′

that represents A in the new basis? (Recall the meaning of this: the ith column of M ′ should
be the vector A(vi), expressed in the basis {v1, · · · , vn}).

We proceed as follows. We can use the vectors in the basis {v1, · · · , vn} to define a matrix

B := (v1 v2 · · · vn)

whose columns are the vectors vi. This B is a linear map Rn → Rn that sends ei to vi. Then,
M ′ is the matrix B−1MB (i.e. you apply the change of basis, you apply M , you apply the
change back).

To summarise: M and M ′ = B−1MB both represent the same linear map A. M represents
A in the standard basis and M ′ represents it in the basis given by the columns of B. △

This change of basis mechanism is what allows us to diagonalise, which we recall further in Subsec-
tion 2.3.
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2.1.2 The vector space of linear maps

Linear maps between two different vector spaces can also be represented by matrices. Naturally,
doing so still requires choosing bases in both:

Lemma 2.8. Consider two vector spaces V and W of dimensions n and m, respectively. Then,
Lin(V,W ) is a real vector space of dimension nm. Moreover, choosing bases for V andW identifies
Lin(V,W ) with the space of n-times-m matrices.

Proof. Given linear mapsA,B : V →W and a scalar λ ∈ R you can verify that v 7→ A(v)+λB(v)
is a linear map from V to W , which we can naturally call A + λB. This shows that Lin(V,W ) is
a vector space. Suppose we have now chosen bases {v1, · · · , vn} of V and {w1, · · · , wm} of W .
Given A ∈ Lin(V,W ) we can then consider the matrix whose (i, j) entry is ⟨A(vi), wj⟩; here the
braces denote the usual scalar product. It is left to the reader to define the inverse process (i.e. to
define an element in Lin(V,W ) from an n-times-m matrix, using the given bases).

Otherwise said: fixing bases gives us isomorphisms ϕ : Rn → V and ψ :W → Rm. As such, to any
A ∈ Lin(V,W ) we can associate ψ ◦A ◦ ϕ : Rn → Rm, which we can naturally see as a matrix.

Exercise 2.9. Show that the vector space Lin(R, V ) is isomorphic (canonically, without choosing a
basis) to V . △

Exercise 2.10. Consider vector spaces V and W and fix a vector v ∈ V . Consider the function
ev : Lin(V,W ) → W given by A 7→ A(v); we call it the evaluation at v. Show that ev is a linear
map. △

2.2 Kernels, rank, nullity

Given a linear map A : V →W you should also be familiar with the kernel:

ker(A) := {v ∈ V | A(v) = 0}

and the image im(A). Observe that ker(A) is a vector subspace of V and im(A) is a subspace of
W . They satisfy the so-called rank-nullity theorem:

Lemma 2.11. Given a linear map A : V →W , it holds that:

dim(V ) = dim(ker(A)) + dim(im(A)).

The number dim(ker(A)) is called the nullity of A. Moreover:

Given a linear map A : Rn → Rm we think of it as a n-times-m matrix. Let us write
w1, · · · , wn for its columns. These are vectors in Rm and, concretely, wi is the image of
ei ∈ Rn under A. It follows that the image of A is spanned by the w1, · · · , wn.

The rank of A is the number of linearly independent columns (or rows). As such, it is the
dimension of the image of A. To compute it, the usual strategy is to find the dimension k of
the largest minor of A with non-zero determinant. Recall that a minor of dimension k is a
k-by-k submatrix; you choose it by picking the square matrix determined by the choice of k
rows and k columns.
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The kernel of A is spanned by the vectors v ∈ Rn with Av = 0. We will discuss more about
computing the kernel in Subsection 2.4.3.

The summary of the previous discussion is that:

Proposition 2.12. Consider A ∈ Lin(V,W ) and let M be a matrix representing it (by
choosing bases). Then the following numbers are the same:

• dim(im(A)),

• the rank of M ,

• the dimension k of the largest minor of M with non-zero determinant.

Example 2.13. Consider the matrix

A =

1 2 3
2 1 0
3 3 3

 ,

which represents a linear map R3 → R3. The span of its columns is the image im(A). We ask
ourselves what is the dimension of said image (i.e. the rank of A).

You can verify that det(A) = 0, meaning that the rank ofA is less than 3; you can also see this
by noting that the third row is the sum of the first two. We claim that the rank is in fact 2. For
this, we need to find either (1) two linearly independent columns, (2) two linearly independent
rows, or (3) a 2-by-2 minor with non-zero determinant. To see (1) just note that the first two
columns are not proportional to each other. To see (2), note that the same is true for the first
two rows. For (3), consider the 2-by-2 minor in the upper left. Having seen this, we deduce
that the first two columns span im(A), which is thus a 2-dimensional vector space.

Using Lemma 2.11 we also deduce that the kernel is 1-dimensional, but it would be best to
describe it explicitly, finding a vector (x, y, z) spanning it. By definition, it must satisfy the
system of equations: {

x+ 2y + 3z = 0
2x+ y = 0

that the first two rows define. We have that y = −2x, so the first equation simplifies to
0 = x−4x+3z = −3x+3z, yielding x = z. As such, the kernel contains exactly the vectors
of the form (x,−2x, x). To choose a basis for the kernel we just need to pick one concrete
vector; (1,−2, 1) does the job. △

2.3 Diagonalisation of linear maps

An important motto of this course is that one should change coordinates/basis whenever it is conve-
nient. A fundamental example you are already familiar with is:

Definition 2.14. Let A : V → V be a linear map. An eigenvector of V is an element v ∈ V such
that A(v) = λv, for some number λ ∈ R, called the eigenvalue.
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A basis {v1, · · · , vn} of V diagonalises A if it consists of eigenvectors. △

Equivalently: if we write A in an eigenvector basis, the matrix that represents it is diagonal, and its
entries are the eigenvalues.

You should recall that not all matrices diagonalise over the real numbers. However, diagonalisation
can be achieved in the following particular situation, described by the so-called spectral theorem:

Proposition 2.15. Suppose A : Rn → Rn is a linear map represented by a symmetric
matrix. Then A can be diagonalised using a orthonormal basis.

Let us spell out what this means. An n-times-n matrix O is orthogonal if its columns form a
orthonormal basis (i.e. they have length 1 and are orthogonal to each other). This is the same
as OtO = id, meaning that Ot = O−1.

Diagonalising A using a orthonormal basis means that there is an orthogonal matrix O such
that

O−1AO =

A− 0 0
0 A0 0
0 0 A+

 ,

where A− is a diagonal matrix with negative numbers in the diagonal, A0 is the zero matrix,
and A+ is diagonal with positive numbers in the diagonal.

These three matrices are all square matrices. If we denote their sizes by k−, k0, and k+ we
have that n = k− + k0 + k+. Then, the first k− columns of O span a vector subspace V−, the
middle k0 columns span a subspace V0, and the last k+ columns span a subspace V+. This is
splitting Rn = V− × V0 × V+ into three pieces. According to the diagonalisation above, V0 is
the kernel of A. Furthermore, A acts by dilating negatively on V− and by dilating positively
on V+.

2.3.1 Something that is not exactly diagonalisation

Observe that diagonalisation is the answer to the following question: “Given A ∈ Lin(V, V ), can I
find a basis of V in which A looks as simple as possible?”

A different, but similar problem, is the following: “Given A ∈ Lin(V,W ), can I find bases of V and
W in which A looks as simple as possible?” The following lemma tells us that the answer is always
yes:

Lemma 2.16. Ler V andW be vector spaces of dimensions n andm, respectively. LetA : V →W
be a linear map of rank k ≤ m and nullity n− k ≤ n. Then, there are bases {v1, · · · , vn} of V and
{w1, · · · , wm} of W such that A(vi) = wi if i = 1, · · · , k and A(vi) = 0 otherwise.

Equivalently, the matrix M representing A in these bases has an identity k-times-k submatrix in the
upper left corner and is everywhere else zero.

You should observe that, even when V = W , Lemma 2.16 is different from diagonalisation. Indeed,
given A ∈ Lin(V, V ), the lemma will produce two different bases for V , one when we think of V as
the domain of A and another when we see it as the target of A.
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2.4 The dual vector space

Given vector spaces V and W , we have seen that Lin(V,W ) is another vector space (Lemma 2.8).
The following particular case is extremely important:

Definition 2.17. Let V be a vector space. Its dual vector space is

V ∗ := Lin(V,R).

An element of V ∗ is said to be a covector. △

The name “dual” refers to the fact that, by definition, you can plug in vectors v ∈ V into covectors
α ∈ V ∗ to yield numbers α(v) ∈ R. The “co” in “covector” is a common prefix to indicate that this
object is dual to something else (to a vector, in this case).

Recall that we write vectors in Rn as columns. This was important so things work well with
matrix multiplication. Now this is particularly relevant: a covector α ∈ (Rn)∗ = Lin(Rn,R)
is an n-times-1 matrix, i.e. a row vector. We readily see that the matrix multiplication of a
covector against a vector yields a number:

α(v) = (α1 · · ·αn)

v1...
vn

 =
∑
i

αivi.

Much like in Rn we have the ith coordinate vector ei, in (Rn)∗ we have the ith coordinate
covector e∗i . This is the row with a 1 in the ith entry and all other entries zero. By definition:

e∗i (v) = vi,

i.e. e∗i is the linear map that sends a vector to its ith coordinate.

Example 2.18. Suppose V = R3. The covector e∗1 ∈ V ∗ = Lin(R3,R) is simply the linear
function e∗1 : R3 → R given by:

(x, y, z) 7→ x.

In particular, it is zero over the plane ⟨e2, e3⟩ (i.e. the (y, z)-plane), which is its kernel. △

The previous story applies to general vector spaces V of dimension n. Indeed, once we choose a basis
{v1, · · · , vn} of V , we can consider the so-called dual basis {v∗1, · · · , v∗n} of V ∗ defined as follows:
v∗i (vj) = 1 if i = j and is otherwise zero. If you use the basis {v1, · · · , vn} to identify Rn → V , so
ei goes to vi, you will also identify (Rn)∗ with V ∗. Namely, v∗i will be identified with e∗i .

Exercise 2.19. Suppose that V = Rn and consider the usual inner product in Rn. Given a vector
v ∈ V we can define its dual to be the covector v∗ ∈ V ∗ given by the expression v∗(w) := ⟨w, v⟩.
Show that the map v ∈ V 7→ v∗ ∈ V ∗ is an isomorphism. Hint: check that it sends the standard basis
to its dual basis. △

Exercise 2.20. Suppose that v ∈ V satisfies α(v) = 0 for all α ∈ V ∗. Show that v is zero. Hint:
take a basis and use the dual basis. △

Exercise 2.21. Suppose A : V →W is a linear map. Consider the dual map A∗ :W ∗ → V ∗ given
by α ∈W ∗ 7→ α ◦A ∈ V ∗. Show that A∗ is linear. △
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2.4.1 The dual of the dual

We have seen that the process of plugging a vector v ∈ V (a column) into a covector α ∈ V ∗ (a row),
is rather symmetric. Indeed, it amounts to multiplying them as matrices. As such, we could imagine
that it is α that is plugged into v instead. This is formalised by the following statement:

Lemma 2.22. Let V be an n-dimensional vector space. Given a vector v ∈ V , we can define
ψv ∈ (V ∗)∗ = Lin(V ∗,R) to be the linear map α ∈ V ∗ 7→ α(v) ∈ R.

The map ψ : V → (V ∗)∗ given by v 7→ ψv is a linear isomorphism.

Proof. It was shown in Exercise 2.10 that ψv is indeed a linear map.

To see that ψ is injective we must show that ψv is zero if and only if v is zero. The if direction is
clear. For the only if, observe that ψv = 0 means that ψv(α) = α(v) = 0 for all α in V ∗. This
implies that v is zero (Exercise 2.20). We have shown that ψ is injective, so its kernel has dimension
zero. According to the rank-nullity theorem (Lemma 2.11), this means that the image has dimension
n. Since (V ∗)∗ has dimension n as well, the image is everything, so ψ is an isomorphism.

I.e. a vector is the same as a cocovector. At this point the following classic joke is relevant: “A
mathematician turns coffee into theorems. A comathematician turns cotheorems into ffee.”

Exercise 2.23. Consider a vector space V , its dual V ∗, and the dual of the dual (V ∗)∗. Fixing a basis
{v1, · · · , vn} of V gives us the dual basis {v∗1, · · · , v∗n} of V ∗ and the dual dual basis {v∗∗1 , · · · , v∗∗n }
of (V ∗)∗. Show that the isomorphism described in Lemma 2.22 sends vi to v∗∗i . (This provides an
alternate proof of the lemma). △

Example 2.24. Consider R3 with coordinates (x, y, z). Write (x∗ y∗ z∗) for the dual coor-
dinates in (R3)∗, meaning that each covector in (R3)∗ is expressed as x∗e∗1 + y∗e∗2 + z∗e∗3.
Then, the vector e1 ∈ R3 can be seen as the linear function e1 : (R3)∗ → R satisfying
e1(x

∗ y∗ z∗) = x∗. That is, e1 sends e∗1 to 1 and e∗2 and e∗3 to zero. △

2.4.2 The annihilator

This idea of duality becomes even clearer if we look at subspaces. Namely:

Definition 2.25. Let V be a vector space and let V ∗ be its dual. Fix a subspace W ⊂ V . Then its
annihilator is the subset:

Ann(W ) := {α ∈ V ∗ | α(w) = 0, ∀w ∈W}. △

Observe that this works both ways, thanks to Lemma 2.22. Given a subspace Z ⊂ V ∗ we can also
consider its annihilator, which is a subspace of V :

Ann(Z) := {v ∈ V | α(v) = 0, ∀α ∈ Z}.

Example 2.26. Consider the subspace W ⊂ R3 spanned by e1. It is 1-dimensional, i.e. a
line. By construction, e∗1(e1) = 1, so e∗1 is not in the annihilator. This means that Ann(W ) has
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dimension at most 2. Then we recall: e∗2(e1) = e∗3(e1) = 0, showing that Ann(W ) has indeed
dimension 2, being spanned by e∗2 and e∗3.

Conversely, we could have started with Z = Ann(W ) = ⟨e∗2, e∗3⟩ ⊂ (R3)∗. Then W =
Ann(Z). △

In general:

Proposition 2.27. Fix a vector space V of dimension n and let W be a k-dimensional sub-
space. Then:

• Ann(W ) is a subspace of V ∗ of dimension n− k.

• Ann(Ann(W )) =W .

This defines a 1-to-1 correspondence between k-dimensional subspaces of V and (n − k)-
dimensional subspaces of V ∗.

Proposition 2.27 follows from the following very nice idea, which once again shows that changing
basis can make the situation more transparent:

Lemma 2.28. Fix a vector space V of dimension n and let W be a k-dimensional subspace. Then,
there is a basis {v1, · · · , vn} of V in which W is spanned by {v1, · · · , vk} and Ann(W ) is spanned
by {v∗k+1, · · · , v∗n}.

2.4.3 Linear equations and the dual

This may all seem very abstract, but you should simply think of elements of V ∗ as linear equations
on V .

Example 2.29. Suppose V = R3 and consider the equation

2x+ y + 3z = 0.

Our goal is to solve the equation. I.e. we want to find the subspace A ⊂ V of vectors (x, y, z) that
satisfy it. To do this, we can simply solve for y, yielding y = −2x− 3z. This means that A contains
the vectors of the form (x,−2x− 3z, z). You can readily see that A has dimension 2, and is spanned
by (1,−2, 0) and (0,−3, 1), for instance. This makes sense: for each linearly independent equation
we impose, the dimension of the subspace of solutions decreases by one.

This process can be understood from the perspective of V ∗ as follows. First, we write the equation in
matrix form:

(2 1 3)

xy
z

 = 0.

This means that the equation is fully described by the row vector α1 = (2 1 3), i.e. a covector!
Observe that our space of solutions A is, by definition, the set of those vectors v ∈ V such that
α1(v) = 0.

Consider then B, the 1-dimensional subspace of V ∗ spanned by α1. Observe that all elements α in
B are multiples of α1. This means that if v ∈ A then α(v) = 0, for every α ∈ B. We have thus
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shown that A = Ann(B). In particular, since the dimension of B is 1, Proposition 2.27 implies that
the dimension of A is 2. △

More generally, the story is the following, which follows immediately from the definition of annihi-
lator:

Lemma 2.30. Consider a system of k linear equations in Rn:
a11x1+ · · · +an1xn = 0

...
a1kx1+ · · · +ankxn = 0

and write it in matrix form as:

Mv =

a11 · · · an1
...

a1k · · · ank


x1...
xn

 = 0.

Then:

• The columns of M are vectors in Rk. They span the image.

• The kernel of M is the space of solutions A ⊂ Rn.

• The rows of M are covectors in (Rn)∗. They span a “subspace of equations” B ⊂
(Rn)∗.

• A = Ann(B).

That is, the solutions are dual to the equations they solve!

Example 2.31. Let us use Lemmas 2.30 and 2.28 to solve the equation of Example 2.29. This was
quite easy to do “by hand”, but the following is a general procedure. It basically says the following:
any system of linear equations can be solved by inverting a matrix.

The idea is that we want to change basis to make the equation look simple. To do so, we pick
α2 = (0 1 0) and α3 = (0 0 1) which, together with α1 = (2 1 3), form a basis of V ∗. This means
that the matrix of equations M , whose only row is α1, can be extended to a matrix:

L :=

α1

α2

α3

 .

What we have to do next is find the basis of V dual to {α1, α2, α3}. By definition, the dual basis will
be the columns of the matrix K that satisfies LK = id, i.e. K is the inverse of L, namely:

K :=

1/2 −1/2 −3/2
0 1 0
0 0 1

 .

Let us call its columns v1, v2, and v3. By definition of dual basis we have that α1(v2) = α1(v3) = 0.
E.g. v2 and v3 solve the equation and therefore span A, the space of solutions. △
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Here is another example:

Example 2.32. Suppose V = R4, fix coordinates (x, y, z, w), and consider the system of equations{
2x+ y + 3z = 0
z + 2w = 0

Rewritten in matrix form: (
2 1 3 0
0 0 1 2

)
x
y
z
w

 = 0.

We can see that the two equations (i.e. the two rows) are linearly independent (for instance, look at
the 2-by-2 minor in the middle, which has determinant 1). We can call these two covectors α1 and
α2; they span the subspace of equations B ⊂ V ∗, which is 2-dimensional. We deduce (Proposition
2.27) that the subspace of solutions A = Ann(B) ⊂ V has dimension 2 = 4− dim(B) as well. △

2.5 Bilinear algebra

Consider the following familiar example:

Given an n-by-n matrix A, we can consider the function Rn × Rn → R defined by:

(v, w) 7→ wtAv = (w1 · · · w1)A

v1...
vn

 ,

where v and w are (column) vectors in Rn (but w gets transposed to become a row vector).
For instance, we could have taken A to be the identity matrix, in which case the map is simply
the usual scalar product:

(v, w) 7→
n∑

i=1

viwi.

You can readily see that this function is not linear, even though it is represented by a matrix.

This is the most important example of a bilinear map, which is what we are exploring in this
subsection. We will see that bilinear maps are closely related to second order polynomials.

2.5.1 Bilinear maps

Definition 2.33. Let V and W be linear spaces. A function A : V × V → W is bilinear if
v 7→ A(v, v′) is linear for each v′ ∈ V and v′ 7→ A(v, v′) is linear for each v ∈ V . △

It turns out that our starting example is pretty much general. When V = Rn and W = R, we have
that:

Lemma 2.34. Let A : Rn × Rn → R be a bilinear map. Then A can be written as:

A(x, y) = ytAx =
∑

i,j=1,··· ,n
ai,jxiyj ,

i.e. the coefficients of A form an n-by-n matrix (ai,j).
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When V and W are arbitrary vector spaces we can still take bases to identify V with Rn and W with
Rm, in order to obtain a very similar description.

Example 2.35. A typical example for us will be the case V = R2 and W = R. Then a
bilinear map can be written as a 2-by-2 matrix:

A =

(
a11 a21
a12 a22

)
,

which can be applied to a pair of vectors as follows:

wtAv = (w1w2)

(
a11 a21
a12 a22

)(
v1
v2

)
= a11v1w1 + a21v2w1 + a12v1w2 + a22v2w2.

You see the bilinearity in the fact that each term in the right-most expression contains a coef-
ficient aij , a single entry from v, and a single entry from w. △

2.5.2 The space of bilinear maps

Definition 2.36. Suppose V and W are vector spaces. We let Lin2(V,W ) be the set of bilinear
maps V × V →W . △

As in the linear case, we have:

Lemma 2.37. Lin2(V,W ) is a vector space.

Proof. Given bilinear maps A and B and a scalar λ ∈ R we can define A+ λB to be the map

(v, v′) 7→ A(v, v′) + λB(v, v′)

which is readily seen to be bilinear.

In the concrete case V = Rn and W = R, we have that Lin2(V,W ) is the space of n-by-n matrices.
It is a vector space if we use addition and scalar multiplication entry by entry, as we have seen before.

2.5.3 Symmetry and quadratic forms

A bilinear form has two inputs, but nothing stops us from plugging the same vector twice:

Definition 2.38. Let V be a vector space. SupposeA : V ×V → R is a bilinear map. The associated
quadratic form is the map v 7→ A(v, v). △

Quadratic forms can be represented by matrices as well (basically, by the matrix that represents the
starting bilinear map). We can see it in the following concrete example:

Example 2.39. The bilinear map A : R2 × R2 → R given by the 2-by-2 matrix:(
a11 a21
a12 a22

)
,
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yields the quadratic form Q : R → R given by:

Q(v) = A(v, v) = vtAv = (v1 v2)

(
a11 a21
a12 a22

)(
v1
v2

)
= a11v

2
1 + (a21 + a12)v1v2 + a22v

2
2,

which is a polynomial of order two.

You may observe that Q is determined by three coefficients: a11, a21 + a12, and a22. In
particular, observe that the concrete values of a21 and a12 are not important for Q, only their
sum. △

The example tells us that different bilinear maps can define the same quadratic form. However:

Definition 2.40. Let V and W be vector spaces. Suppose A : V × V → W is a bilinear map. We
say that it is symmetric if A(v, v′) = A(v′, v) for every v and v′ in V . △

Suppose A : Rn ×Rn → R is bilinear and symmetric. Then the matrix representing A is symmetric.

Lemma 2.41. Suppose V is a vector space of dimension n. Then, there is a bijective correspon-
dence between bilinear symmetric maps V × V → R and quadratic forms. Moreover, if we fix a
basis, the two are also in correspondence with n-by-n symmetric matrices.

Proof. By definition, to each bilinear form we can associate a quadratic form. It is sufficient if we
show that this is bijective when we restrict to symmetric bilinear forms. This is most easily done by
choosing a basis first, which identifies V with Rn. Once that is done, any bilinear map A can be
written as A(x, y) =

∑
i,j=1,··· ,n ai,jxiyj . It is symmetric if ai,j = aj,i. Then, the quadratic form

associated to it is
Q(x) =

∑
1≤i≤n

x2i +
∑

1≤i<j≤n

2ai,jxixj ,

where we have separated the diagonal terms from the rest. Therefore, the coefficients that describe Q
uniquely recover A.

2.5.4 The classification of quadratic forms

An important conclusion of the proof of Lemma 2.41 is that:

Every quadratic form Q : Rn → R can be written in the form

Q(x) =
∑

1≤i≤n

x2i +
∑

1≤i<j≤n

2ai,jxixj .

I.e. a quadratic form is a polynomial of order 2 that is pure (i.e. its constant and linear terms
are zero). Quadratic forms are thus the easiest functions after constant and linear.

As such, we want to understand them a bit more. First, note that every quadratic form satisfies
Q(0) = 0, i.e. it vanishes at the origin of Rn. The following tells us a bit more about the vanishing
locus of Q:
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Definition 2.42. Let A : V × V → R be a symmetric bilinear map with associated quadratic form
Q : V → R (Lemma 2.41). We say that A and Q are non-degenerate if for every v ∈ V there is
some w ∈ V such that A(v, w) ̸= 0. Otherwise we say that they are degenerate.

Moreover, there are three types of non-degeneracy. We say that A and Q are...

• positive definite if Q(v) ≥ 0 for all v ∈ V , and Q(v) = 0 implies v = 0.

• negative definite if −Q is positive definite.

• indefinite, otherwise. △

Example 2.43. The prototypical examples of quadratic forms in R2 are the following. First,
both the zero matrix and

A =

(
1 0
0 0

)
are degenerate (but the zero matrix is “more degenerate” than A, since A has rank 1). The
identity matrix id is positive definite. Its negative −id is negative definite. Lastly,

B =

(
1 0
0 −1

)
is indefinite. △

Suppose we have a symmetric matrix representing a quadratic form Q. You can ask yourself how we
can tell whether Q is degenerate or not, or whether it is definite. This is explained by the following
result, Sylvester’s law of inertia:

Proposition 2.44. Suppose Q : Rn → R is a quadratic form. Then Q is non-degenerate if and only
if it has non-zero determinant.

Moreover, the following are equivalent:

• Q is positive definite.

• The eigenvalues of Q are all positive.

• For each i = 1, · · · , n, the i-times-i upper left minor of Q is positive if i is even and is negative
if i is odd.

The concrete case that will be most important for us is the following:

Proposition 2.45. Suppose Q : R2 → R is a quadratic form represented by a symmetric
2-by-2 matrix. Then:

• If det(Q) = 0, then Q is degenerate.

• If det(Q) < 0, then Q is indefinite. It has one positive and one negative eigenvalues.

• If det(Q) > 0 and tr(Q) > 0, then Q is positive definite. Both eigenvalues are positive.

• If det(Q) > 0 and tr(Q), 0, then Q is negative definite. Both eigenvalues are negative.
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Before we get to the proof, recall that the trace of a square matrix is the sum of its diagonal entries.
This number is invariant under change of basis, so it agrees with the sum of eigenvalues (if the matrix
diagonalises).

Proof. From Proposition 2.15 we know that Q has an orthonormal basis v1, v2 of eigenvectors. Let
λ1 and λ2 be the corresponding eigenvalues. Then Q is positive (resp. negative) definite if and only
if λ1 and λ2 are positive (resp. negative). Thus Q is definite if and only if det(Q) = λ1λ2 > 0.
Otherwise it is indefinite (one eigenvalue of each sign and thus det(Q) < 0) or degenerate (at least
one eigenvalue is zero and thus det(Q) = 0).

Moreover, the trace of Q is independent of the choice of basis, so tr(Q) = λ1 + λ2. If the trace
is positive, both eigenvalues are positive and Q is positive definite. If the trace is negative, Q is
negative definite. Do note that the trace is zero if and only if at least one eigenvalue is zero (i.e. Q is
degenerate).

The diagonalisation argument used in the proof in fact generalises to all dimensions to provide the
classification of quadratic forms:

Proposition 2.46. Suppose Q : V → R is a quadratic form. Then, there is a basis of V in
which M , the matrix representing Q, is of the form:−Id 0 0

0 0 0
0 0 Id

 .

In particular, V can be decomposed into three subspaces V = V− × V0 × V+ so that Q is negative
definite over V−, zero over V0, and positive definite over V+ and, moreover, vectors in different
subspaces do not interact with each other via Q.

Remark 2.47. Proposition 2.46 could be called the “diagonalisation of quadratic forms”; we ex-
plain it now. Keep in mind that this is different from the diagonalisation of linear maps (Proposition
2.15) and different from the change of bases of Lemma 2.16.

Instead of looking at the quadratic form Q : V → R, consider the corresponding A : V × V → R
that is bilinear and symmetric. If we were given a linear map C ∈ Lin(Rn, V ) the only composition
we could possibly do is:

A′(v, w) = A(C(v), C(w)),

which is now a bilinear form Rn → R; it is still symmetric.

Now, how does that look in coordinates? Suppose that V = Rn. Then we can think of Q, A, and C
as matrices; note that Q = A is symmetric. Then:

wtA′v = A′(v, w) = A(C(v), C(w)) = (C(w))tAC(v) = wtCtACv.

That is, A′ is the matrix CtAC. This is different from the base change for linear mapsB : Rn → Rn,
which would instead yield C−1BC.

How does this connect with Proposition 2.46? Given Q, we want a basis of Rn in which Q looks
simpler. If we choose a basis {c1, · · · , cn}, we can assemble its vectors as colums of a square matrix
C. You should think of C as a linear map Rn → Rn that sends the standard basis {e1, · · · , en}
to the new basis {c1, · · · , cn}. Then, writing Q in the basis {c1, · · · , cn} is precisely computing
CtQC. △
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2.5.5 Inner products, norms, distances

There are two concrete examples of bilinear maps and quadratic forms that you are probably most
familiar with:

Definition 2.48. A bilinear map g : V × V → R is said to be an inner/scalar product if it is
symmetric and positive definite. △

Example 2.49. The standard Euclidean inner product in Rn is defined as:

(v, w) 7→ ⟨v, w⟩ =
n∑

i=1

viwi = (w1, · · · , wn)Id

v1...
vn

 .

I.e., as a bilinear form it is represented by the identity matrix Id. △

According to Proposition 2.46 this example is, up to change of basis, completely general:

Lemma 2.50. Let V be a vector space with inner product g. Then there is a basis V in which g
is represented by the identity matrix. Identically, there is a vector space isomorphism Rn → V that
identifies g with the standard Euclidean inner product.

Given an inner product g : V × V → R we can consider the associated quadratic form v 7→ g(v, v)
and take the square root l(v) = g(v, v)1/2. The function l is an example of:

Definition 2.51. A function l : V → R is a norm if it satisfies the following axioms:

• Positive-definiteness: l(0) = 0 is zero and l(v) > 0 otherwise.

• Homogeneity: l(λv) = |λ|l(v) for every v ∈ V and every λ ∈ R.

• Triangular inequality: l(v + w) ≤ l(v) + l(w) for every v, w ∈ V . △

Example 2.52. The usual Euclidean inner product in Rn yields the Euclidean norm:

v 7→ ||v|| = ⟨v, v⟩1/2 =

(
n∑

i=1

v2i

)1/2

.

Which in turn allows us to define the Euclidean distance:

d(v, w) := ||v − w|| =

(
n∑

i=1

(vi − wi)
2

)1/2

.

I.e. the norm tells us how large a vector is, i.e. how far it is from the origin. The distance then
allows us to measure how far apart two vectors are from one another. △

This is a general phenomenon:

Definition 2.53. Given a norm l : V → R, its associated distance is the map V × V → R given by

(v, w) 7→ l(v − w). △
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2.6 Polynomial functions

In Lemma 2.41 we saw that quadratic forms Rn → R are the same as polynomials of (pure) order 2.
Let us look now into the general theory of polynomials of multiple variables.

Definition 2.54. A function A : Rn → R is a polynomial of pure order r if it can be written as:

A(v) =
∑

i1,··· ,ir=1,··· ,n
ai1,··· ,irvi1 · · · vir .

A function Rn → Rm is polynomial of pure order r if each component is. △

Observe that constant functions, linear functions, and quadratic forms are polynomials of pure order
0, 1, and 2, respectively.

Example 2.55. Consider the map A : R2 → R given by the expression:

A((v1, v2)) = v31 − v32.

This is a polynomial of pure order 3. The non-zero coefficients are a1,1,1 = 1 and a2,2,2 = −1.

Consider instead B : R2 → R given by:

B((v1, v2)) = v1v
2
2.

Now we have some choices. We could take a1,2,2 = 1 and all other coefficients zero. We could
also take a1,2,2 = 1/2 and a2,1,2 = 1/2 and all others zero. △

To have a unique expression, it is more convenient to adopt the following convention. This is exactly
the same as the correspondence between quadratic forms and symmetric bilinear forms (Lemma
2.41):

Lemma 2.56. Each polynomial A : Rn → R of pure order r can be uniquely written as:

A(v) =
∑

i1,··· ,ir=1,··· ,n
ai1,··· ,irvi1 · · · vir

if we assume that the coefficients satisfy ai1,··· ,ij ,··· ,ik,··· ,ir = ai1,··· ,ik,··· ,ij ,··· ,ir , for every i and j.

That is, if you were to assemble the coefficients into a n-times-n-times-...-times-n “hypermatrix”
with r dimensions (this is called a tensor), it would be symmetric. See Subsection 2.6.3.

Example 2.57. Going back to the example B : R2 → R with

B((v1, v2)) = v1v
2
2

we see that the symmetric choice is to take a1,2,2 = a2,1,2 = a2,2,1 = 1/3, and all other
coefficients zero. △

If we add up pure polynomials of different orders, we obtain:

Definition 2.58. A function f : Rn → Rm is polynomial of order r if it is a sum of polynomials of
pure orders i ≤ r. △
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2.6.1 The linear space of polynomials

We already saw that Lin(V,W ) and Lin2(V,W ) are both linear spaces. We now prove the analogous
fact for:

Definition 2.59. We write Polr(Rn,Rm) and Pol≤r(Rn,Rm) for the sets of polynomials Rn → Rm

of pure order r and order r, respectively. We also denote

Pol(Rn,Rm) := ∪∞
r=0Pol

≤r(Rn,Rm)

for the set of polynomials of arbitrary order. △

The following is left to the reader:

Lemma 2.60. Polr(Rn,Rm), Pol≤r(Rn,Rm), and Pol(Rn,Rm) are vector spaces, for every non-
negative integer r. The first two are finite dimensional. Moreover, the inclusions

Polr(Rn,Rm) → Pol≤r(Rn,Rm) → Pol≤r+1(Rn,Rm) → Pol(Rn,Rm)

are linear maps.

Given a function f : Rn → Rm and a point a ∈ Rn, we can define the translated function Ta(f) :
Rn → Rm using the expression

Ta(f)(x) = f(x+ a).

We then have:

Proposition 2.61. Suppose f ∈ Pol(Rn,Rm). Then Ta(f) is also polynomial.

Moreover, the function Ta : Pol(Rn,Rm) → Pol(Rn,Rm) is a linear isomorphism1. Its inverse is
the opposite translation (Ta)

−1 = T−a.

Proof. Before we begin, it is helpful to make a number of auxiliary remarks. First of all, you should
verify the following identities:

a. Ta(g + h) = Ta(g) + Ta(h),

b. Ta(gh) = Ta(g)Ta(h),

which hold for all functions g, h : Rn → Rm. Secondly:

c. A sum of polynomials is also a polynomial. The same is true for the product.

d. A function f = (f1, · · · , fm) : Rn → Rm is polynomial if and only if each component
fi : Rn → R is polynomial.

Now we prove the first claim. According to item (d) it is enough if we prove it for m = 1. If f is a
constant function, we have that Ta(f) = f is also constant.

1The proof in fact shows something stronger: the set of polynomials is a ring (it has an addition and a multiplication)
and Ta is a ring homomorphism.
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Suppose next that f : Rn → R is linear. Every linear function can be written, as a linear combination,
using the dual basis e∗i ∈ (Rn)∗. This fact, together with items (a) and (c), implies that it is enough if
we show that each Ta(e∗i ) is polynomial. By definition, e∗i (v) = vi, so its translate is

Ta(e
∗
i )(x) = e∗i (x+ a) = xi + ai.

which is a first order polynomial again (whose linear part is the same as before, but now has a constant
term). This concludes the linear case.

Suppose now that f : Rn → R is an arbitrary polynomial. As such, it can be written as a sum
of monomials of the form v 7→ ai1,··· ,irvi1 · · · vir . Each monomial is in turn a product of linear
functions, whose translations we already know are polynomials as well. Facts (a), (b), and (c) then
imply that Ta(f) is polynomial, as we wanted to prove.

To establish the second claim observe that items (a) and (b) imply that Ta is indeed linear. It is easy
to check that T−a is the inverse.

The previous proof communicates a very important idea: when proving statements about polynomials
it is very helpful to see them as a sum of products of linear functions.

2.6.2 Multi-indices

In Lemma 2.56 we saw that the coefficients describing a pure polynomial are unique if we ask that
they are symmetric. We now discuss another way of writing down polynomials, which will become
handy.

Definition 2.62. Een rijtje α = (α1, . . . , αn) van niet-negatieve gehele getallen wordt een multi-
index genoemd. Het getal

|α| :=
n∑

j=1

αj

heet de orde van de multi-index α. △

A multi-index is very useful in order to condense expressions involving many indices. For instance,
given a multi-index α = (α1, · · · , αn), we can write a monomial as:

v ∈ Rn 7→ vα :=

n∏
i=1

v
αj

j ∈ R;

which is a pure polynomial of order |α|. A more general pure polynomial of order r is then written
as:

v 7→
∑
|α|=r

aαv
α (2.1)

where each aα ∈ R is the coefficient in front of the monomial vα.

Example 2.63. Once again we consider the example B : R2 → R given by

B(v) = B((v1, v2)) = v1v
2
2 = v(1,2).

Here v(1,2) should be read as “v to the power of the multi-index (1, 2)”, meaning that you take
v1 once and v2 to the power of two, and you multiply them. The coefficient in front is called
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a(1,2) = 1, and all others (namely, a(3,0), a(2,1), and a(0,3)) are zero. △

Exercise 2.64. Let v ∈ Rn be a vector and α be a multi-index. Establish the inequality:

∥vα∥ ≤ ∥v∥|α|. △

Each pure polynomial can be written, uniquely, in the form described in Equation 2.1. This unique-
ness means that the monomials vα, as α ranges over all multi-indices of length r, form a basis of
Polr(Rn,Rm). This allows us to deduce:

Corollary 2.65. Polr(Rn,Rm) has dimension
(
r+n−1
n−1

)
.

Proof. There are as many α with |α| = r as manners of distributing r items in n boxes. This is the
same as choosing n − 1 separators in a collection of size r + n − 1, since that determines n blocks
whose sizes add up to r.

2.6.3 Extra: multilinear maps

This subsubsection is optional, you do not need to study it. Nonetheless, it may help giving further
context to the theory of polynomials that we have seen. The main idea is the following: just like pure
second order polynomials (i.e. quadratic forms) are in correspondence with symmetric bilinear maps
(Lemma 2.41), pure r-order polynomials are in correspondence with symmetric multilinear maps of
order r.

Definition 2.66. Fix a positive integer r and let V andW be linear spaces. A functionA : V r →W
is multilinear (of order r) if: For every i, the map vi ∈ V 7→ A(v1, · · · , vi, · · · , vr) ∈ W is linear
whenever we fix all the other vj , j ̸= i. △

Note that here each vi is a vector in V , not a coefficient.

Definition 2.67. We write Linr(V,W ) for the set of multilinear maps V r →W . △

Example 2.68. Suppose V = R2 and W = R. Then, the map A : V ×V ×V →W defined
by:

A((a1, a2), (b1, b2), (c1, c2)) = a1b1c1 + a2b2c2

is trilinear (i.e. multilinear of order 3). If you plug in the same vector three times you get

A((a1, a2), (a1, a2), (a1, a2)) = a31 + a32,

which is polynomial of pure order three. △

The previous example is a concrete instance of:

Definition 2.69. Suppose A : V r → W is a multilinear map. We say that A ∈ Linr(V,W ) is
symmetric if

A(v1, · · · , vi, · · · , vj , · · · , vr) = A(v1, · · · , vj , · · · , vi, · · · , vr)

for every i and j. △
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Any multilinear map can be expressed as follows (which should remind you of how we write pure
polynomials):

Lemma 2.70. Suppose A ∈ Linr(Rn,R) is a multilinear map. Then:

A(v1, · · · , vr) = A


(v1)1

...
(v1)n

 , · · · ,

(vr)1
...

(vr)n


 =

∑
j1,··· ,jr=1,··· ,n

aj1,··· ,jr(v1)j1(v2)j2 · · · (vr)jr .

Moreover, A is symmetric if and only if aj1,··· ,ji,··· ,jk,··· ,jr = aj1,··· ,jk,··· ,ji,··· ,jr for every i and k
between 1 and r.

2.7 Basic analysis of polynomial functions

To wrap up the chapter, we are going to start doing some Analysis, focusing on polynomial functions.
We have not yet developed the theory of multivariate differentiation (this is the goal of Chapters 3
and 4), so we will focus solely on continuity (using the results of Chapter 1) and some key estimates.

2.7.1 Continuity

Proposition 2.71. A polynomial f : Rn → Rm is a continuous function.

Proof. We use the same idea as in the proof of Proposition 2.61. First, f is continuous if and only if
each of its components fi : Rn → R is continuous (Lemma 1.6), so we just need to worry about the
case m = 1. Morever, a polynomial f : Rn → R is a sum of pure polynomials so, according to the
sum rule for continuity (Proposition 1.5), we just need to show that a pure polynomial is continuous.

In turn, each pure polynomial is a sum of terms of the form

v 7→ ai1,··· ,irvi1 · · · vir ,

a so-called monomial. Applying the sum rule again, we just need to show monomials are continuous.
However, aach monomial consists of a scalar ai1,··· ,ir ∈ R multiplied by the functions v∗ij : v 7→ vij ,
each of which is linear. According to the product rule for continuity (Proposition 1.5) it is enough if
we show that linear functions are continuous.

In fact, it is enough if we show that the functions in the dual basis v∗i : v 7→ vi are continuous. But
this is clear, since

|v∗i (v)− v∗i (v
′)| = |vi − v′i| = |(v − v′)i| ≤ ||v − v′||,

which shows
lim
v→v′

|v∗i (v)− v∗i (v
′)| = 0.

In future chapters we will see that polynomials are in fact smooth, as you would expect.

In proving continuity we needed to use the euclidean norm and the estimate |xi| ≤ ||x||. In the next
subsections we will study this norm further and develop a series of estimates that will allow us to
prove statements like Proposition 2.71 much more easily.
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2.7.2 Norms for linear maps

Consider vector spaces V and W of dimensions n and m, respectively. As we discussed in Lemma
2.8, Lin(V,W ) is itself a vector space of dimension nm. This means that we can consider inner
products and norms in Lin(V,W ). This is actually quite natural: if we apply a linear map A to a
vector v, we want to relate ||Av|| to ||v||, and this should involve the “size of A”, which should be
some sort of norm2 ||A||.

To keep things grounded, we will focus on the concrete case of the n-times-p matrices. Observe that
Lin(Rn,Rp) can be identified with Rnp (by forming a long column out of the columns of a given
matrix), which allows us to consider the usual Euclidean norm:

Definition 2.72. The norm ∥L∥ of a linear map L : Rn → Rp is defined to be the expression:

∥L∥ :=

 p∑
i=1

n∑
j=1

L2
ij

1/2

,

where the Lij denote the matrix coefficients of L. △

Naturally, we can also consider the associated distance. Note moreover that one can define a scalar
product for matrices, but this will not come into play in this course. By construction, we have the
following statement:

Corollary 2.73. Lin(Rn,Rp), endowed with the norm from Definition 2.72, is isomorphic to Rnp

endowed with the usual Euclidean norm.

2.7.3 The Cauchy–Schwarz inequality

You are probably familiar with the Cauchy-Schwarz inequality:

Proposition 2.74. Let V be a vector space with a scalar product ⟨ , ⟩. Then:

|⟨v, w⟩| ≤ ||v||.||w||

with the equality holding if and only if w and v are proportional.

It turns out that this statement can be generalised to the case in which we have a linear map and a
vector, or two linear maps:

Proposition 2.75. Consider a linear map L : Rn → Rp and a vector v ∈ Rn. Then the
following holds:

∥Lv∥ ≤ ∥L∥ ∥v∥. (2.2)

Suppose we have a second linear map M : Rp → Rq. Dan geldt voor de samenstelling
M ◦ L : Rn → Rq dat

∥M ◦ L∥ ≤ ∥M∥ ∥L∥. (2.3)

2Of course, one can choose different norms, but we will not explore this in this course, you will have to wait for
Functional analysis.
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Proof. Let us address the first case first. The idea is that we apply the usual Cauchy–Schwarz
(Proposition 2.74) one row of L at a time (equivalently, one entry of the result L(v) at a time). I.e for
each 1 ≤ i ≤ p we have that:

((Lv)i)
2 =

 n∑
j=1

Lij vj

2

≤

 n∑
j=1

(Lij)
2

 ∥v∥2.

Summation over i yields ∥Lv∥2 ≤ ∥L∥2 ∥v∥2, which implies the claimed Equation (2.2).

The second statement is analogous. We apply the Cauchy–Schwarz inequality to each entry of the
resulting matrix M ◦ L:

((M L)hj)
2 =

(
p∑

i=1

Mhi Lij

)2

≤

(
p∑

i=1

(Mhi)
2

)(
p∑

i=1

(Lij)
2

)
.

The argument concludes by summing over h and j.

Using the Cauchy-Schwarz inequality we recover the continuity of linear maps:

Corollary 2.76. Let A : Rn → Rp be a linear map. Then A is continuous.

Proof. We must show that ||A(v) − A(w)|| goes to zero as ||v − w|| goes to zero. But this is
immediate once we use linearity and Proposition 2.3:

||A(v)−A(w)|| ≤ ||A||.||v − w||.

Example 2.77. Suppose A ∈ Lin(Rn,Rn) can be diagonalised with eigenvectors vi of eigenvalue
λi, with i = 1, · · · , n. Then we see that, for each i:

|λi|.||vi|| = ||A(vi)|| ≤ ||A||.||vi||

so we deduce that the size of the eigenvalues is bounded above by ||A||. △

2.7.4 Norm of a bilinear map

The next step is clear. We have studied how the norm interacts with linear maps. If we are given a
bilinear form A : V × V → R we could similarly try to relate |A(v, v′)| to ||v|| and ||v′||; this should
involve some quantity ||A||. We define it as follows, in the case of Euclidean space:

Definition 2.78. Suppose A : Rn × Rn → R is a bilinear form. Express it as a square matrix
(aij)

n
i,j=1. Then we define its norm to be

||A|| :=

 n∑
i,j=1

a2ij

1/2

.

Moreover, given a quadratic form Q defined by the bilinear form A, we can define the norm of Q to
be ||A||. △

As you can see this is very similar to what we did in the linear case. We are simply identifying
bilinear forms with the matrices that represent them, which identifies Lin2(Rn,R) with Rn2

and thus
allows us to use the standard euclidean norm.

We then have the following version of Cauchy-Schwarz:
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Lemma 2.79. Suppose A : Rn × Rn → R is a bilinear form. Then the following holds for any two
vectors v, v′ ∈ V :

|A(v, v′)| ≤ ||A||.||v||.||v′||.

Proof. Write V = Rn for notational convenience. Let aij be the coefficients of A. Observe that
v′ 7→ A(v, v′) is a covector, which we could call α ∈ V ∗. Observe that its entries are

αj =
∑
i,j

aijvi

so that
A(v, v′) =

∑
i,j

aijviv
′
j =

∑
j

αjv
′
j .

Having introduced this notation, the matrix version of Cauchy-Schwarz (Proposition 2.75) tells us
that:

||α|| = ||A(v,−)|| ≤ ||A||.||v||.

We can then apply the usual Cauchy–Schwarz (Proposition 2.74):

|A(v, v′)| = |
∑
j

αjv
′
j | ≤ ||α||.||v′|| ≤ ||A||.||v||.||v′||.

Which can be used to deduce:

Corollary 2.80. Let B : Rn × Rm → Rp be a bilinear map. Then B is continuous.

Proof. As above, we bound

||B(v − v′, w − w′)|| ≤ ||B||.||v − v′||.||w − w′||,

which shows that ||B(v− v′, w−w′)|| goes to zero as ||v− v′|| and ||w−w′|| do, which is what we
had to show.

Remark 2.81. We claim that the evaluation map Lin(Rn,Rp) × Rn → Rp given by (L, v) 7→ Lv
is continuous. You can verify that this map is bilinear, which allows us to apply Corollary 2.80.
Nonetheless, let us spell out how the proof goes, so you see how Cauchy-Schwarz for matrices is
used in practice.

Consider vectors v, v0 ∈ Rn and linear maps L, L0 ∈ Lin(Rn,Rp). Using Equation (2.2) we deduce
that

Lv − L0v0 = Lv − Lv0 + Lv0 − L0 v0

= L (v − v0) + (L− L0) v0

= L0 (v − v0) + (L− L0) v0 + (L− L0) (v − v0),

implying that

∥Lv − L0v0∥ ≤ ∥L0∥ ∥v − v0∥+ ∥L− L0∥ ∥v0∥+ ∥L− L0∥ ∥v − v0∥, (2.4)

which implies continuity. △

Exercise 2.82. Using similar argumetns you can show that matrix composition (L,M) 7→ M ◦ L
defines a continuous, bilinear map Lin(Rn,Rp)× Lin(Rp,Rq) → Lin(Rn,Rq). △
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2.7.5 The size of a quadratic form

Lemma 2.79 and Corollary 2.80 imply:

Corollary 2.83. Suppose Q : Rn → R is a quadratic form. Then Q is continuous and satisfies:

|Q(v)| ≤ ||Q||.||v||2.

Proof. If B is the symmetric bilinear form associated to Q, we can write Q = B ◦ ∆ with ∆ :
Rn → Rn × Rn the map v 7→ (v, v). Since B is bilinear and ∆ is linear, earlier statements tell us
that they are continuous. As such, so is their composition.

This tells us that |Q| is bounded above by the square of the usual euclidean norm (up to the factor
||Q||). The following result tells us that that this works both ways if Q is itself an inner product:

Proposition 2.84. Suppose Q : Rn → R is a positive definite quadratic form (i.e. an inner
product). Then there is a constant C > 0 such that

Q(v) ≥ C||v||2.

Proof I (using linear algebra). The idea is that we can switch the roles of Q and the standard inner
product if we change basis, so the result will follow from Corollary 2.83.

More formally: We think of Q as a symmetric matrix. According to Proposition 2.15, there is an
orthonormal basis of eigenvectors {v1, · · · , vn} with eigenvalues λi that diagonalise Q. Moreover,
since Q is positive definite, we have that all these eigenvalues are positive.

Given any v ∈ Rn we can express it as v =
∑

i aivi using said basis. Then, using bilinearity we see
that:

Q(v) = vtQv =

n∑
i=1

λi||vi||2 =
∑
i

λi > 0.

Where we have used that the vi form an orthonormal basis and that the eigenvalues are positive.

Proof II (using analysis). Observe that what we are showing is that there is a uniform estimate for
the growth of Q, that works for all vectors v. We can therefore argue as we did in Proposition 1.13.

Suppose that the statement is not true, for contradiction. Then for each positive integer k there is a
vector vk ∈ Rn such that

Q(vk) <
1

k
||vk||2.

Do note that this implies that vk ̸= 0, so we can instead consider the vectors uk := vk/||vk||, which
are contained in the unit sphere S = {v ∈ Rn | ∥v∥ = 1}. Using bilinearity we see that:

Q(uk) <
1

k
.

So we have a sequence {uk}∞k=1 of points in S whose valuesQ(uk) → 0 as k goes to infinity. Observe
now that S is a closed and bounded subset of Rn. This means (Proposition 1.10) that {uk}∞k=1 has a
subsequence that converges to some u∞ ∈ S. Since Q is continuous (Corollary 2.83) we deduce that
Q(u∞) = 0. This contradicts the fact that Q is positive definite.

The analytical proof more generally shows that any two norms on a finite dimensional vector space
are equivalent (i.e. they bound each other up to some constants).
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The proof of the following fact is left to you. You may want to review Example 2.43 and Proposition
2.46:

Exercise 2.85. Let Q : V → R be a quadratic form. Then:

• If Q is positive definite, it has a global minimum at the origin. It has no maximum.

• If Q is negative definite, it has a global maximum at the origin. It has no minimum.

• If Q is indefinite, its zero level set contains points other than the origin. It has no global
maximum nor minimum.

• If Q is degenerate, its zero level set contains points other than the origin. It may or may not
have global maxima/minima. △

The theme of critical points/maxima/minima will be explored in depth in later chapters.

2.7.6 The size of a polynomial

In analogy with earlier statements we deduce:

Lemma 2.86. Suppose P : Rn → Rm is a polynomial of order r. Then P is continuous and there
is a constant C > 0 such that:

|P (v)| ≤ C||v||r.

Proof. Given a monomial M : v ∈ V 7→ vi1vi2 · · · vik ∈ R we can estimate |M(v)| < ||v||k. The
claim follows since P is a sum of monomials of order at most r. This estimate shows continuity and
is left for the reader.
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3 Partial, directional, and total derivatives

In this chapter we finally begin our study of differentiation of functions f : Rn → Rm. Assuming
that one can indeed differentiate (not all functions are differentiable afterall, see Example 3.28!), we
will:

• Define the (total) derivative of f as a map Df : Rn → Lin(Rn,Rm) (Definition 3.13). I.e.
at each point x ∈ Rn we get a linear function Df(x) ∈ Lin(Rn,Rm) that is the best linear
approximation of f at x.

• See that the columns ofDf(x) are given by the partial derivativesDif(x) along the coordinate
directions and prove (Theorem 3.29) that differentiability can be checked fully in terms of
partial derivatives.

• Establish the sum, product, quotient rules (Proposition 3.46) and the chain rule (Theorem 3.48)
for differentiation, which are our main tools to show that a function is differentiable (and to
compute what the derivative is in many cases).

• Introduce the first order Taylor polynomial P 1
x (f) (Definition 3.23). This is the first order

polynomial that best approximates f at x.

• State and prove two versions of the mean value theorem (Theorem 3.40 and Proposition 3.45).
Mean value results are one of the main technical ingredients behind many of the important
results of the course. In this chapter we will use them to prove the chain rule. In later chapters
we will establish other versions (Theorem 6.8) in order to deduce further applications.

3.1 Partial derivatives

In the following, U is an open subset of Rn and a ∈ U a point. Let f : U → R be a real-valued
function. Let 1 ≤ j ≤ n. If we fix the coordinates with index different from j, and let the jth
coordinate vary freely, then we obtain the real-valued function

φ : t 7→ f(a1, . . . , aj−1, t, aj+1, . . . , an) (3.1)

of a single real variable t.

We have just encountered one of the central ideas of the course. Whenever we are trying to
prove/define/construct something in the multivariate setting, we should ask ourselves: Is it
possible to reduce the proof/construction to the case of one variable?

The function φ is defined on the following subset of R:

Ij(a) := {t ∈ R | (a1, . . . , aj−1, t, aj+1, . . . , an) ∈ U}.

It can be seen as follows that Ij(a) contains an open interval around aj : Since U is open, there exists
a δ > 0 such that B(a; δ) ⊂ U . For t ∈ (aj − δ, aj + δ) we then have

(a1, . . . , aj−1, t, aj+1, . . . , an) ∈ B(a; δ),

and therefore (aj − δ, aj + δ) ⊂ Ij(a).

Since φ is defined on an open interval around aj , the question of differentiability of the function φ
makes sense. This is the reason why we assumed that U is open.
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Definition 3.1. The function f is called partially differentiable with respect to the j-th variable at
the point a ∈ U if the function φ defined by (3.1) is differentiable at the point t = aj .

If this is the case, then the derivative of the function φ at the point t = aj is called the partial
derivative of f with respect to the j-th variable at the point a and is denoted by

Djf(a) := φ′(aj) =
d

dt
f(a1, . . . , aj−1, t, aj+1, . . . , an)

∣∣∣∣
t=aj

. △

Example 3.2. Let f : R2 → R be defined by f(x, y) = exyy + x. Then, according to the above
definition, the function f is at every point a = (a1, a2) ∈ R2 partially differentiable with respect to
both the first and the second variables. Moreover:

D1f(a1, a2) =
d

dt
(eta2a2 + t)

∣∣∣∣
t=a1

= (eta2a22 + 1)
∣∣
t=a1

= ea1a2a22 + 1. △

Remark 3.3. In the above, it was required that the domain U of f was open. For a more general
V ⊂ Rn, we can consider a function f : V → R and a point a ∈ inw(V ). The function f is then
called partially differentiable at a if the restriction of f to the interior of V is partially differentiable
there. △

We return to the situation where U ⊂ Rn is open.

Definition 3.4. A function f : U → R is called partially differentiable with respect to the j-th
variable if it is partially differentiable with respect to the j-th variable at every point a ∈ U .

In that case we can consider the partial derivative Djf(a) as a function of a ∈ U . This function is
called the partial derivative of f with respect to the j-th variable and is denoted by:

Djf : U → R, x 7→ Djf(x). △

Remark 3.5. In the literature, the notation ∂jf is used sometimes instead of Djf . If we denote the
coordinates in U ⊂ Rn by the variables x = (x1, . . . , xn), one can also write

∂f(x)

∂xj
.

If one uses other variables (for example (x, y) in the plane), then one may write analogous expressions
with them. In larger formulas one often it is sometimes handy to write

∂

∂xj
f(x)

or even ∂jf(x). The symbol ∂ was introduced around 1840 by Jacobi.

The partial derivative Djf(a) of f at a point a may be denoted by

∂f(x)

∂xj

∣∣∣∣
x=a

=
∂f

∂xj
(a).

This notation can be confusing. For example, for a function f(y, t) we have that

∂f

∂y
(0, 0)
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denotes the partial derivative with respect to the first variable at (0, 0), but a careless reader may
assume it was the second.

This can become more complicated with expressions such as ∂f
∂x (x, x), which can mean:

∂f(x, y)

∂x

∣∣∣∣
y=x

= (D1f)(x, x),

or
∂f(y, x)

∂x

∣∣∣∣
y=x

= (D2f)(x, x),

or d
dxf(x, x). This illustrates that it is important to choose notations so that the meaning remains

clear. Keep this in mind when writing your exam! △

Example 3.6. In the situation of Example 3.2 we have

∂

∂x
f(x, y) =

∂

∂x
(exyy + x) = exyy2 + 1,

∂

∂y
f(x, y) =

∂

∂y
(exyy + x) = exy(xy + 1). △

Since partial differentiation is in fact differentiation of a function of a single real variable (namely
the j-th coordinate), the following calculation rules are a direct consequence of the corresponding
familiar rules for functions of a single variable.

Proposition 3.7. Let f, g be two functions U ⊂ Rn → R, and let a ∈ U . If f and g are
partially differentiable with respect to the j-th variable at a, then f + g and f g are as well and
we have

Dj(f + g)(a) = Djf(a) +Djg(a), (3.2)

Dj(f g)(a) = Djf(a)g(a) + f(a)Djg(a). (3.3)

If moreover f(a) ̸= 0, then the function 1/f is partially differentiable at a with respect to the
j-th variable and we have

Dj

(
1

f

)
(a) = − 1

f(a)2
Djf(a). (3.4)

3.1.1 Multiple outputs

One can also speak about partial differentiability of vector-valued functions f : U ⊂ Rn → Rp. For
such a function we denote its components by fi for 1 ≤ i ≤ p. Namely:

f(x) =

f1(x)...
fp(x)

 .

Based on the analogous lemma for functions of a single variable, the following holds:

Lemma 3.8. Let U ⊂ Rn open, f : U → Rp, and a ∈ U . Let 1 ≤ j ≤ n. Then the following
statements are equivalent.
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(a) The function f is partially differentiable with respect to the j-th variable at the point a.

(b) For every 1 ≤ i ≤ p the component fi is partially differentiable with respect to the j-th variable
at the point a.

If either of the above conditions are satisfied, then we have

Djf(a) =

Djf1(a)
...

Djfp(a)

 ∈ Rp.

In particular, if f : U → Rp is everywhere partially differentiable in the jth direction, we will be able
to consider the function

Djf : U → Rp.

3.2 Directional derivatives

The concept of a partial derivative can be seen as a special case of the concept of a directional
derivative. We define the latter concept as follows.

Definition 3.9. Let U ⊂ Rn be an open subset and f : U → Rp a function. Fix a point a ∈ U and a
direction v ∈ Rn. The mapping f is called directionally differentiable at the point a in the direction
v if the function t 7→ f(a+ tv) is differentiable at t = 0.

The derivative

Dvf(a) :=
d

dt
f(a+ tv)

∣∣∣∣
t=0

is in that case called the directional derivative of f at the point a in the direction v.

If f is directionally differentiable in direction v at all points we can then consider the function Dvf :
U → Rp. △

Observe that t 7→ f(a + tv) is once again a function of one variable. It should be thought as the
restriction of f to the line passing via a with direction v.

Remark 3.10. We note that the directional differentiability of f at a in the direction v is equivalent
to the existence of the limit

lim
t→0

f(a+ tv)− f(a)

t
.

If this limit exists, its value equals the directional derivative Dvf(a). △

For the directional derivative the principle of componentwise differentiation (Lemma 3.8) also holds:

Lemma 3.11. Let a ∈ U and v ∈ Rn. Let f : U → Rp. Then the following statements are
equivalent:

(a) the function f is directionally differentiable at a in the direction v;

(b) for every 1 ≤ i ≤ p the component function fi : U → R is directionally differentiable at a in
the direction v.
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If conditions (a) and (b) are satisfied, then

Dvf(a) =

Dvf1(a)
...

Dvfp(a)

 .

Partial differentiation can be regarded as directional differentiation in specific directions:

Lemma 3.12. Let ej be the j-th standard basis vector in Rn. Then the following statements are
equivalent.

(a) The partial derivative Djf(a) exists.

(b) The function f is directionally differentiable at a in the direction ej .

Moreover, in the case where (a) and (b) are true, we have

Djf(a) = Dejf(a). (3.5)

Proof. There exists a δ > 0 such that B(a; δ) ⊂ U . We introduce the open interval I := (aj −
δ, aj + δ) and define the function φ : I → Rp by

φ(s) = f(a1, . . . , aj−1, s, aj+1, . . . , an).

For the (ordinary) derivative of φ with respect to the variable s it follows from the chain rule for
(ordinary) differentiation that φ is differentiable at aj if and only if the function t 7→ φ(aj + t) is
differentiable at 0. The first statement is by definition equivalent to (a). The second statement is
equivalent to (b) because for all t ∈ (−δ, δ) we have φ(aj + t) = f(a+ tej). Moreover, by the chain
rule for ordinary differentiation, if either (a) or (b) are true we then have

Djf(a) = φ′(aj) =
d

dt
φ(aj + t)

∣∣∣∣
t=0

=
d

dt
f(a+ tej)

∣∣∣∣
t=0

= Dejf(a).

3.3 The total derivative

The partial and directional derivatives give us information about the function f , but only one direction
at a time. Our next goal is to define an object encapsulating the “slope” of f , at a given point a, in
all directions at once. In analogy with the one variable case, we expect such an object to be the best
linear approximation to f at a.

Definition 3.13. Consider an open subset U ⊂ Rn and a function f : U → Rp. Fix a point a ∈ U .
The function f is said to be (totally) differentiable at a if there exists a linear map A : Rn → Rp

such that

lim
h→0

∥f(a+ h)− f(a)−A(h)∥
∥h∥

= 0. (3.6)

The linear map A is called the total derivative of f at a. We denote it by Df(a). The matrix
representing it with respect to the standard basis of Rn is called the Jacobian of f at a. △

We have to show that this concept is indeed well-defined. This is accomplished in the following
lemma, which shows that the directional derivatives uniquely determine the linear map A : Rn → Rp

appearing in Equation (3.6).
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Lemma 3.14. Suppose the function f is differentiable at a and let A satisfy (3.6). Then, for every
v ∈ Rn, the function f is directionally differentiable at a in the direction v. The corresponding
directional derivative is given by

Dvf(a) = A(v).

In particular, A is uniquely determined.

Proof. The statement is clear for v = 0. We therefore assume that v ̸= 0. By substituting h = tv
into (3.6) we find that

lim
t→0

∥f(a+ tv)− f(a)−A(tv)∥
|t|∥v∥

= 0.

From the linearity of A it follows that A(tv) = tA(v), so also

lim
t→0

∥v∥−1

∥∥∥∥f(a+ tv)− f(a)

t
−A(v)

∥∥∥∥ = 0

and we conclude that

lim
t→0

(
f(a+ tv)− f(a)

t
−A(v)

)
= 0,

so f is directionally differentiable at a in the direction v and the claimed formula holds.

Corollary 3.15. If f is totally differentiable at a, then it is directionally differentiable for all direc-
tions v. Moreover, the formula

Df(a)(v) = Dvf(a) (3.7)

holds.

Example 3.16. Let U ⊂ Rn be open and f : U → Rp a map such that there exists a linear
map T : Rn → Rp with f = T |U . Then f is totally differentiable at every point a ∈ U , with
total derivative Df(a) = T . Indeed, Definition 3.13 applies with A = T . △

Example 3.17. We consider the map f : Rn → R, x 7→ ⟨x, x⟩. Let a ∈ Rn. Then for
h ∈ Rn we have

f(a+ h)− f(a) = ⟨a+ h, a+ h⟩ − ⟨a, a⟩ = 2⟨a, h⟩+ ⟨h, h⟩.

Let A be the linear map Rn → R given by A(h) = 2⟨a, h⟩. You should verify that this map is
indeed linear. Then

∥f(a+ h)− f(a)−A(h)∥ = ∥h∥2

so (3.6) holds. We conclude that f is totally differentiable at the point a with total derivative
Df(a) : Rn → R given by Df(a)(h) = 2⟨a, h⟩. It follows that f is also directionally
differentiable at a in every direction v ∈ Rn, with directional derivative

Dvf(a) = 2⟨a, v⟩.

We can also derive this directly. Indeed, due to the bilinearity of the inner product we have
f(a + tv) = ⟨a, a⟩ + 2t⟨a, v⟩ + t2⟨v, v⟩, for t ∈ R. This expression is differentiable with
respect to t with derivative

d

dt
f(a+ tv) = 2⟨a, v⟩+ 2t⟨v, v⟩.

Substituting t = 0 yields Dvf(a) = 2⟨a, v⟩. △
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According to Lemma 3.12 and Corollary 3.15, a totally differentiable function is also partially diffe-
rentiable:

Corollary 3.18. Let f : U → Rp be totally differentiable at a. Its Jacobi matrix at a is given by

Df(a)ij = Djfi(a) (1 ≤ j ≤ n, 1 ≤ i ≤ p).

Proof. The derivative Df(a) is a linear map Rn → Rp and can thus be interpreted as a matrix with
p rows and n columns. The element in the i-th row and the j-th column is denoted by Df(a)ij . As
we know from linear algebra, this element is given by

Df(a)ij = (Df(a)ej)i = (Dejf(a))i,

by Corollary 3.15. Applying (3.5) and Lemma 3.8 we find that

Df(a)ij = (Djf(a))i = Djfi(a).

Exercise 3.19. Consider an open U ⊂ Rn and a function f : U → Rm. Show that f is totally
differentiable at a ∈ U if and only if each component fi : U → R is totally differentiable at a. If that
is the case, prove that the total derivative Df(a) has the covectors Dfi(a) as its rows. △

3.3.1 The total derivative as a function

Notation 3.20. Consider an open U ⊂ Rn and a function f : U → Rp. If f is totally differentiable
at all a ∈ U we will write Df : U → Lin(Rn,Rp) for the function a 7→ Df(a). △

If p = 1, the total derivative Df : U → Lin(Rn,R) takes values in the dual space, so Df(a) is a
covector (i.e. a row). We will not make much use of it, but it is common in the literature to transpose
it and see it as a (column) vector instead:

Definition 3.21. Suppose f : U → R is totally differentiable at a ∈ U . The gradient of f at a is
the vector grad(f)(a) := Df(a)t = (D1f(a), · · · , Dnf(a)). If it exists at all points, we regard it as
a function grad(f) : U → Rn. △

3.3.2 The first order Taylor polynomial

Given a continuous function f : U → Rp and a point a ∈ U , the constant function that best
approximates f at a is x 7→ f(a). In this case, a “good zero order approximation” means that
limh→0 f(a+ h)− f(a) = 0, i.e. the definition of continuity at a.

The following observation tells us that f is differentiable at a if and only if there is a first order
polynomial that is a “good first order approximation” around a. The meaning of this is explained
in the following proposition, which follows immediately from the definition of total derivative. (Do
note that it is more restrictive than being a “good zero order approximation”).

Proposition 3.22. The following are equivalent for a function f : U → Rp:

• f is differentiable at a ∈ U with total derivative Df(a) ∈ Lin(Rn,Rp).

• The function R(h) = f(a+ h)− [f(a) +Df(a)(h)] satisfies limh→0
∥R(h)∥
∥h∥ = 0.

Lemma 3.14 implies that there is a unique first order polynomial approximating f well:
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Definition 3.23. Suppose f : U ⊂ Rn → Rp is differentiable at a. The function P 1
a (f) : Rn → Rp

given by P 1
a (f)(x) := f(a) +Df(a)(x − a) is called the first order Taylor polynomial of f at a.

The function

R(h) := f(a+ h)− P 1
a (f)(a+ h) = f(a+ h)− [f(a) +Df(a)(h)]

is called the remainder. △

That is, the remainder measures the error in approximating f by P 1
a (f).

Example 3.24. We consider the function f : R2 → R defined by f(x) = x1x2. Let a ∈ R2

be a given fixed point. Then for all h ∈ R2 we have

f(a+ h)− f(a) = (a1 + h1)(a2 + h2)− a1a2 = a2h1 + a1h2 + h1h2 = A(h) +R(h),

with A(h) = (a2 a1)(h1, h2)
t and R(h) = h1h2. (The important step is to ‘split off’ the

appropriate linear mapping A.) The defined mapping A is linear, and for R we have that
|R(h)| ≤ |h1||h2| ≤ ∥h∥2, hence

lim
h→0

|R(h)|
∥h∥

= 0.

We see thus that the mapping f is totally differentiable at a, with derivative Df(a) : R2 → R
given by the row-matrix A = (a2 a1). By Corollary 3.18 it follows that

D1f(a) = a2 and D2f(a) = a1.

This can also be directly derived from the rules for partial differentiation. The first Taylor
polynomial is then

P 1
a (f)(a+ h) = a1a2 + (a2h1 + a1h2),

which is seen to indeed be of first order on h. △

3.3.3 The total derivative in one variable

We now compare the newly introduced concept of total derivative in the case n = 1 with the ordinary
derivative.

Lemma 3.25. Let I ⊂ R be an open interval and f : I → Rp a function. Let a ∈ I. Then the
following two statements are equivalent.

(a) The function f is differentiable at a in the sense of Inleiding Analyse.

(b) The function f is totally differentiable at a.

If f is differentiable at a, then the relation between the two derivatives is given by

f ′(a) = Df(a)(1). (3.8)

Proof. First assume that (b) holds. Then it follows from Corollary 3.18 that f is partially differen-
tiable. Since there is only one variable, f is simply differentiable with respect to that variable. This
implies (a).
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Now assume conversely that (a) holds, i.e. that f is differentiable at a with derivative f ′(a) ∈ Rp.
Then

lim
h→0

(
f(a+ h)− f(a)

h
− f ′(a)

)
= 0.

It follows that
f(a+ h)− f(a) = f ′(a)h+R(h)

with limh→0 h
−1R(h) = 0 hence also

lim
h→0

∥R(h)∥
|h|

= lim
h→0

∥∥∥∥R(h)h

∥∥∥∥ = 0.

The mapping A : R → Rp defined by A(h) = hf ′(a) is linear. From Proposition 3.22 it now follows
that f is totally differentiable at a with derivative Df(a) = A. We conclude that (b) holds, and
furthermore that Df(a)(1) = A(1) = f ′(a).

Remark 3.26. The relation (3.8) can also be understood as follows. The linear mapping Df(a) :
R → Rp has as Jacobian matrix the column

Df(a) = (f ′1(a), . . . , f
′
p(a)) ∈ Rp.

If we let Df(a) act on the point 1 ∈ R (which can be seen as the standard basis vector e1 of R) then
we find that

Df(a)(1) = f ′(a). △

3.3.4 Total differentiability implies continuity

We can now use the first order Taylor polynomial (Proposition 3.22) and the estimates for linear maps
developed in Subsection 2.7 to obtain the following very important consequence.

Proposition 3.27. Fix an open subset U ⊂ Rn, a function f : U → Rp, and a point a ∈ U .
Suppose that f is totally differentiable at a. Then f is continuous at the point a.

Proof. Consider the remainder at a:

R(h) := f(a+ h)− [f(a) +Df(a)(h)], (h ∈ −a+ U).

The idea of the proof is that the Taylor polynomial is continuous (by polynomiality, according to
Proposition 2.71) and f differs from it by R, which is also continuous (at h = 0).

Indeed, for all h ∈ −a+ U we have that:

∥f(a+ h)− f(a)∥ = ∥Df(a)(h) +R(h)∥
≤ ∥Df(a)(h)∥+ ∥R(h)∥
≤ ∥Df(a)∥ ∥h∥+ ∥R(h)∥. (3.9)

From the definition of differentiability it follows that ∥h∥−1∥R(h)∥ has limit 0 as h → 0. This
means that ∥R(h)∥ itself has limit 0 as h → 0. In detail: First, note that R(0) = 0. Secondly, there
exists a δ > 0 such that a + B(0; δ) = B(a; δ) ⊂ U and such that for all h ∈ B(0; δ) we have
∥h∥−1∥R(h)∥ ≤ 1. From this it follows that ∥R(h)∥ ≤ ∥h∥, so the limit is indeed zero.

If we now go back to Equation (3.9), we see that for all h ∈ B(0; δ) we have

∥f(a+ h)− f(a)∥ ≤ (∥Df(a)∥+ 1)∥h∥,

showing that ∥f(a+ h)− f(a)∥ → 0 as h→ 0, proving continuity at a.
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In contrast, the following (important!) example shows that partial differentiability does not imply
continuity (and therefore it does not imply total differentiability):

Example 3.28. Define f : R2 → R (Figure 3.3.4) by

f(x, y) :=
xy2

x2 + y4

if (x, y) ̸= (0, 0) and by f(0, 0) := 0. Then, f is partially differentiable with continuous
partial derivatives on R2 \ {(0, 0)}.

Take v = (a, b) ∈ R2 with a ̸= 0. Then

f(t.v)− f(0)

t
=

t3ab2

t(t2a2 + t4b4)
=

ab2

a2 + t2b4
−→ ab2

a2
=
b2

a

as t ̸= 0 and t → 0. On the other hand, if b ̸= 0 and t ̸= 0, then f(t.0,t.b)−f(0,0)
t = 0.

Thus, at the point (0, 0), the function f is directionally differentiable in all directions, with
Dvf(0, 0) = b2/a if v = (a, b) and a ̸= 0, and Dvf(0, 0) = 0 if v = (0, b). In particular, f
is partially differentiable at (0, 0) with partial derivatives D1f(0, 0) = D2f(0, 0) = 0.

It is clear that the directional derivative Dvf(0, 0) does not depend linearly on the direction
vector v = (a, b). In view of Remark 3.15 we conclude that f cannot be totally differentiable
at the point (0, 0).

It is perhaps surprising that the function f , despite the existence of the partial derivatives at
(0, 0), is not continuous at that point. We see this as follows. For every c ∈ R and y ̸= 0 we
have

f(cy2, y) =
cy4

c2y4 + y4
=

c

c2 + 1
.

Suppose that the function f is continuous at (0, 0). As y → 0, we have that (cy2, y) → (0, 0),
so the continuity of f at the point (0, 0) would imply that f(cy2, y) converges to 0 as y → 0.
However, if c ̸= 0 then f(cy2, y) is equal to the constant c/

(
c2 + 1

)
̸= 0 for every y ̸= 0.

Contradiction.

In summary, this is an example of a function that is differentiable in each variable at every
point, but is not continuous at the origin. △

3.3.5 Continuous differentiability

The following result provides the most commonly used criterion to conclude the total differentiability
of functions. It is one of the most important results of the chapter.

Theorem 3.29. Let U ⊂ Rn be an open set, f : U → Rp a function, and a ∈ U a point.
Suppose that f is partially differentiable and all its partial derivatives Djf : U → Rp are
continuous at a. Then f is totally differentiable at a.

You should compare this to Example 3.28. There we saw that partial differentiability does not imply
total differentiability. The theorem says that continuous partial differentiability does.
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Figuur 3: f(x, y) = x y2/
(
x2 + y4

)
for −1 < x < 1, −1 < y < 1.

We can also consider:

Definition 3.30. Consider an open subset U ⊂ Rn and a function f : U → Rp. We say that f is
continuously differentiable, or simply C1, if it is totally differentiable everywhere and Df : U →
Lin(Rn,Rp) is continuous. △

Theorem 3.29 immediately implies that:

Corollary 3.31. Suppose f : U ⊂ Rn → Rp is partially differentiable and all its partial derivatives
Djf : U → Rp are continuous. Then f is C1.

The proof of Theorem 3.29 requires some preparation. We will build towards it and provide a proof
in Subsection 3.5.

3.4 Growth of functions

The total derivative measures the slope of a function in all directions. As such, it gives us an idea
of how much this function may grow as we move to a nearby point. We explore this idea in the
upcoming paragraphs.

3.4.1 Extrema

The simplest situation one could encounter is for the total derivative to vanish at a point a. This means
that the function f has zero slope in all directions, so its value does not change very much around a:

Definition 3.32. Let the function f : U → R be totally differentiable at a ∈ U . We say that a ∈ U
is stationary or critical if Df(a) = 0. △

In many situations we are interested in local extrema of functions of several variables. According to
the variational principle, these are critical points:
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Proposition 3.33. Let U ⊂ Rn be open, a ∈ U , and f : U → R directionally differentiable
at a ∈ U along the direction v ∈ Rn. If f has a local maximum (resp. minimum) at a then
Dvf(a) = 0.
In particular, if f is totally differentiable at a, it holds that Df(a) = 0.

Proof. The assumption implies that the function of one variable ϕ(t) := f(a + tv) has a local
maximum/minimum at the point t = 0. From the theory of differentiable functions of one variable it
is known that this implies

Dvf(a) = ϕ′(0) = 0.

Example 3.34. Recall the standard quadratic forms in R2 from Example 2.43. In Exercise 2.85 we
characterised their extrema. We now revisit them from the point of view of differentiation.

Let f(x, y) = x2 + y2 : R2 → R. Then f has a minimum at (0, 0), hence D(f)(0, 0) = 0. This can
also be verified by computing the partial derivatives:

∂f(x, y)/∂x = 2x = 0 when x = 0,

∂f(x, y)/∂y = 2y = 0 when y = 0.

Now take f(x, y) = x2 − y2. Then

Df(x, y) = (2x − 2y).

So also in this case D(f)(0, 0) = 0, so (0, 0) is a stationary point of f . However, f does not have a
local minimum at (0, 0) because arbitrarily close to (0, 0) there are points (x, y) with f(x, y) < 0 =
f(0, 0), for example take x = 0 and y ̸= 0. On the other hand, by considering points (x, y) with
y = 0 and x ̸= 0, we see that f also does not have a local maximum at (0, 0). A stationary point of f
in which f has neither a local minimum nor a local maximum is also called a saddle point of f . △

3.4.2 Locally constant functions

We studied locally constant functions, in general metric spaces, in Subsection 1.2.3. Those results
can be refined if we restrict ourselves to differentiable functions.

From Inleiding Analyse it is known that for a differentiable function f : [a, b] → Rp of one variable
it holds: if f ′ = 0 then f is constant. You can use this fact to then show:

Exercise 3.35. Let for each 1 ≤ j ≤ n an open interval Ij = (aj , bj) with aj < bj be given. Then
V = I1 × · · · × In is an open subset of Rn. If f : V → Rp is a partially differentiable function with
Djf = 0 for all 1 ≤ j ≤ n, then f is constant. △

Which implies:

Exercise 3.36. Consider an arbitrary open U ⊂ Rn. Let f : U → Rp be a partially differentiable
function with Djf = 0 for all 1 ≤ j ≤ n. Then f is locally constant. △

Applying Proposition 1.30 we thus deduce:
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Proposition 3.37. Let f : U → Rp be a partially differentiable function with Djf = 0 for all
1 ≤ j ≤ n. If X is path-connected, then f is constant.

Observe that this result is an elementary case of our main Theorem 3.29. Namely, we assume that f
has partial derivatives that are zero (and are thus continuous) and we deduce that f is constant (so is
in particular totally differentiable).

Example 3.38. Suppose f : R2 → R satisfies Df(x, y) = (xexy yexy). Then f is neces-
sarily g(x, y) = exy plus a constant. The reason is that Df = Dg so D(f − g) = 0, which
implies (Proposition 3.37) that f − g is constant. △

3.4.3 The mean value theorem

The most important result relating the growth of a differentiable function to the size of its total deriva-
tive is the mean value theorem. Observe that it is a global statement: knowing the slope everywhere
allows us to estimate the size of the function everywhere. You can think of it as a generalisation of
Proposition 3.37, which is the slope zero case.

Recall the case of one variable:

Lemma 3.39. Let I ⊂ R be an interval and φ : I → R a differentiable function. Then for all
a, b ∈ I there exists a c ∈ [a, b] such that

φ(b)− φ(a) = φ′(c)(b− a). (3.10)

Proof. For a < b this result is a consequence of the mean value theorem proven in the notes of
Inleiding Analyse. The identity (3.10) then even holds for a c ∈ (a, b). For a = b the result is evident.
For a > b the result is a consequence of the mean value theorem applied to the interval [b, a].

This result can then be applied to deduce the standard multivariate mean value theorem:

Theorem 3.40. Let U ⊂ Rn be open and f : U → R a function that is totally differentiable
everywhere. Then, for any two points p, q ∈ U with [p, q] ⊂ U there exists a point r ∈ [p, q]
such that

f(q)− f(p) = Df(r)(q − p).

Proof. Write v := q − p and consider the function of one variable φ : [0, 1] → R defined by

φ(t) := f(p+ tv).

This will allow us to reduce to the case of one variable.

We first claim that φ is differentiable everywhere. Indeed, fix a time t0 ∈ [0, 1]. Given t ∈ −t0+[0, 1]
we have that

φ(t0 + t) = f(p+ t0v + tv).

Since f is totally differentiable at p + t0v ∈ [p, q] ⊂ U , it follows that f is also directionally
differentiable at that point in the direction v, with directional derivative Dvf(p + t0v) = Df(p +
t0v)(v). We conclude that

φ′(t0) = lim
t→0

φ(t0 + t)− φ(t0)

t
= Df(p+ t0v)(v).
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The final step is to apply the mean value theorem for ordinary differentiation. It implies that there
exists a c ∈ [0, 1] such that

f(q)− f(p) = φ(1)− φ(0) = φ′(c) = Df(p+ cv)(v).

This gives the result with r = p+ cv ∈ [p, q].

This result can be used to bound the growth of a differentiable function along a segment:

Corollary 3.41. Suppose U ⊂ Rn is an open subset and f : U → R is a totally differentiable
function. We suppose further that there is M ≥ 0 such that ∥Df(x)∥ ≤ M for all x ∈ U . Then, for
any two points p, q ∈ U with [p, q] ⊂ U it holds that:

|f(q)− f(p)| ≤M∥q − p∥.

Proof. According to Theorem 3.40, there is an r ∈ [p, q] so that:

|f(q)− f(p)| = |Df(r)(q − p)| ≤ ∥Df(r)∥∥q − p∥ ≤M∥q − p∥.

Exercise 3.42. Show that the same statement is not necessarily true if we do not assume that [p, q] ⊂
U . △

You should note that Theorem 3.40 deals with functions with values in R, not a higher euclidean
space. The same holds for Corollary 3.41. Nonetheless, one can generalise Corollary 3.41 to functi-
ons U → Rp:

Exercise 3.43. Let U ⊂ Rn be open and f : U → Rp a function that is totally differentiable
everywhere. Suppose further that a, b ∈ U and that [a, b] ⊂ U . Finally suppose that M > 0 and that
∥Df(x)∥ ≤M for all x ∈ [a, b].

(a) Show that for all v ∈ Rp it holds that

|⟨f(b)− f(a), v⟩| ≤M∥v∥∥b− a∥.

Hint: consider the function F : U → R given by x 7→ ⟨f(x), v⟩. It measures the size of f(x)
in the direction of v.

(b) Show that
∥f(b)− f(a)∥ ≤M∥b− a∥.

Hint: apply (a) with a suitable choice of v ∈ Rp. △

3.5 The proof of Theorem 3.29

Our goal now is to establish Theorem 3.29, which shows total differentiability once we have con-
tinuous partial derivatives. The strategy is the following: we will show that, in the presence of
continuous partial derivatives, it is possible to deduce a partial-derivative-version of the mean value
theorem (Proposition 3.45). Once we have that, the theorem will follow.

We first show that having one partial derivative gives us a directional version of the mean value
theorem:
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Lemma 3.44. Consider an open subset U ⊂ Rn, a function f : U → R that is partially differenti-
able on U in direction j, and a pair of points p, q ∈ U satisfying [p, q] ⊂ U .

Suppose further that p − q is a multiple of ej (identically, pi = qi for each i ̸= j). Then there exists
an r ∈ [p, q] such that

f(q)− f(p) = Djf(r) · (qj − pj). (3.11)

Proof. We consider the function φ : [pj , qj ] → R defined by

φ(t) = f(p1, . . . , pj−1, t, pj+1, . . . , pn).

Then the function φ is differentiable, φ(pj) = f(p), and φ(qj) = f(q). By the mean value theorem
for ordinary differentiability there exists a c ∈ [pj , qj ] such that

f(q)− f(p) = φ(qj)− φ(pj) = φ′(c)(qj − pj) = Djf(r)(qj − pj),

where r := (p1, . . . , pj−1, c, pj+1, . . . pn).

This lemma can be applied one direction at a time to establish the promised mean value theorem:

Proposition 3.45. Let U ⊂ Rn be open and a ∈ U . Let f : U → R be a function that is partially
differentiable and, moreover, for each 1 ≤ j ≤ n, the partial derivative Djf : U → R is continuous
at a.

Then there is an open ball B ⊂ U with center a and a function L : B → Lin(Rn,R) such that

f(x)− f(a) = L(x)(x− a) = (L1(x) · · · Ln(x))(x− a) =

n∑
j=1

Lj(x)(xj − aj)

and limx→a Lj(x) = Djf(a) for every 1 ≤ j ≤ n and x ∈ B.

You should keep in mind is that we do not know yet whether f is totally differentiable at a (that is what
we are aiming to show). However, it if was, the covector (D1f(a) · · · Dnf(a)) would be the total
derivative. What this result says is that we can construct a family of covectors L : B → Lin(Rn,R)
that interact with the function f as the actual total derivative would.

Proof. First observe that the open ball B(a, δ) is contained in U if δ is sufficiently small, because
U is open; this yields the claimed B. Fix x ∈ B. The idea of the proof is to decompose f(x)− f(a)
into a sum of differences of function values, where each time only one of the variables is varied. We
will then be able to apply Proposition 3.45 to each term.

Define a sequence of points by setting p(0)(x) := a and, for each 1 ≤ j ≤ n:

p(j)(x) := (x1, . . . , xj , aj+1, . . . , an) . (3.12)

For j = n we interpret this so that p(n)(x) = x. The successive points p(j−1)(x) and p(j)(x)
differ only in the j-th coordinate. The connecting line segments [p(j−1)(x), p(j)(x)] together form a
piecewise path from a to x with only one coordinate varying in each segment.

We claim that the points p(j)(x) lie in the ball B = B(a, δ) ⊂ U . Indeed:

∥p(j)(x)− a∥ =

(
j∑

k=1

(xk − ak)
2

)1/2

≤ ∥x− a∥ ≤ δ.
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p(0)(x) = a p(1)(x)

p(2)(x) = x

r(1)(x)

r(2)(x)

Figuur 4: The piecewise path from a to x in the planar case (n = 2).

As such, the same holds for the connecting line segments, since B is convex.

We then write the difference f(x)− f(a) as

f(x)− f(a) = f(p(n)(x))− f(p(0)(x)) =

n∑
j=1

(f(p(j)(x))− f(p(j−1)(x)). (3.13)

We now focus on rewriting the j-th term. The points p(j−1)(x) and p(j)(x) differ solely in the j-th
coordinate. Concretely:

p(j)(x)j − p(j−1)(x)j = (xj − aj).

Since the line segment [p(j−1)(x), p(j)(x)] lies entirely in U , Proposition 3.45 implies that there exists
an intermediate point r(j)(x) ∈ [p(j−1)(x), p(j)(x)] satisfying

f(p(j)(x))− f(p(j−1)(x)) = Djf(r
(j)(x))(xj − aj). (3.14)

Plugging this into Equation (3.13) it follows that

f(x)− f(a) =
n∑

j=1

Djf(r
(j)(x))(xj − aj).

This leads us to define the functions Lj : B → R using the expressions

Lj(x) := Djf(r
(j)(x)). (3.15)

We put them together as the covector valued function L : B → Lin(Rn,R), yielding:

f(x)− f(a) =

n∑
j=1

Lj(x) · (xj − aj). = L(x)(x− a).

It remains to study the behaviour of L(x) as x → 0. Since ∥r(j)(x)− a∥ ≤ ∥x− a∥, it follows that
r(j)(x) → a as x → a. On the other hand, the partial derivative Djf is continuous at a. It therefore
follows that

Lj(x) = Djf(r
(j)(x)) → Djf(a) (x→ a).

Without further ado:
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Proof of Theorem 3.29. It is enough to establish the result for the case f : U → R, i.e. f takes
values in R. The general case is then a consequence of Exercise 3.19.

Let δ > 0 such thatB = B(a, δ) ⊂ U . We use the mean value theorem of Proposition 3.45 to deduce
that there is some L : B → Lin(Rn,R) such that, for each h ∈ B(0, δ) (thus a+ h ∈ B):

f(a+ h)− f(a) = L(a+ h)(h) =
n∑

j=1

Lj(a+ h)hj .

We define a linear map A : Rn → R by

A(h) :=

n∑
j=1

Djf(a)hj = (D1f(a) · · · Dnf(a))(h)

and we consider the remainder:

R(h) := f(a+ h)− f(a)−A(h).

Then for h ∈ B(0, δ) we have

R(h) = L(a+ h)(h)−A(h).

Using linearity and Cauchy-Schwarz (Proposition 2.75) we deduce that:

|R(h)|
||h||

=
||L(a+ h)−A||.||h||

||h||
= ||L(a+ h)−A||

which goes to zero as h goes to zero, according to Proposition 3.45. Proposition 3.22 then implies
that f is differentiable at a with total derivative A.

3.6 Computation rules for the total derivative

In practice, functions are often given to us as combinations of simpler functions. The following
results allow us to compute their total derivative.

3.6.1 The sum, product, and quotient rules for the total derivative

Proposition 3.46. Fix an open U ⊂ Rn. Let f, g : U → R be totally differentiable at the
point a ∈ U . Then f + g and fg are totally differentiable at a and

D(f + g)(a) = Df(a) +Dg(a), (3.16)

D(fg)(a) = g(a)Df(a) + f(a)Dg(a). (3.17)

Moreover, if f(a) ̸= 0, then 1/f is totally differentiable at a and

D(1/f)(a) = −Df(a)
f(a)2

. (3.18)

Note that, in products, we always place scalars before the linear maps; this is the usual order. Writing
them in the opposite order could suggest erroneously that one thinks of Df(a) as a number, instead
of as a linear map Rn → R.
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Remark 3.47. If f and g are continuously differentiable on U ⊂ Rn, then Proposition 3.46 follows
from Proposition 3.7 and Theorem 3.29. Alternatively, Proposition 3.46 can be proved directly from
Definition 3.13.

The computation rules for totally differentiable vector-valued functions follow by applying Proposi-
tion 3.46 to each coordinate function. △

3.6.2 The chain rule

The following is the chain rule for total derivatives, one of the main results of this chapter.

Theorem 3.48. LetU be an open subset of Rn and V an open subset of Rp. Let f : U → V be
a map that is totally differentiable at the point a ∈ U . Let g : V → Rq be totally differentiable
at f(a) ∈ V . Then, the composition g ◦ f : U → Rq is totally differentiable at a. Moreover:

D(g ◦ f)(a) = Dg(f(a)) ◦Df(a). (3.19)
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Figuur 5: The chain rule.

Proof. The strategy of the proof is very similar to how we established Theorem 3.29. We will apply
the “weak” mean value theorem (Proposition 3.45) to f and g. The results can be combined to pro-
duce a “mean value theorem” for the composition. This will be enough to invoke the characterisation
of differentiability in terms of the first order Taylor polynomial (Proposition 3.22), showing that g ◦f
is differentiable.
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Write b = f(a). According to Proposition 3.45, there are balls BU ⊂ U and BV ⊂ V , containing a
and b, respectively, and functions L : BU → Lin(Rn,Rp) and H : BV → Lin(Rp,Rq) such that:

f(a+ u)− f(a) = L(a+ u)(u)

g(b+ v)− g(b) = H(b+ v)(v)

that moreover satisfy limu→0 L(a+ u) = Df(a) and limv→0H(b+ v) = Dg(b).

We therefore obtain the following mean value result:

g(f(a+ u))− g(f(a)) = H(f(a+ u))(f(a+ u)− f(a)) = H(f(a+ u))(L(a+ u)(u));

do note that in the formula above we set v = f(a+ u)− f(a). The limits above tell us that

limu→0H(f(a+ u)) ◦ L(a+ u) = Dg(f(a)) ◦Df(a);

we also invoked the continuity of f .

Now the proof is complete, using Proposition 3.22, if we show that the remainder:

||R(u)|| = ||g ◦ f(a+ u)− [g ◦ f(a) +Dg(f(a)) ◦Df(a)(u)]||
= ||H(f(a+ u))(L(a+ u)(u))−Dg(f(a)) ◦Df(a)(u)||
≤ ||H(f(a+ u)) ◦ L(a+ u)−Dg(f(a)) ◦Df(a)|| · ||u||

satisfies limu→0 ||R(u)||/||u|| = 0, which follows from the limit we computed above.

Remark 3.49. Equation (3.19) expressesD(g◦f)(a) as the matrix multiplication ofDg(f(a))
with Df(a). If you spell out what this means at the level of matrix coefficients, we get the
following expression for the chain rule of the jth directional derivative:

Dj(g ◦ f)(a) =
p∑

i=1

Dig(f(a))Djfi(a).

You will often encounter it in classical notation as well:

∂(g ◦ f)h
∂xj

(a) =

p∑
i=1

∂gh
∂yi

(f(a))
∂fi
∂xj

(a) (3.20)

for 1 ≤ h ≤ q and 1 ≤ j ≤ n. Here we are spelling it out for the hth entry of g ◦ f .
Here x = (x1, . . . , xn) denotes the variables in Rn and y = (y1, . . . , yp) the variables in Rp.
The way to remember it is as follows: in order to differentiate g ◦ f with respect to xj , you
differentiate g with respect to each variable yi and in turn you differentiate each yi = fi(x)
with respect to xj .

Let us provide a proof. The first matrix D(g ◦ f)(a) has entries Dj(g ◦ f)h(a). The second
matrix Dg(f(a)) has entries Digh(f(a)). The third matrix Df(a) has entries Djfi(a). Here
1 ≤ h ≤ q, 1 ≤ i ≤ p and 1 ≤ j ≤ n. Applying matrix multiplication we get the claimed
equations. Note that (g ◦ f)(x) = (g1(f(x)), . . . , gq(f(x))), so (g ◦ f)h = gh ◦ f for all
1 ≤ h ≤ q. △
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3.6.3 The chain rule along a curve

An important special case of the chain rule arises when a function is differentiated “along a curve”.
We already saw continuous curves in Definition 1.16, but from now on we will mostly focus on the
case of:

Definition 3.50. Suppose [a, b] ⊂ R is an interval and U ⊂ Rn is an open subset. If the curve
γ : [a, b] → U is differentiable we can consider its velocity γ′ : [a, b] → Rn. △

We think of γ′(t) ∈ Rn as the direction of motion for γ at time t. In applications we will be mostly
concerned with the case in which γ is C1, so γ′ is continuous and thus itself a path.

Consider now a function g : U → Rp. The composition g ◦ γ : I → Rp is also called the func-
tion g along the curve γ or simply the restriction of g to γ. By differentiating g along γ we mean
differentiating the composition g ◦ γ.

Lemma 3.51. Let U ⊂ Rn be open and I ⊂ R be an interval. Let γ : I → U be a curve in U and
g : U → Rp a function. If γ is differentiable at a point t0 ∈ I and g is differentiable at γ(t0), then
g ◦ γ : I → Rp is differentiable at t0 and it holds that

(g ◦ γ)′(t0) = Dg(γ(t0))(γ
′(t0)) = Dγ′(t0)g(γ(t0)). (3.21)

I.e. (g ◦ γ)′(t0) is the directional derivative of g along γ′(t0) at γ(t0).

Proof. From the chain rule for the total derivative (Theorem 3.48) it follows that g ◦ γ is totally
differentiable at t0, with derivative

D(g ◦ γ)(t0) = Dg(γ(t0)) ◦Dγ(t0).

Applying both sides to the element e1 = 1 ∈ R now leads, in view of Lemma 3.25, to the formula
(3.21).

In the case p = 1, g is a scalar function and the formula (3.21) can then be rewritten as

(g ◦ γ)′(t0) =
n∑

j=1

∂g

∂xj
(γ(t0))γ

′
j(t0). (3.22)

As an example of how these computations look in practice, consider the following observations

Lemma 3.52. Let I ⊂ R be an open interval, t0 ∈ I and n ≥ 1. Suppose the function h : In → R
is differentiable at (t0, . . . , t0). Then

d

dt
h(t, t, . . . , t)

∣∣∣∣
t=t0

=

n∑
j=1

d

dt
h(t0, . . . ,

(j)

t , . . . , t0)

∣∣∣∣
t=t0

.

Proof. The map γ : I → U given by t 7→ (t, t, . . . , t) is differentiable, with constant derivative

γ′(t) = (1, 1, . . . , 1), t ∈ I.

From (3.21) and (3.22), with h instead of g, we deduce that

d

dt
h(t, t, . . . , t)

∣∣∣∣
t=t0

= Dh(γ(t0))(γ
′(t0)) =

n∑
j=1

Djh(t0, . . . , t0).

58



The proof is completed by noting that

Djh(t0, . . . , t0) =
d

dt
h(t0, . . . ,

(j)

t , . . . , t0)

∣∣∣∣
t=t0

.

Remark 3.53. Conversely, the chain rule for total differentiation (Remark 3.49) can be derived
from the above sum rule. In the setting of Theorem 3.48, the components of the composed function
g ◦ f are given by

(g ◦ f)h(x) = gh (f1 (x1, . . . , xj , . . . , xn) , . . . , fp (x1, . . . , xj , . . . , xn)) .

The partial derivative at a with respect to the j-th variable is now given by

∂gh(f(x))

∂xj

∣∣∣∣
x=a

=
d

dt

∣∣∣∣
t=aj

gh

(
f1

(
a1, . . . ,

(j)

t . . . , an

)
, . . . , fp

(
a1, . . . ,

(j)

t , . . . , an

))
By applying the sum rule (with t0 = aj) we find

∂gh(f(x))

∂xj

∣∣∣∣
x=a

=
n∑

i=1

d

dt

∣∣∣∣
t=aj

gh

(
f1 (a) , . . . , fi

(
a1, . . . ,

(j)

t , . . . , an

)
, . . . , fp (a)

)
.

By applying the one-variable chain rule we see that the i-th term of the above sum is equal to

∂gh(y)

∂yi

∣∣∣∣
y=f(a)

∂fi(x)

∂xj

∣∣∣∣
x=a

.

This again leads to the formula (3.20) and shows that the sum rule is equivalent to the chain rule. The
above also provides another way of looking at the chain rule. △
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4 Higher derivatives

In the previous chapter we encountered C1 functions f : U ⊂ Rn → Rm, i.e. functions such that
Df : U → Lin(Rn,Rm) is continuous. Naturally, if Df is differentiable, we can in turn consider its
(first order) partial derivatives, which will be the second order partial derivatives of f itself. One may
then continue taking further derivatives.

Studying these higher derivatives is the purpose of this chapter. Concretely, we will:

• Show that the order of differentiation does not matter, if f is sufficiently nicely behaved (The-
orem 4.5).

• State the sum, product, and composition rules for higher derivatives (Propositions 4.3 and 4.4).

• Introduce the higher order total derivatives and show that they are homogeneous polynomials
(Proposition 4.10).

• Introduce higher order Taylor polynomials and prove the Taylor formula with remainder (The-
orem 4.20).

• Give a sufficient criterion guaranteeing that a critical point is a local maximum/minimum, in
terms of second derivatives (Theorem 4.29).

4.1 Higher partial derivatives

Let us fix an open subset U ⊂ Rn. Inductively on the regularity k, we define:

Definition 4.1. A function f : U ⊂ Rn → Rp is k times continuously differentiable if f is C1

and the total derivative Df : U → Lin(Rn,Rp) is a Ck−1 function. One also says that f is a Ck

function. △

Observe that Df is made out of the columns Djf : U → Rp, as j ranges from 1 to n. This means
that Df is Ck−1 if and only if each of the Djf is Ck−1. Dually, Df has the covectors Dfi as its
rows, so Df being Ck−1 is equivalent to all the Dfi being Ck−1.

The set of all Ck functions U → Rp is denoted by Ck(U,Rp). Furthermore, one writes Ck(U) for
Ck(U,R). Note that for all 1 ≤ l ≤ k it holds that Ck(U,Rp) ⊂ C l(U,Rp).

Definition 4.2. A function f : U → Rp is said to be infinitely differentiable, or smooth, or C∞ if
f is a Ck function for every k ∈ N. △

The space of smooth functions is denoted by C∞(U,Rp). Note that C∞(U,Rp) = ∩k∈NC
k(U,Rp).

For f ∈ Ck(U,Rp) and any choice of indices j1, . . . , jk with 1 ≤ ji ≤ n, we define the iterated or
mixed partial derivative inductively by

DjkDjk−1
. . . Dj1f := Djk

(
Djk−1

. . . Dj1f
)
.

Classically, this is also denoted as
∂kf(x)

∂xjk ∂xjk−1
. . . ∂xj1

.

By repeated application of Proposition 3.7 it follows that:
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Proposition 4.3. If f, g ∈ Ck(U,Rp), then f + g is also Ck. In particular, Ck(U,Rp),
equipped with pointwise addition and scalar multiplication, is a real vector space.
Consider then h ∈ Ck(U,R). Then fh is also Ck. If moreover h(x) ̸= 0 for every x ∈ U then
1/h ∈ Ck(U,Rp).

By the same reasoning, but using instead the chain rule (Theorem 3.48):

Proposition 4.4. Fix U ⊂ Rn and V ⊂ Rp open sets and f ∈ Ck(U, V ) and g ∈ Ck(V,Rq).
Then g ◦ f ∈ Ck(U,Rq).

Both statements are left to the reader. They follow by applying induction on k.

4.2 Switching in the order of differentiation

The following is a crucial result about the behaviour of higher partial derivatives. It tells us that it does
not matter in which order we differentiate, only how many times we differentiate in each variable:

Theorem 4.5. SupposeU ⊂ Rn is an open subset. Fix a function f ∈ Ck(U,Rp), a collection
of indices j1, . . . , jl with l ≤ k and 1 ≤ ji ≤ n, and a permutation σ of the set {1, . . . , l}.
Then:

Djl . . . Dj1f = Djσ(l)
. . . Djσ(1)

f.

Before we get to the proof, let us discuss some of its consequences. Since the order of differentiation
does not matter for a Ck-function, it makes sense to perform derivatives respecting the order of the
variables. This means that each expression Djl . . . Dj1f , with l ≤ k, can be uniquely written as

Dα1
1 . . . Dαn

n f =
∂lf

∂xα1
1 . . . ∂xαn

n
, (4.1)

where αj is the number of times that the differentiation Dj appears in the sequence Djl . . . Dj1 .
Equivalently:

αj = #{i ∈ {1, . . . , l} | ji = j}.

In particular αj = 0 means that the differentiation Dj does not appear in the sequence. Do note that
l = α1 + · · ·+ αn must hold.

You can thus see that α = (α1, . . . , αn) is a multi-index (Definition 2.62) of order l. We will
henceforth also notate (4.1) as:

Dαf =
∂|α|f

∂xα

and we will say that Dα is a differential operator of order l.

Now we address the proof of Theorem 4.5. It can be reduced, via induction, to studying the case in
which there are two variables and we differentiate once in each.

Proposition 4.6. Let V ⊂ R2 be an open subset, and let f : V → R be a partially differentiable
function. Let a ∈ V , and suppose the following conditions hold:

(a) D1f is partially differentiable with respect to the second variable;

(b) D2f is partially differentiable with respect to the first variable;
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(c) The mixed partial derivatives D2D1f and D1D2f are continuous at a.

Then
D1D2f(a) = D2D1f(a). (4.2)

 

Athene Atk
t

tikt

1

A sch Athie

Figuur 6: Figure for the proof of Proposition 4.6.

Proof. Since V is open, there exists δ > 0 such that B(a; 2δ) ⊂ V . For h = (h1, h2) ∈ R2 with
|h1|, |h2| < δ, we have a+ h ∈ B(a; 2δ) ⊂ V . For such h with nonzero components h1, h2, define:

Q(h) =
f(a+ h)− f(a+ h1e1)− f(a+ h2e2) + f(a)

h1h2
, (4.3)

where a+ h1e1 = (a1 + h1, a2) and a+ h2e2 = (a1, a2 + h2).

The idea of the proof is to show that Q satisfies:

lim
h→0

Q(h) = D2D1f(a). (4.4)

Moreover, you should notice that the first and second variables in the definition of Q play symmetric
roles. The assumptions (a)-(c) are also symmetric in the two variables. As such, the same proof will
also apply with the order of the partial derivatives swapped. Hence:

lim
h→0

Q(h) = D1D2f(a). (4.5)

By the uniqueness of limits, (4.4) and (4.5) together will imply (4.2).

Let us establish (4.4). For h2 ̸= 0, introduce the auxiliary function vh2 : (a1 − δ, a1 + δ) → R given
by

vh2(s) :=
f(s, a2 + h2)− f(s, a2)

h2
.

It is easy to check that for 0 < |h1|, |h2| < δ:

Q(h) =
vh2(a1 + h1)− vh2(a1)

h1
.
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The function vh2 is differentiable with derivative

v′h2
(s) =

D1f(s, a2 + h2)−D1f(s, a2)

h2
.

Applying the mean value theorem in one variable, there exists a number s(h) between a1 and a1+h1
such that

Q(h) = v′h2
(s(h)) =

D1f(s(h), a2 + h2)−D1f(s(h), a2)

h2
.

Applying the mean value theorem again to the differentiable function

φ : (a2 − δ, a2 + δ) → R, t 7→ D1f(s(h), t),

we obtain a number t(h) between a2 and a2 + h2 such that

Q(h) = φ′(t(h)) = D2D1f(s(h), t(h)). (4.6)

From the above, we have

∥(s(h), t(h))− (a1, a2)∥ ≤ |s(h)− a1|+ |t(h)− a2| ≤ |h1|+ |h2|,

which implies that limh→0(s(h), t(h)) = (a1, a2) = a. Combining this with the continuity of
D2D1f at a, the substitution rule for limits applied to (4.6) yields (4.4).

Proof of Theorem 4.5. Since every permutation can be written as a composition of adjacent trans-
positions, it suffices to prove this result for l = 2 and σ being the adjacent transposition (12). The
desired formula then becomes

Dj2Dj1f = Dj1Dj2f.

This equality is evident if j1 = j2. Therefore, we may assume 1 ≤ j1 < j2 ≤ n. Fix a ∈ U and
choose δ > 0 such that B(a; δ) ⊂ U . Let B(δ) denote the open ball in R2 with center (aj1 , aj2) and
radius δ. Define φ : B(δ) → Rp by

φ(s, t) := f(a1, . . . , aj1−1, s, aj1+1, . . . , aj2−1, t, aj2+1, . . . an).

Then φ is a C2 function on B(δ) while

D1D2φ(aj1 , aj2) = Dj1Dj2f(a),

D2D1φ(aj1 , aj2) = Dj2Dj1f(a).

The mixed partial derivatives on the left-hand side are equal by Proposition 4.6. This yields the
desired identity.

4.3 Higher order total derivatives

In first order, we defined partial derivatives, then we observed that one can, more generally, consider
directional derivatives and, lastly, we introduced the total derivative. The expression Df(x)(v) =
Dvf(x) told us that the total derivative Df(x) is the unique linear map that collects all directional
derivatives.

We can proceed in the exact same way in higher order.
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4.3.1 Higher directional derivatives

Definition 4.7. Consider an open U ⊂ Rn, a vector v ∈ Rn, and a Ck function f : U → Rp. Its
kth directional derivative in direction v is defined as:

(Dv)
kf := Dv(Dv(· · ·Dvf)) : U → Rp. △

The study of these higher directional derivatives reduces to one variable, as the following lemma
shows:

Lemma 4.8. Consider an open U ⊂ Rn, a point a ∈ U , and a vector v ∈ Rn. Suppose that
[a, a+ v] ⊂ U . Then for all f ∈ Ck(U,Rp), the function φ : [0, 1] → Rp defined by t 7→ f(a+ tv)
is Ck. Moreover:

dkφ

dtk
(t) = (Dv)

kf(a+ tv). (4.7)

Proof. We prove this by induction on k. For k = 0 the result is clear. Let k ≥ 1 and assume that
the result has already been proven for strictly smaller values of k. Then φ is a Ck−1 function, and

φ(k−1)(t) = F (a+ tv) with F := (Dv)
k−1f.

Now F : U → Rp is a C1 function on U . By the definition of the directional derivative, φ(k−1) is
differentiable on [0, 1] with derivative

d

dt
φ(k−1)(t) =

d

ds
F (a+ (t+ s)v)

∣∣∣∣
s=0

= DvF (a+ tv).

It follows that φ ∈ Ck([0, 1],Rp) and that (4.7) holds.

4.3.2 Higher order total derivatives

Now we can ask ourselves whether the higher directional derivatives (Dv)
kf , for varying v, can be

packaged in a single object. The higher total derivatives are defined to be the unique polynomial
maps that do this:

Definition 4.9. Let U ⊂ Rn be an open subset. Consider a function f ∈ Ck(U,Rp). Its kth order
total derivative is the function Dkf : U → Polk(Rn,Rp) defined by:

Dkf(x)(v) := (Dv)
kf(x). △

The claim that Dkf takes values in pure polynomials follows once we spell out its definition:

Proposition 4.10. Let U ⊂ Rn be open and f ∈ Ck(U,Rp). Then for every direction v ∈ Rn

we have

Dkf(x)(v) =

n∑
i1=1

· · ·
n∑

ik=1

Di1 · · ·Dikf(x)vi1 · · · vik .

In particular, Dkf(x) is a pure polynomial of order k.

64



Proof. For every function g ∈ C1(U,Rp) and point y ∈ U , the directional derivative reads:

Dvg(y) = Dg(y)(v) =
n∑

j=1

vjDjg(y).

By applying this repeatedly we find that

(Dv)
kf = (v1D1 + · · · vnDn)

kf =

n∑
i1=1

· · ·
n∑

ik=1

vi1Di1 · · · vikDikf.

This formula can be rewritten in terms of multi-indices α = (α1, · · · , αn). For this, we need the
notation α! := α1! · · ·αn!. Then:

Lemma 4.11. Let U ⊂ Rn be open and f ∈ Ck(U,Rp). Then for every point x ∈ U and vector
v ∈ Rn we have

Dkf(x)(v) =
∑
|α|=k

k!

α!
Dαf(x)vα.

Proof. This result is purely combinatorial. It amounts to applying Proposition 4.10 and counting
how many times each multi-index α = (α1, · · · , αn) shows up. Namely, we want to count how many
choices i1, · · · , ik there are such that Di1 · · ·Dik = Dα = Dα1

1 · · ·Dαn
n . We claim that it is k!

α! .

Write F for the collection of tuples I = (i1, · · · , ik) of indices associated to the multi-index α. We
consider the action of the permutation group Sk on F given by

σ · I := I ◦ σ−1 (I ∈ F , σ ∈ Sk).

Observe that any two elements in F are related by some σ. Write I0 ∈ F for the unique tuple in
which the ij appear ordered (i.e. it begins with α1 ones, then α2 twos, and so on). The stabilizer
Sα of I0 is the subgroup Sα1 × · · · × Sαn ↪→ Sk. It follows that its size is #Sα = α!. By the
stabilizer-subgroup theorem from group theory, the map Sk → F given by σ 7→ σ · I0 induces a
bijection Sk/Sα ≃ F , concluding the proof.

Remark 4.12. In the above, the number of elements of F can also be found as follows. An element
I of F can be described by n successive choices. First, we choose a subset of α1 elements from
{1, · · · , k}; there are

(
k
α1

)
:= k!/α1!(k − α1)! choices. Next, we choose a subset of α2 elements

from {1, · · · , k − α1}; the number of choices is
(
k−α1

α2

)
. The l-th choice is that of αl elements from

the collection {1, · · · , k − α1 − · · · − αl−1}. In total, the number of possible choices is(
k

α1

)(
k − α1

α2

)
· · ·
(
k − (α1 + · · ·+ αn−1)

αn

)
=

k!

α1!(k − α1)!

(k − α1)!

α2!(k − α1 − α2)!
· · · (k − (α1 + · · ·+ αn−1))!

αn!0!

=
k!

α1! . . . αn!
=
k!

α!
.

△

Lemma 4.8 can also be spelled out in terms of multi-indices:
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Corollary 4.13. Let U ⊂ Rn be open and convex, and f : U → Rp a Ck-function. Then for any
pair a, x ∈ U , the function φ : [0, 1] → Rp defined by

φ(t) = f(a+ t(x− a)) (4.8)

is Ck with k-th order derivative given by

1

k!

dkφ

dtk
(t) =

∑
|α|=k

1

α!
Dαf(a+ t(x− a)) · (x− a)α (4.9)

for 0 ≤ t ≤ 1.

Proof. Write v = x − a. Then [a, a + v] ⊂ U and φ(t) = f(a + tv). According to Lemmas 4.8
and 4.11, φ is a Ck function, and

1

k!

dkφ

dtk
(t) =

∑
|α|=k

1

α!
Dαf(a+ tv) · vα.

By substituting v = x− a, we obtain (4.9).

4.3.3 Hessian and symmetry

We saw in Proposition 4.10 that the kth total derivative Dkf(x) at a point x is a pure polynomial
of order k. In particular, D2f(x) is a pure polynomial of second order, i.e., a quadratic form. This
means (Lemma 2.41) that we can think of it as a bilinear map. In the particular case of functions with
values in R, it has a special name and we can see it as a square matrix:

Definition 4.14. Let U ⊂ Rn be open and f : U → R a C2 function. Then for every a ∈ U , the
Hessian of f at a is defined as the following n× n matrix:

Hf (a) = (DjDif(a))1≤i,j≤n. △

From Theorem 4.5 it follows that:

Corollary 4.15. The Hessian Hf (a) is a symmetric matrix.

We will often write
v 7→ vtHf (a)v = ⟨Hf (a)v, v⟩ = D2f(a)(v)

to indicate that we are seeing the matrix Hf (a) as a quadratic form with input v (or as a bilinear form
with v plugged in twice).

Example 4.16. Consider the function f : R2 → R defined by

f(x, y) = x2 + xy + y2 + x+ y.

We haveDf(x, y) = (2x+y+1, 2y+x+1). From this, by computing the second order derivatives,
we get

Hf (x, y) =

(
2 1
1 2

)
,

for all x, y ∈ R2. △
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Example 4.17. Consider the function f : R2 → R defined by

f(x, y) = x2 + y2 + exy.

By direct computation, we find

D1D1f(x, y) = 2 + y2exy, D2D2f(x, y) = 2 + x2exy, D1D2f(x, y) = exy(1 + xy).

Thus,

Hf (x, y) =

(
2 + y2exy exy(1 + xy)
exy(1 + xy) 2 + x2exy

)
,

(note that D1D2f = D2D1f ). △

4.4 Higher order Taylor polynomials

In Subsection 3.3.2 we developed the theory of the first order Taylor polynomial. We can work out
the higher order case using higher total derivatives.

Definition 4.18. Let U ⊂ Rn be an open subset. Given a function f ∈ Ck(U,Rp) and a point
a ∈ U we define the order-k Taylor polynomial P k

a (f) ∈ Pol≤k(Rn,Rp) using the expression:

P k
a (f)(a+ v) :=

∑
0≤l≤k

1

l!
Dlf(a)(v) =

∑
|α|≤k

1

α!
Dαf(a) · vα.

The corresponding remainder term R ∈ Ck(U,Rp) is therefore given by the expression:

R(x) = f(x)− P k
a (f)(x). △

Do note that we are defining the remainder R as a function of x. This is a (non-important) difference
compared to the first order case (Definition 3.22), where R was expressed as a function of h, with
x = a+ h.

Our goal in this subsection is to establish the Taylor formula with remainder. It will tell us that P k
a (f)

is the best kth order polynomial approximation of f at a. Before we do so, and with this idea in mind,
we observe that polynomial functions interact with Taylor polynomials as one may expect:

Lemma 4.19. Let P : Rn → Rp be a polynomial of order at least k. Fix a point a ∈ Rn. Then:

P (x) =
∑
|α|≤k

1

α!
Dαp(a) · (x− a)α.

That is, P is its own Taylor polynomial P k
a (f).

Proof. From the fact that P is polynomial it follows that the translation Tap : v 7→ p(a+ v) is also
polynomial (Proposition 2.61). Hence, there exist coefficients cα ∈ R such that

p(a+ v) =
∑
|α|≤k

cα · vα.

By substituting v with x− a we deduce that

p(x) =
∑
|α|≤k

cα · (x− a)α.
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We write pα for the monomial x 7→ (x− a)α. If β is a multi-index we note that

Dβpα

∣∣∣
x=a

=

{
0 if α ̸= β
β! if α = β

This is easy to see by writing pα(x) = (x − a)α as the product of factors qj(x) = (xj − aj)
αj and

by writing Dβ as a composition of Dβj

j . Then it turns out that

Dβpα =
n∏

j=1

D
βj

j (qj) =
n∏

j=1

δβjαj
= δαβ,

where the last expression denotes the Kronecker symbol. From this remark it follows that

Dβp(a) = β! cβ,

for each |β| ≤ k and thus the statement.

We can now formulate and prove the kth order Taylor theorem with remainder.

Theorem 4.20. Let U ⊂ Rn be an open convex set and a ∈ U a point. Let f ∈ Ck+1(U).
Then, for each x ∈ U , the remainder in the expression

f(x) = P k
a (f)(x) +R(x),

can be computed as

R(x) =
∑

|α|=k+1

1

α!
Dαf(ξx) · (x− a)α, (4.10)

for some ξx ∈ [a, x]. Equivalently:

R(x) =
1

(k + 1)!
Dk+1f(ξx)(x− a). (4.11)

Proof. Define φ : [0, 1] → R by φ(t) := f(a + tv) with v = x − a. According to Corollary 4.13,
the function φ belongs to Ck+1([0, 1]). By the Taylor theorem with remainder for functions of one
variable, for every t ∈ [0, 1] we have

φ(t) =
k∑

j=0

1

j!
φ(j)(0)tj + ρ(t),

where the remainder is given by

ρ(t) =
1

(k + 1)!
φ(k+1)(τ)tk+1,

for some τ ∈ [0, t]. Using Corollary 4.13 and taking t = 1 we find that

f(x) = f(a+ (x− a)) = p(x) +R(x),

where

p(x) =
k∑

j=0

∑
|α|=j

1

α!
Dαf(a) · (x− a)α = P k

a (f)(x)

and
R(x) =

1

(k + 1)!
φ(k+1)(a+ τx(x− a))

for some τx ∈ [0, 1]. This yields the claim with ξx := a+ τx(x− a) ∈ [a, x].
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Do note that the theorem is phrased for functions with values in R. However, it can be applied
component by component to deduce:

Proposition 4.21. Let U ⊂ Rn be an open convex set and a ∈ U . Let f ∈ Ck+1(U,Rp).
Then, for each x ∈ B(a; δ) ⊂ U , the remainder in the expression

f(x) = P k
a (f)(x) +R(x)

satisfies
|R(x)| ≤M∥x− a∥k+1,

for some constants δ > 0 and M > 0 such that B(a; δ) ⊂ U .

Proof. Write f = (f1, · · · , fp) for the components of f . Apply Theorem 4.20 to each of them, so
the remainder Ri of fi is computed at an intermediate point τ ix ∈ [a, x].

Choose δ > 0 such that B̄(a; δ) ⊂ U . The functions Dαfi are continuous on the closed and bounded
set B̄(a; δ). Therefore, there exists a C > 0 such that for each α with |α| = k + 1 and all i we have
|Dαfi| ≤ C on B̄(a; δ). For x ∈ B(a; δ) we have τ ix ∈ [a, x] ⊂ B(a; δ), so

|Ri(x)| ≤
∑

|α|=k+1

1

α!
C |(x− α)α|.

As such, it is enough if we set

M := pC
∑

|α|=k+1

1

α!
.

These results can be particularised to the cases of low order. For first order, the Hessian enters the
computation of the remainder:

Corollary 4.22 (First order Taylor formula with remainder). Let U ⊂ Rn be a convex open set and
a ∈ U . Let f : U → R be a C2 function. Then, for every x ∈ U , there exists a ξ = ξx ∈ (a, x) such
that

f(x) = f(a) +Df(a)(x− a) + (x− a)tHf (ξ)(x− a). (4.12)

For second order we have, analogously:

Corollary 4.23. Let U ⊂ Rn be a convex open set and a ∈ U . Let f : U → R be a C3 function.
Then, for every x ∈ U , we have

f(x) = f(a) +Df(a)(x− a) + (x− a)tHf (a)(x− a) +R(x), (4.13)

where there exists a 0 < τx < 1 such that

R(x) =
1

3!

d3

dt3
f(a+ t(x− a))

∣∣∣∣
t=τx

. (4.14)

In particular:
lim
x→a

∥x− a∥−2R(x) = 0.

We close this subsection with our original claim: the Taylor polynomial is the (unique!) best approxi-
mation of order k.
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Exercise 4.24. Fix a function f ∈ Ck(U). Prove that the Taylor polynomial P k
a (f) is the unique

polynomial p ∈ Pol≤k(Rn) satisfying the property

||f(x)− p(x)|| ≤ C.||x− a||k+1

for all x ∈ B(a, δ) ⊂ U , for some C > 0 and δ > 0. △

Hint: By construction, P k
a (f) is the unique polynomial p ∈ Pol≤k(Rn) satisfying

Dαf(a) = Dα(p)(a)

for each multi-index with |α| ≤ k. As such, every other polynomial q differs from f in some
derivative. You can use this to find a direction (x − a) in which the difference ||f(x) − q(x)|| has
order ||x− a||i, with i ≤ k.

4.5 Critical points and Hessian

We close this chapter with a discussion of critical points (recall Definition 3.32). Concretely, we will
relate their nature to the behaviour of the Hessian. This is analogous to the corresponding pheno-
menon in one variable, where non-vanishing second derivatives imply that a critical point is a local
maximum/minimum.

4.5.1 Reminder: the case of one-variable

Lemma 4.25. Let I ⊂ R be an interval and f : I → R a differentiable function. Then the following
hold:

(a) f is non-decreasing if and only if f ′(x) ≥ 0 for all x ∈ I ,

(b) f is strictly monotonically increasing if f ′ > 0 on inw(I),

(c) f is non-increasing if and only if f ′(x) ≤ 0 for all x ∈ I ,

(d) f is strictly monotonically decreasing if f ′ < 0 on inw(I).

Proof. Since (c) and (d) follow by applying (a) and (b) to −f , we can restrict ourselves to (a) and
(b). We start with (a).

Assume that f is monotonically increasing on I and let a ∈ I . First, assume that a is not a right
endpoint of the interval. Then there exists δ > 0 such that [a, a + δ) ⊂ I . Then for all 0 < h < δ,
a + h ∈ I , so f(a + h) ≥ f(a), hence [f(a + h) − f(a)]/h ≥ 0. Taking the limit as h ↓ 0 gives
f ′(a) ≥ 0.

If a is a right endpoint, then it is not a left endpoint, so there exists δ > 0 such that (a − δ, a) ⊂ I .
Then for −δ < h < 0, f(a+ h)− f(a) ≤ 0, so [f(a+ h)− f(a)]/h ≥ 0. Taking the limit as h ↑ 0
now gives f ′(a) ≥ 0.

Now assume that f ′ ≥ 0 on I and let x, y ∈ I with x < y. Then by the mean value theorem,
f(y)− f(x) = f ′(ξ)(y− x) for some ξ ∈ [x, y] ⊂ I . Since f ′(ξ) ≥ 0 and y− x > 0, it follows that
f(y)− f(x) ≥ 0. Hence f is non-decreasing. This proves (a).

We prove (b). Let the condition hold and let x, y ∈ I with x < y. By the mean value theorem, there
exists ξ ∈ (x, y) such that f(y)−f(x) = f ′(ξ)(y−x). Since f ′(ξ) > 0, we find that f(y)−f(x) > 0.
Hence f is strictly monotonically increasing.
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Lemma 4.26. Let f : (a, b) → R be a twice continuously differentiable function. Fix a point
c ∈ (a, b) with f ′(c) = 0 and f ′′(c) ̸= 0. Then the following holds:

(a) If f ′′(c) > 0, then f has a local minimum at c;

(b) If f ′′(c) < 0, then f has a local maximum at c.

In any case, the function f has a local extremum at c.

Proof. We show (a). Claim (b) follows by applying (a) to the function −f .

From the continuity of f ′′ it follows that there exists δ > 0 with I := (c − δ, c + δ) ⊂ (a, b) such
that f ′′(x) > 0 for all x ∈ I . By applying Lemma 4.25 (b) to f ′ instead of f , it follows that f ′ is
strictly monotonically increasing on I . In particular, f ′ < 0 on (c − δ, c) and f ′ > 0 on (c, c + δ).
By applying Lemma 4.25 (d) and (b), we conclude that f is strictly monotonically decreasing on
(c − δ, c] and strictly monotonically increasing on [c, c + δ). Hence f(x) > f(c) for x ∈ (c − δ, c)
and for x ∈ (c, c+ δ). This proves (a).

Remark 4.27. From the above proof it follows the stronger statement that the local extremum c is
isolated in the sense that there exists δ > 0 such that I := (c− δ, c+ δ) ⊂ (a, b) and f |I has no other
local extremum than c. △

We give an alternative proof of Lemma 4.26 using the Taylor theorem with remainder. We will follow
a similar approach for the case of multiple variables.

Proof of Lemma 4.26. We first show (a). Let x ∈ (a, b). Then, by the Taylor theorem with remain-
der, there exists ξ = ξx between c and x such that

f(x) = f(c) +
1

2
f ′′(ξ)(x− c)2.

Here we have used f ′(c) = 0, so the first order term is zero. From the continuity of f ′′ it follows that
there exists δ > 0 such that (c− δ, c+ δ) ⊂ (a, b) and for all ξ ∈ (c− δ, c+ δ) we have f ′′(ξ) > 0.
For x ∈ (c− δ, c+ δ) with x ̸= c, it follows that

f(x)− f(c) =
1

2
f ′′(ξx)(x− c)2 > 0.

Hence, f has a local minimum at c. Claim (b) follows by applying (a) to the function −f .

4.5.2 The multivariate case

The first part of the proof goes exactly the same in the multivariate case:

Lemma 4.28. Let U ⊂ Rn be open and f : U → R a C2 function. Let a ∈ U and assume
that the Hessian Hf (a) is positive definite. Then there exist constants m > 0 and δ > 0 such that
B(a; δ) ⊂ U and for all x ∈ B(a; δ) and all v ∈ Rn:

⟨Hf (x)v, v⟩ ≥ m∥v∥2.

Proof. First, compare this lemma to Proposition 2.84. The idea is that, since Hf (a) is positive
definite, Hf (x) is also positive definite for all x ∈ B(a; δ) if δ is sufficiently small. Then, the bound
of Proposition 2.84 applies to all such Hf (x) at once.
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Instead of invoking Proposition 2.84, it is easier to do the proof from scratch, following the same
steps as in the analytic proof of Proposition 2.84. First, note that there is some δ0 > 0 such that
B(a; δ0) ⊂ U . Suppose then that the claim is false. Then for every δ < δ0 and every integer k ≥ 1,
there exists x ∈ B(a; δ) and v ∈ Rn such that

⟨Hf (x)v, v⟩ <
1

k
∥v∥2.

Note that this inequality implies v ̸= 0, so by replacing v with v/∥v∥ we see that such a v can also
be found in the unit sphere S = {y ∈ Rn | ∥y∥ = 1}.

By taking δ = 1
k , we find xk ∈ B(a; 1k ) and vk ∈ S such that

⟨Hf (xk)vk, vk⟩ <
1

k
.

The sequence (vk) is contained in the set S, which is closed and bounded in Rn, hence sequentially
compact. Therefore, (vk) has a convergent subsequence (vkj ) with a limit v ∈ S. In particular,
v ̸= 0. We have xkj → a as j → ∞. By continuity of the matrix elements of Hf , Hf (a) =
limj→∞Hf (xkj ). Hence,

⟨Hf (a)v, v⟩ = lim
j→∞

〈
Hf (xkj )vkj , vkj

〉
≤ lim

k→∞

1

k
= 0,

a contradiction with the fact that Hf (a) was positive definite.

Finally, we get to the result:

Theorem 4.29. Let U ⊂ Rn be open and f ∈ C2(U). Let a ∈ U be a critical point of f and
assume that the Hessian Hf (a) is positive (resp. negative) definite. Then there exist constants
δ > 0 and c > 0 such that B(a; δ) ⊂ U and for all x ∈ B(a; δ):

f(x) ≥ f(a) + c∥x− a∥2 (resp. f(x) ≤ f(a)− c∥x− a∥2).

In particular, f has a local minimum (resp. maximum) at a.

Proof. It suffices to prove this in the case where Hf (a) is positive definite (replacing f by −f gives
the other case).

Since a is a critical point, Df(a) = 0. By the previous lemma, there exists δ > 0 such thatB(a; δ) ⊂
U andHf (x) is positive definite for all x ∈ B(a; δ). For x ∈ B(a; δ), [a, x] ⊂ B(a; δ). By the Taylor
formula with remainder (4.12) we get:

f(x)− f(a) = (x− a)tHf (a+ τx(x− a))(x− a) ≥ m

2
∥x− a∥2.

Example 4.30. Consider the function f from Example 4.16. From the computed total derivative,
(x, y) is a stationary point of f if and only if 2x+ y + 1 = 0 and x+ 2y + 1 = 0. These equations
have the unique solution (1/3, 1/3). Hence this is the only stationary point of f . For the Hessian:

H = Hf (
1
3 ,

1
3) =

(
2 1
1 2

)
.

Since detH = 4− 1 = 3 > 0 and H11 = 2 > 0, H is positive definite (Lemma 2.45). By Propositie
4.29, f has a local minimum at (1/3, 1/3). △
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Example 4.31. Consider the function f(x, y) = x2 + y2 + exy : R2 → R from Voorbeeld 4.17.
It is easy to check that (0, 0) is a stationary point of f . Recall the previously found formula for the
Hessian:

H = Hf (0, 0) =

(
2 1
1 2

)
.

Since this Hessian is positive definite, Proposition 4.29 implies that f attains a local minimum at
(0, 0). △

Exercise 4.32. Show that in the example above, (0, 0) is the only local extremum. △

Exercise 4.33. Let U ⊂ R2 be open and f ∈ C2(U). Assume that a ∈ U is a critical point of f ,
and that detHf (a) < 0. Show that f has no local extremum at a. Hint: Use Proposition 2.45 to find
two directions, one along which f increases, and another one along which it decreases. △
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5 Introduction to the multivariate Riemann integral

We have developed the theory of differentiation in multiple variables, so the natural next step is to
look into the theory of integration. It turns out that this is a subtle story and in this course we will
only be able to develop part of it. Before we state the main results, let us provide a general discussion
so you are aware of the ideas that come into play (both in this and in later courses).

5.1 Opening discussion

Consider an open U ⊂ Rn and the usual coordinates (x1, · · · , xn). Given a function f : U → R it is
natural for us to consider the integral ∫

U
f(x)dx1 · · · dxn,

which we would want to define so that it is the “(n + 1)-dimensional volume” under the graph of f
(much like the usual integral in one variable computes the area under the graph).

It turns out that in higher dimensions this is not the only type of integral you can consider. In Chapter
7 we will study instead line integrals; i.e. integrals of covector fields along paths in U . The way
to think about it is that f(x)dx1 · · · dxn is a gadget that can be integrated over the whole of U ,
which is n-dimensional, whereas a covector field is a gadget that integrates over paths, that are 1-
dimensional. There are other intermediate objects, called differential k-forms, that can be integrated
over k-dimensional objects in U (so-called submanifolds, to be introduced in Chapter 6). We will not
study differential forms in general in this course; you will see them in Analyse in meer variabelen
and/or Differentieerbare varieteiten.

Let us go back to integrals of functions, which is the focus of this chapter. The question is how to
define such a thing. A reasonable approach is to repeat what we did for the Riemann integral in
one variable. We can cover U by n-dimensional hypercubes and consider “step” functions that are
constant on each hypercube. Integrating those is easy (just take the hypervolume of each hypercube,
scale it by the value of the function there, and add it all up). This will allow us to define an “upper
Riemann sum” (consider all such functions, larger than f , and take the infimum of their integrals)
and a “lower Riemann sum” (consider all such functions, now smaller than f , and take the supremum
of integrals). If these two agree, we say that the result is∫

U
f(x)dx1 · · · dxn.

Of course, now one would have to prove that this always exists under some conditions (for instance,
if f is continuous).

In this chapter we will follow a different approach, that will save us a lot of work:

Definition 5.1. Consider an open U ⊂ Rn, a hypercube C =
∏n

i=1[ai, bi] ⊂ U , and a continuous
function f : C → Rp. The (Riemann) integral of f over C is∫

C
f(x)dx1 · · · dxn :=

∫ bn

an

· · ·
∫ b1

a1

f(x1, · · · , xn)dx1 · · · dxn. △

That is, we can integrate “one variable at a time”. This reduces the computation of higher-dimensional
integrals to computing n integrals of one variable. Our goal in this chapter is to the prove the follo-
wing results:
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• We will prove (Theorem 5.12) that integrating a continuous function f(x1, · · · , xn) with res-
pect to the first variable yields a function F (x2, · · · , xn) =

∫ b1
a1
f(x1, · · · , xn)dx1 that is still

continuous. This means that we can keep integrating with respect to the other variables and
thus shows that Definition 5.1 is actually well-defined.

• We will prove that the order of integration does not matter (Theorem 5.25). That is, we could
have started integrating with the last variable and got the same result.

• We will relate integration to differentation, establishing the so-called “differentiation under the
integral sign” theorem (Theorem 5.21).

• Before we get to these more involved results we will review the theory of vector valued integrals
for functions of one variable (Subsection 5.2).

There are a couple of things that we will not do and that you will encounter in later courses. First,
we will only learn about integrating over hypercubes. This is not a great loss of generality, in fact. In
Analyse in meer variabelen and/or Differentieerbare varieteiten you will see that one can use this to
handle general opensU by expressing any f as a sum of functions fi that are supported on hypercubes
(i.e. there is hypercube Ci such that fi = 0 outside).

Secondly, we will only develop the theory of integration for continuous functions. In one variable
you are probably familiar with the fact that Riemann-integrable functions need not be continuous.
This is of course also true in higher dimensions. In fact, there is an alternative theory of integration,
known as the Lebesgue integral, that allows for the integration of an even larger class of functions.
You will see it in detail in Maat en Integratie or Functionaal analyse.

5.2 Vector-valued integrals

You are already familiar with integrating functions R → R, i.e. with one input and one output.
We will now discuss the Riemann-integral of vector-valued functions f : [a, b] ⊂ R → Rp of one
variable.

To do so, we will work with the components of f = (f1, · · · , fp). The main message is that, in
order to integrate f , we simply integrate each fj separately. This follows from the fact that limits,
derivatives, and sums can be performed component-wise.

Definition 5.2. A function f : [a, b] → Rp is called Riemann-integrable if for each 1 ≤ j ≤ p the
component fj : [a, b] → R is Riemann-integrable. The Riemann integral of f is defined as the unique
vector I(f) in Rp whose j-th component is

I(f)j =

∫ b

a
fj(x)dx (1 ≤ j ≤ p).

We denote this vector by

I(f) =

∫ b

a
f(x)dx. △

The collection of Riemann-integrable functions [a, b] → Rp is denoted by R([a, b],Rp). Equipped
with pointwise addition and scalar multiplication, this is a linear space over R.

Lemma 5.3. The Riemann integral I : f 7→ I(f) is a linear map R([a, b],Rp) → Rp.
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Proof. Let f, g ∈ R([a, b],Rp) and λ ∈ R. Then the j-th component of f + λg is (f + λg)j =
fj +λgj . By the usual rules of Riemann integration for scalar functions, this component is Riemann-
integrable. Hence f + λg is Riemann-integrable and

I(f + λg)j =

∫ b

a
[fj(x) + λgj(x)] dx = I(f)j + λI(g)j .

This equality for each j implies the linearity of I : R([a, b],Rp) → Rp.

Definition 5.4. F : [a, b] → Rp is a primitive of f : [a, b] → Rp if F is differentiable with derivative
f . △

The following is the vector-valued analogue of the fundamental theorem of calculus:

Theorem 5.5. Every continuous function f : [a, b] → Rp is Riemann-integrable.

If f : [a, b] → Rp is continuous, then the function G : [a, b] → Rp defined by

G(x) :=

∫ x

a
f(t)dt

is a primitive of f .

If F : [a, b] → Rp is a primitive of f , then∫ b

a
f(t)dt = F (b)− F (a). (5.1)

Proof. If f is continuous, all components fj : [a, b] → R are continuous and thus Riemann-
integrable. The j-th component of G is

Gj(x) =

∫ x

a
fj(t) dt.

Hence Gj is differentiable with derivative fj , so G is differentiable with derivative f .

Finally, let F be a primitive of f . Then each component Fj is a primitive of fj , so the usual funda-
mental theorem of calculus in one variable applies:∫ b

a
fj(t)dt = Fj(b)− Fj(a).

5.2.1 Vector-valued functions as curves

It is convenient to keep the following geometric picture in mind. We think of f : [a, b] → Rp as a
choice of velocity vector f(t) for each t ∈ [a, b]. It tells us in which direction we move at time t. A
primitive F (t) = x0 +

∫ t
a f(s)ds is thus a curve in Rp, starting at F (a) = x0 and with velocity f(t)

at time t. If you draw F , you can draw f(t) as a little tangent vector at F (t).

The following lemma is useful: if we take a primitive F and apply a linear mapA, the resulting curve
A ◦ F has A ◦ f as velocity.

Lemma 5.6. Let A : Rp → Rq be a linear map and f ∈ R([a, b],Rp). Then A ◦ f : [a, b] → Rq is
Riemann-integrable, and

A

(∫ b

a
f(x)dx

)
=

∫ b

a
A(f(x))dx.
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Proof. For each 1 ≤ i ≤ q, the i-th component of A ◦ f is

(A ◦ f)i =
p∑

j=1

Aijfj .

The result follows by repeated application of Lemma 5.3.

Exercise 5.7. Instead of a linear map A, consider a differentiable function ϕ ∈ C1(Rp,Rq) applied
to a primitive F : [a, b] → Rp of the velocity curve f . According to Lemma 3.51, the velocity of
ϕ ◦ F at time t is Dϕ(F (t))(f(t)). Check that Lemma 5.6 is a special case. △

Another useful property is the triangle inequality for Riemann integrals. Before discussing it, consider
the following notion:

Definition 5.8. Let F : [a, b] → Rp be a C1 curve. The length of F is:

len(F ) :=

∫ b

a
∥F ′(t)∥dt. △

Note that ∥F ′(t)∥ is the speed at time t, so integrating it gives the total length of the curve.

We also need the following auxiliary lemma:

Lemma 5.9. Let v ∈ Rp. Then

∥v∥ = max{⟨v, w⟩ | w ∈ Rp, ∥w∥ = 1}.

Proof. First, ∥v∥ = ⟨v, w⟩ if w = v/∥v∥, giving the upper bound. The opposite bound is the
Cauchy-Schwarz inequality (Proposition 2.74): ⟨v, w⟩ ≤ ∥v∥ ∥w∥ = ∥v∥ if ∥w∥ = 1.

Proposition 5.10 (Triangle inequality for the integral). Let f : [a, b] → Rp be continuous.
Then the norm ∥f∥ : [a, b] → R defined by t 7→ ∥f(t)∥ is continuous. Moreover:∥∥∥∥∫ b

a
f(t)dt

∥∥∥∥ ≤
∫ b

a
∥f(t)∥ dt. (5.2)

Rephrasing in terms of curves, write F (t) =
∫ t
a f(s)ds as the primitive of f starting at F (a) = 0.

Then F (b) =
∫ b
a f(t) dt is the endpoint of F , and the left hand side of (5.2) is ∥F (b)∥, its distance

from the origin. The right side is the total length of F , so we must show ∥F (b)∥ ≤ len(F ).

Proof. From ∥f(t)∥2 =
∑p

j=1 fj(t)
2, the function ∥f∥2 is continuous on [a, b]. Since y 7→ √

y is
continuous on [0,∞),

∥f∥ : t 7→
√

∥f(t)∥2

is continuous. Denote the integral by I(f), which is F (b) in our notation.

Take w ∈ Rp with ∥w∥ = 1. The map A : v 7→ ⟨v, w⟩ is linear. By Lemma 5.6, A ◦ f is Riemann-
integrable, and

⟨I(f), w⟩ = A

(∫ b

a
f(t)dt

)
=

∫ b

a
A(f(x))dx =

∫ b

a
⟨f(x), w⟩dx.

The left side measures the total displacement in the w-direction, the right side displays it as the
integral of the infinitesimal displacement along w.
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By Cauchy-Schwarz, using that ||w|| = 1:

|⟨f(x), w⟩| ≤ ∥f(x)∥∥w∥ = ∥f(x)∥.

Which plugged into the integral yields:

|⟨I(f), w⟩| ≤
∫ b

a
∥f(x)∥ dx.

Since this holds for all w, Lemma 5.9 applies and we deduce that (5.2) holds.

Remark 5.11. One can generalize this to Riemann-integrable f . Then ∥f∥ is also Riemann-
integrable and the inequality remains valid. The proof is omitted here. △

5.3 Integrals in a single direction

We now begin developing the theory of the Riemann integral in multiple variables. Our goal in this
subsection is to discuss the integration of a multivariate function with respect to a single variable.

Consider an open V ⊂ Rn, an interval [a, b] ⊂ R, and a function f : V × [a, b] → Rp. For each
x ∈ V we can consider the function fx : [a, b] → Rp given by t 7→ f(x, t). In this manner we are
thinking of f as a function of one variable t ∈ [a, b] and n parameters (x1, . . . , xn).

If we assume that each fx is Riemann-integrable then we can define the primitive in the t-direction:

F (x, t) :=

∫ t

a
fx(s)ds =

∫ t

a
f(x, s)ds, (5.3)

as well as the total Riemann integral in the t-direction:

G(x) :=

∫ b

a
fx(t) dt =

∫ b

a
f(x, t) dt (5.4)

The former is a function F : V × [a, b] → Rp, while the latter is G : V → Rp.

The following statement says that if f depends continuously on all its variables (x1, . . . , xn, t), then
the integral along t ∈ [a, b] also depends continuously on all variables, including the parameters
(x1, . . . , xn).

Theorem 5.12. Consider an open set V ⊂ Rn and an interval [a, b] ∈ R. Suppose that the
function f : V × [a, b] ⊂ Rn+1 → Rp is continuous. Then:

• The function F : V × [a, b] → Rp defined by Equation (5.3) is continuous. Morever,
DtF = f .

• The function G : V → Rp defined by Equation (5.4) is continuous.

Proof. Observe that DtF = f follows from the fundamental theorem of calculus. Moreover,
G(x) = F (x, b), so G being continuous follows from F being continuous. It remains to show F
continuous. The key ingredient behind the argument is the notion of uniform continuity (Subsection
1.1.2) and the fact that [a, b] is closed and bounded and therefore sequentially compact (Proposition
1.10).

Indeed, fix x0 ∈ V and thus the interval K = {x0} × [a, b] ⊂ V × [a, b]. Compactness implies
that ∥f |K∥ achieves a maximum, which we can call M . Moreover, Proposition 1.13 implies that f is
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uniformly continuous over K. In particular, this means that for every η > 0 there is some δ > 0 such
that for all x, x0 ∈ V and all t, t0 ∈ [a, b] satisfying ∥x− x0∥, ∥t− t0∥ ≤ δ it holds that

∥f(x, t)− f(x0, t0)∥ ≤ η.

This leads to the estimate:

∥F (x, t)− F (x0, t0)∥ =

∥∥∥∥∫ t

a
(f(x, s)− f(x0, s)) ds+

∫ t

t0

f(x0, s)ds

∥∥∥∥
=

∥∥∥∥∫ t

a
(f(x, s)− f(x0, s)) ds

∥∥∥∥+ ∥∥∥∥∫ t

t0

f(x0, s)ds

∥∥∥∥
≤

∫ b

a
∥f(x, s)− f(x0, s)∥ ds+M∥t0 − t∥

≤ η(b− a) +Mδ.

They key idea is that we separated the estimate into two integrals. One of them we can bound by
uniform continuity of f . The other one we can bound using that f is bounded. Thus: if we want
η(b − a) +Mδ ≤ ε we can take η ≤ ε/(2(b − a)) and δ accordingly and additionally satisfying
δ ≤ ε/(2M). This establishes continuity.

Corollary 5.13. The Riemann integral defined in Definition 5.1 is well-defined.

Proof. According to Theorem 5.12, the function G1(x2, · · · , xn) =
∫ b1
a1
f(x1, · · · , xn)dx1 is con-

tinuous and in particular Riemann integrable. As such, we can integrate it with respect to x2, yielding
a function G2(x3, · · · , xn) that is continuous as well. Doing this n times yields the integral over the
whole hypercube: ∫

C
f(x)dx1 · · · dxn =

∫ bn

an

· · ·
∫ b1

a1

f(x1, · · · , xn)dx1 · · · dxn.

The continuity of the function G from Theorem 5.12 means that G is continuous at every point
x0 ∈ V . This in turn means that

lim
x→x0

G(x) = G(x0).

If we substitute the definition of G above, and use that f is continuous in (x0, t) for every t ∈ [a, b],
so that f(x, t) → f(x0, t) as x→ x0, we see that:

Corollary 5.14. Suppose that f is continuous as a function of all its variables. Then:

lim
x→x0

∫ b

a
f(x, t)dt =

∫ b

a
f(x0, t)dt =

∫ b

a

(
lim
x→x0

f(x, t)

)
dt, (5.5)

Formula (5.5) states that we may “swap limits and integrals”, but it is very important to keep in mind
that this switching is not always allowed. For instance:

Example 5.15. Consider the function f(x, t) = xe−xt defined over A = {t ≥ 0} ⊂ R2. You can
verify that it is continuous, since it is a composition and product of continuous functions. We can
now consider G(x) :=

∫∞
0 f(x, t)dt. Do observe that we are now integrating over [0,∞), which is

not covered by Theorem 5.12. In particular, it could happen that the integral is not defined. However,
in this case the integral does exist for each x. You can see that G(0) = 0 and G(x) =

∫∞
0 xe−xtdt =

−e−xt|∞0 = 1 for all other x. That is, even though the integral does exist, the resulting function of x
is not continuous. △
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Nonetheless, Corollary 5.14 can be very useful for computing integrals and limits explicitly, as the
following examples show.

Example 5.16. We consider the function f : R × [−1, 1] → R given by f(x, t) = ext. Applying
the Corollary with V = R, p = 1, and [a, b] = [−1, 1], we see that the function F : R → R defined
by

F (x) =

∫ 1

−1
extdt

is continuous. If x ̸= 0, the integrand has t 7→ ext/x as primitive, from which it follows that
F (x) = (ex − e−x)/x. On the other hand, for x = 0 the integrand is constant 1, and we see that
F (0) = 2. The continuity of F gives F (x) → F (0) = 2 as x → 0. Of course, we could also derive
this using l’Hôpital’s theorem, see the notes Introduction to Analysis. △

Example 5.17 (Beta-function). The Euler Beta-function is the function of two real variables p, q,
defined by

B(p, q) :=

∫ 1

0
tp−1 (1− t)q−1dt. (5.6)

The integrand
b(p, q, t) := tp−1(1− t)q−1

is a continuous function of (p, q, t) ∈ [1,∞)× [1,∞)× [0, 1]. By Theorem 5.12, it follows that B is
continuous on [1,∞)× [1,∞). △

Example 5.18 (Gamma-function). The above result is not directly applicable to functions defined
via so-called improper integrals. For example, consider the Euler Gamma-function Γ : (0,∞) → R,
defined by

Γ(x) =

∫ ∞

0
tx−1e−tdt. (5.7)

This is a function of the form F (x) =
∫∞
0 f(x, t)dt with f(x, t) = tx−1e−t. There are two issues

here. First, the interval of integration is unbounded above. Second, the function fx : t 7→ f(x, t) is
not defined at 0 for 0 < x < 1. A general theory showing that the Gamma-function is continuous,
and even C∞, on the interval (0,∞) is explained in Chapter 9. △

5.4 Intermezzo: divided differences

Given a function f : V × [a, b] → Rp and its integral G : V → Rp, as in (5.4), we want to understand
how derivatives of G relate to those of f . We will do this in Subsection 5.5. Before we get there
we discuss an auxiliary result. Even if auxiliary, it is very interesting by itself and quite helpful to
understand geometrically the process of differentiation.

First, consider the following simplified setting:

Lemma 5.19. Fix a function f : R → R with f(0) = 0 and differentiable at 0. Then, the function
q : R× R → R

q(x, t) :=

{
f(xt)

t if t ̸= 0
f ′(0)x if t = 0.

is continuous.
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Proof. q is defined in terms of f by composing with (x, t) 7→ xt and dividing by t. As such, it is
clearly continuous if t ̸= 0. We therefore must show continuity at each (x0, 0). By differentiability
of f we know that limh→0

f(h)
h = f ′(0), so we can set h = xt to deduce:

lim
(x,t)→(x0,0)

q(x, t) = lim
(x,t)→(x0,0)

x
f(xt)

tx
= x0 lim

(x,t)→(x0,0)

f(xt)

tx
= x0f

′(0)

showing continuity at (x0, 0).

The following geometric interpretation is helpful: Think of t as a zoom parameter that helps us look
more closely at f close to x = 0. Namely, if t is small, x 7→ xt amounts to changing coordinates
to look at points closer to 0. Then f(xt)

t can be seen as the result of taking these small points xt and
scaling up their values f(xt). I.e. We zoom in simultaneously in the domain and the target of f . This
sequence of “zoomed-in” maps has a limit: the derivative f ′(0), which can be seen as a linear map
R → R.

This lemma can be generalised to the multivariate setting. We do it in a directional manner: we zoom
in the first variable, leaving the rest as parameters. Other versions, handling all variables at once, also
exist, but they are beyond the scope of the course.

Proposition 5.20. Let I be an interval in R and V an open subset of Rn. Let f : I×V → R be
differentiable with respect to the first variable, and assume that the function D1f is continuous
on I × V . Define the function q : I × I × V → R by

q(t, s, x) :=

{
f(t,x)−f(s,x)

t−s if s ̸= t

D1f(s, x) if t = s.

Then q is continuous on I × I × V .

Proof. According to the fundamental theorem of calculus applied to the first variable:

f(t, x)− f(s, x) =

∫ t

s
D1f(b, x) db

=

∫ 1

0

d

da
f(s+ a(t− s), x) da

=

∫ 1

0
D1f(s+ a(t− s), x) (t− s) da

= (t− s)

∫ 1

0
D1f(s+ a(t− s), x) da.

In the second equality we changed variable, setting b = s+ a(t− s). In the third equality we applied
the chain rule Lemma 3.51. From this it follows that

q(t, s, x) =

∫ 1

0
D1f(s+ a(t− s), x) da (5.8)

for every t ̸= s. Formula (5.8) is also valid when s = t, because in that case the integrand on
the right-hand side is equal to D1f(s, x) for every a. Now apply Theorem 5.12 with (t, s, x) as
parameters to conclude that q is continuous.
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5.5 Differentiation under the integral sign

We can now use Proposition 5.20 in the proof of the following theorem about differentiation under
the integral sign. We state it first for two variables. The general case is stated below as Corollary
5.22.

Theorem 5.21. Consider intervals I = [a, b] and J ⊂ R. Fix coordinates (t, x) in the product
I × J . Let a function f : I × J → R be given, and assume that the following conditions hold:

(a) For every x ∈ J , the function t 7→ f(t, x) is Riemann-integrable over I .

(b) The function f is partially differentiable with respect to the x-variable and Dxf is con-
tinuous on I × J .

Then, the function G : J → Rn defined by

G(x) :=

∫ b

a
f(t, x)dt

is a differentiable function of x that satisfies:

G′(x) =

∫ b

a
Dxf(t, x)dt. (5.9)

Suppose moreover that f is continuous. Then the function F : I × J → Rn defined by

F (t, x) :=

∫ t

a
f(s, x)ds

is differentiable and

DxF (t, x) =

∫ t

a
Dxf(s, x)ds.

The formula (5.9) says that we may “swap differentiation and integration”, in the sense that the
derivative with respect to x of the integral over t is equal to the integral over t of the derivative with
respect to x. The idea of the proof is to relate differentiation to continuity (using Proposition 5.20)
and use the fact that integration preserves continuity (Theorem 5.12).

Proof. We first prove the statement for G. The case of F is similar and left to the reader. As
in Proposition 5.20, we define a function q : I × J × J → R from f by setting q(t, x, x′) :=
(f(t, x) − f(t, x′))/(x − x′) for x ̸= x′ and q(t, x, x) := Dxf(t, x). This function is continuous
according to the lemma, so we can integrate it using Theorem 5.12, yielding

Q(x, x′) :=

∫ b

a
q(t, x, x′)dt,

which is a continuous function J × J → R. Moreover, by the definition of q:

Q(x, x′) =

{
G(x)−G(x′)

x−x′ if x ̸= x′∫ b
a Dxf(t, x)dt if x = x′.

From the continuity of Q, it follows that:

lim
x′→x

G(x)−G(x′)

x− x′
=

∫ b

a
(Dxf)(t, x)dt,
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which is exactly Equation 5.9.

The proof for F is very similar and left to the reader. The key difference is that we assume continuity
of f so that DtF = f is continuous. This, together with the continuity of DxF , implies that F is
continuously partially differentiable and thus totally differentiable (Theorem 3.29).

This result can now be applied repeatedly for higher-order derivatives:

Corollary 5.22. Let V be an open subset of Rn and [a, b] ⊂ R an interval. Let f : [a, b] ×
V → R be a function that is k times partially differentiable with respect to the last n variables.
Assume further that the partial derivatives Dj(l) · · ·Dj(1)f are continuous, for all collections of
indices (j(1), . . . , j(l)) ∈ Nl, with 0 ≤ l ≤ k.

Consider then the functions F (t, x) =
∫ t
a f(s, x)ds and G(x) =

∫ b
a f(t, x)dt. Then F is k-times

differentiable in x and satisfies

Dj(l) · · ·Dj(1)F (t, x) =

∫ t

a
Dj(l) · · ·Dj(1)f(s, x)ds.

Similarly, G is Ck and satisfies:

Dj(l) · · ·Dj(1)G(x) =

∫ b

a
Dj(l) · · ·Dj(1)f(t, x)dt.

Proof. This is proven by induction over k, using Theorem 5.21 in the induction step.

Using this result we can establish an analogue of Proposition 5.20 involving higher derivatives:

Corollary 5.23. Let I be an interval in R, k ∈ Z≥0, and f ∈ Ck+1(I,R). Define

q(t, s) =

{
f(t)−f(s)

t−s if t ̸= s

f ′(t) if t = s.

Then q ∈ Ck(I × I,R).

Proof. The differentiability statement is most interesting at the points (t, t), because on the set
{(t, s) | t ̸= s}, the function q(t, s) is already Ck+1. According to Proposition 5.20, q(t, s) is
continuous. Formula (5.8) gives

q(t, s) =

∫ 1

0
f ′(s+ a(t− s))da,

where the integrand is a Ck function of the variables (t, s). Applying Corollary 5.22 gives q ∈
Ck.

We conclude this subsection with an application:

Example 5.24. Consider the function f : R → R given by f(x) = sin(x). Since f is smooth,
Corollary 5.23 tells us that the corresponding function q : R × R → R is in C∞(R × R). The
function σ : x 7→ q(x, 0), R → R is given by

σ(x) =

{
(sinx)/x if x ̸= 0,

1 if x = 0.

We conclude that σ ∈ C∞([0, 1]). △
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5.6 Switching the order of integration

In the context of “switching theorems”, we give the following result. It states that the order of
integration in the definition of the Riemann integral (Definition 5.1) does not matter:

Theorem 5.25. Consider a continuous function f : [a, b]× [c, d] → R. Then:∫ d

c

(∫ b

a
f(t, s)dt

)
ds =

∫ b

a

(∫ d

c
f(t, s)ds

)
dt. (5.10)

Proof. Integrating in t we can produce a primitive:

φ(t, s) :=

∫ t

a
f(x, s)dx.

Note that φ(a, s) = 0 for every s. The fundamental theorem of calculus tells us that t 7→ φ(t, s) is
differentiable with derivative

Dtφ(t, s) = f(t, s),

which is a continuous function of both variables. Integrating along s then yields a total integral:

Φ(t) :=

∫ d

c
φ(t, s)ds =

∫ d

c

∫ t

a
f(x, s)dxs.

Note that Φ(a) = 0. Observe that φ(t, s) computes the area under the graph of f along the [a, t]×{s}
segment and thus Φ(t) computes the volume under the graph of f over the rectangle [a, t]× [c, d].

Theorem 5.21 gives that the function Φ is differentiable on [a, b], with derivative

Φ′(t) :=

∫ d

c
Dtφ(t, s)ds =

∫ d

c
f(t, s)ds.

Integrating this over t ∈ [a, b] now gives∫ b

a

(∫ d

c
f(t, s)ds

)
dt =

∫ b

a
Φ′(t)dt

= Φ(b)− Φ(a) = Φ(b)

=

∫ d

c

(∫ b

a
f(t, s)dt

)
ds.

Concluding the proof.

It follows that we can also write the identity (5.25) without brackets:∫ d

c

∫ b

a
f(t, s) dt ds =

∫ b

a

∫ d

c
f(t, s) ds dt,

since from the order of the integral signs and of ds and dt it is clear in which order the integrations
are to be taken.

It is interesting that Theorem 5.21 can also be derived from Theorem 5.25.
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Proof of Theorem 5.21 assuming Theorem 5.25. Assume f is a function as in Theorem 5.21. Let
c ∈ I . For every x ∈ I with x > c, it follows, by the fundamental theorem of calculus, that for every
t ∈ [a, b]:

f(x, t)− f(c, t) =

∫ x

c
D1f(s, t)ds.

Thus ∫ b

a
f(x, t) dt =

∫ b

a

(
f(c, t) +

∫ x

c
D1f(s, t) ds

)
dt

=

∫ b

a
f(c, t) dt+

∫ b

a

∫ x

c
D1f(s, t) ds dt

=

∫ b

a
f(c, t) dt+

∫ x

c

∫ b

a
D1f(s, t) dt ds.

In the third equality we have applied Theorem 5.25 to D1f , which is continuous by assumption.
Observe that, on the right-hand side, the variable x appears as the upper bound of an integration
interval. As such, the right-hand side is differentiable with respect to x. The same is thus true for the
left-hand side, with derivative equal to

d

dx

∫ b

a
f(x, t) dt =

∫ b

a
D1f(x, t) dt.

Remark 5.26. In the courses Analyse in Meer Variabelen and Maat en Integratie the switching of
the integration order (Fubini’s theorem) is further developed. This result holds for a class of functions
of several variables that is much larger than the class of continuous functions. △
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6 The inverse function theorem and its applications

The previous chapters have built the elementary machinery of differentiation and integration. In this
chapter and the next we look into more advanced results. The goal in this chapter is to state and prove
the inverse function theorem, and to work out some of its most important consequences.

An idea that you are familiar with, and that we reviewed in Chapter 2, is that it is convenient to change
basis when studying linear maps. The reason is simple: the standard basis {e1, · · · , en} of Rn is not
important by itself, so we should feel free to use a different one if that simplifies computations.

This reasoning applies across all Mathematics, not just to Linear Algebra. In our context:

Definition 6.1. LetU and V be open subsets of Rn. A bijection f : U → V is aC1-diffeomorphism
if both f and its inverse f−1 : V → U are continuously differentiable. U and V are said to be diffeo-
morphic. △

This says that we should think of U and V as basically the same object, seen from two different
perspectives. The map f is a change of coordinates relating the two.

Example 6.2. Consider a diffeomorphism ϕ : U → V and an open U ′ ⊂ U . Then ϕ|U ′ : U ′ →
ϕ(U ′) is also a diffeomorphism. △

Example 6.3. An invertible linear map A : Rn → Rn is in particular a diffeomorphism. Consider
for instance A : R2 → R2 given by A(x, y) = (2x, y). We can then restrict it to the unit open ball
B ⊂ R2, yielding a diffeomorphism

B2 → A(B2) = {(x, y) ∈ R2 | (x/2)2 + y2 < 1}

between the ball and the ellipsoid. △

Our goals in this chapter are:

• To establish the inverse function theorem, in its local (Theorem 6.7) and global (Theorem 6.12)
versions. They tell us that, in order to show that a funtion is a diffeomorphism, we do not need
to explicitly compute the inverse. As you can imagine, this simplifies things considerably.

• To look into some of the typical examples of diffeomorphisms (Subsection 6.2).

• To start the study of (k-dimensional) submanifolds (Definition 6.27). These are the “nicest”
subsets of Rn, in the sense that, up to a local change of coordinates, they resemble the linear
subspace Rk ⊂ Rn. The existence of such a change of coordinates is established in the regular
value theorem (Theorem 6.34).

• To study the theory of Lagrange multipliers (Theorem 6.37), which deals with the critical
points of functions f |N : N → R, where f : U → R is a C1-function defined over an open
and N ⊂ U is a submanifold.

These topics will reappear in many places. (Sub)manifolds are central objects in Analysis, Geome-
try, and Topology. The theory of Lagrange multipliers is the theory of optimisation (finding critical
points/maxima/minima) under constraints (when restricting to subsets) and, as such, it appears eve-
rywhere in theory and applications.
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6.1 The inverse function theorem

6.1.1 The one variable case

The proof of the multivariate inverse function theorem requires a number of non-trivial ideas. For
convenience, let us first recall the inverse function theorem for functions of one variable, including
its proof.

Lemma 6.4. Let O ⊂ R be an open set and f : O → R a C1-function. Let a ∈ O and suppose that
f ′(a) ̸= 0. Then there exist open neighborhoods U of a in O and V of f(a) in R such that f |U maps
the neighborhood U bijectively onto V , while the inverse g := (f |U )−1 is a C1-map. Moreover

g′(f(x)) = 1/f ′(x) for all x ∈ U.

Proof. From f ′(a) ̸= 0 it follows that f ′(a) > 0 or f ′(a) < 0. We treat the first case; the second
one is similar.

The first step is showing that there exists a set-theoretical inverse once we restrict f to a sufficiently
small neighbourhood of f . By continuity of f ′, there exists δ > 0 such that (a − 2δ, a + 2δ) ⊂ O
and f ′(x) > 0 for all x ∈ (a− 2δ, a+ 2δ). By Lemma 4.25 it follows that f is strictly increasing on
[a − δ, a + δ]. In particular, it is injective. Hence f maps the interval U := (a − δ, a + δ) onto the
interval V := (f(a − δ), f(a + δ)). Since f : U → V is bijective by construction, it has an inverse
g : V → U .

For latter use do observe that taking δ → 0 makes U shrink to a and V shrink to f(a), by continuity
of f .

The second step is showing that g is differentiable at every point y0 ∈ V . To do so, we will make use
of the mean value theorem. Write x0 = g(y0). For each y ∈ V write x = g(y) and note that one has

y − y0 = f(x)− f(x0) = f ′(ξx)(x− x0).

for some ξx ∈ [x0, x]. Our observation shows that y → y0 implies that x → x0 and thus ξx → x0.
Since ξx ∈ U we have f ′(ξx) > 0, so we can divide:

g(y)− g(y0) = x− x0 = f ′(ξx)
−1(y − y0).

Since f ′ is continuous it follows that:

g′(y0) = lim
y→y0

g(y)− g(y0)

y − y0
= lim

y→y0
1/f ′(ξx) = 1/f ′(x0).

Example 6.5. In Inleiding Analyse the logarithmic function log : (0 ,∞) → R was introduced by
means of the Riemann integral:

log x :=

∫ x

0

1

t
dt.

From the fundamental theorem of calculus it followed that f := log is a C1-function with derivative
f ′(x) = 1

x . It was then shown that f is a strictly monotone bijection from (0,∞) onto R. The
exponential function g : R → (0,∞) given by y 7→ ey was introduced as the inverse of log. Using
the lemma above it followed that g is continuously differentiable with derivative

g′(log x) = 1/f ′(x) = x = g(log x),

hence g′(y) = g(y) for all y ∈ R. △
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6.1.2 Statement of the local inverse function theorem

The following is an elementary but important result. It gives us a necessary criterion, in terms of the
total derivative, for a function f to be a diffeomorphism.

Proposition 6.6. Fix a C1 diffeomorphism f : U → V and a point a ∈ U . Then, the total
derivative Df(a) : Rn → Rn is an invertible linear map and, moreover:

D(f−1)(f(a)) = Df(a)−1. (6.1)

Proof. We have f−1 ◦ f = idU . As such, the chain rule (Theorem 3.48) combined with Example
3.16, implies that

D(f−1)(f(a)) ◦Df(a) = D(idU )(a) = Id

holds for every a ∈ U , where Id denotes the identity matrix. We thus see that the linear map
Df(a) : Rn → Rn is invertible with inverse D(f−1)(f(a)). It follows that it must agree with
Df(a)−1 due to the uniqueness of the inverse.

The inverse function theorem provides a very powerful converse of this result.

Theorem 6.7 (Inverse function theorem, local version). Let O ⊂ Rn be open, f : O → Rn

a C1-map, and a ∈ O a point. If the linear map Df(a) : Rn → Rn is invertible, then there
exists an open neighborhood U of a in O such that

(a) f(U) is open in Rn,

(b) the map f |U is a C1 diffeomorphism U → f(U).

The proof of this result is quite involved and in fact requires some non-trivial ideas. We will spend
the rest of this subsection building towards it. Nonetheless, the argument follows the same logic as in
the one variable case: constructing a set-theoretical inverse, locally, and then showing that the inverse
is indeed C1.

6.1.3 Step I: Injectivity via an improved mean value theorem

Our first goal is to show that Df(a) being injective implies that f is locally injective (i.e. injective in
a sufficiently small neighbourhood of a). This is the content of Corollary 6.9. To establish it, we will
need the following:

Theorem 6.8 (Mean Value Theorem 2.0). Let U ⊂ Rn be a convex open subset and f : U → Rp a
C1-map. Then there exists a continuous map L : U × U → Lin(Rn,Rp) such that

f(y)− f(x) = L(x, y)(y − x), x, y ∈ U,

and
L(x, x) = Df(x), x ∈ U.

Proof. This proof contains no new ideas. It follows the exact same argument as in the original mean
value Theorem 3.40.

Consider x, y ∈ U . By convexity, the line segment [x, y] lies entirely in U ; we parametrise it as
c = cx,y : [0, 1] → U using the formula t 7→ x+ t(y − x). According to Lemma 3.51, the derivative
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with respect to t of the map f ◦ cx,y : [0, 1] → Rp reads:

d

dt
(f ◦ c)(t) = Df(c(t))c′(t) = Df(x+ t(y − x))(y − x).

By Theorem 5.5 it follows that

f(y)− f(x) = f ◦ c(1)− f ◦ c(0) =
∫ 1

0
(f ◦ c)′(t)dt

=

∫ 1

0
Df(x+ t(y − x))(y − x)dt = L(x, y)(y − x)

with L(x, y) the map Rn → Rp given by

L(x, y)(v) :=

∫ 1

0
Df(x+ t(y − x))vdt.

By linearity of the Rp-valued Riemann integration, it is clear that L(x, y) ∈ Lin(Rn,Rp) for all
x, y ∈ Rn.

The matrix-valued function [0, 1] × U × U → Lin(Rn,Rp) given by (t, x, y) 7→ Df(x + (t(y −
x)) is continuous. L(x, y) is obtained from it by integrating coefficient-by-coefficient, so it is also
continuous, according to Theorem 5.12.

For the second part let x ∈ U . Consider the remainder

R(h) := f(x+ h)− [f(x) + L(x, x)(h)] = [L(x, x+ h)− L(x, x)](h).

with h ∈ −x+ U . Then

∥h∥−1∥R(h)∥ ≤ ∥L(x, x+ h)− L(x, x)∥ → 0 (h→ 0),

by continuity of L at (x, x). From this we conclude that f is totally differentiable at x with total
derivative equal to Df(x) = L(x, x).

We go back to the proof of Theorem 6.7. As such, and for the rest of the subsection, we assume that
f : U → Rn satisfies the assumptions of the theorem.

Corollary 6.9. Let a ∈ U and assume that Df(a) : Rn → Rn is an invertible linear map. Then
there exists δ > 0 such that B(a; δ) ⊂ U and such that the restriction of f to B(a; δ) is injective.

Proof. By possibly shrinking U to an open ball we may assume that U is convex. Let L : U ×U →
Lin(Rn,Rn) be as in Theorem 6.8. All matrix coefficients Lij(x, y) = ⟨ei, L(x, y)ej⟩ are conti-
nuous. Since detL(x, y) is a polynomial in these matrix coefficients, it follows by the substitution
rule that (x, y) 7→ detL(x, y) is continuous. Since L(a, a) = Df(a) is invertible and has thus non-
zero determinant, there exists δ′ > 0 such that for all (x, y) ∈ Rn × Rn with ∥(x, y) − (a, a)∥ < δ′

we have
|detL(x, y)| > 1

2 | detDf(a)| > 0.

In particular, the linear map L(x, y) is invertible for such (x, y). Choose δ > 0 such that x, y ∈
B(a; δ) =⇒ ∥(x, y)− (a, a)∥ < δ′. Then for all x, y ∈ B(a; δ) we have

f(y)− f(x) = 0 =⇒ L(x, y)(y − x) = 0 =⇒ y − x = 0,

so f is injective on B(a; δ).
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6.1.4 Step II: Surjectivity

Similarly, we now show that f is locally surjective (i.e. its image contains a neighbourhood of f(a)).
We will need the following auxiliary lemma:

Lemma 6.10. Let U ⊂ Rn and f : U → Rp a C1-function. Let b ∈ Rp and define G : U → R by

G(x) := ⟨f(x)− b, f(x)− b⟩.

Then G is a C1-function. At any a ∈ U its derivative DG(a) : Rn → R is given by

v 7→ 2⟨Df(a)v, f(a)− b⟩.

Proof. By the rules of partial differentiation G is a C1-function, and for each a ∈ U its jth partial
derivative reads:

DjG(a) = 2⟨Djf(a), f(a)− b⟩.

It follows that G is totally differentiable and its derivative DG(a) : Rn → R is given by

DG(a)(v) =
n∑

j=1

vjDjG(a) = 2

〈
n∑

j=1

vjDjf(a), f(a)− b

〉
= 2⟨Df(a)v, f(a)− b⟩.

Thus:

Lemma 6.11. Let a ∈ U and assume that Df(a) : Rn → Rn is an invertible linear map. Then
there exists r > 0 such that f(U) ⊃ B(f(a); r).
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Figuur 7: Proof of Lemma 6.11.

Proof. According to Corollary 6.9, by shrinking U if necessary, we may assume that f : U → Rn

is injective.

Since f is C1, the component-wise partial derivatives Djfi : U → R are continuous. These can be
combined to produce the determinant map U → R using the formula x 7→ detDf(x); by the product
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and sum rules it is continuous. By invertibility | detDf(a)| > 0, so there exists δ1 > 0 such that
B(a; δ1) ⊂ U and

x ∈ B(a; δ1) =⇒ |detDf(x)| ≥ 1
2 | detDf(a)| > 0.

Choose 0 < δ < δ1 and write B for the open ball B(a; δ) and B̄ for its closure.

The spherical boundary S := B̄ \B is closed and bounded in Rn, hence compact. The function

d : S → R, x 7→ ∥f(x)− f(a)∥

is continuous, so it attains a minimum m at some x0 ∈ S. Then x0 ̸= a, and by injectivity of f
on B̄ we have f(x0) ̸= f(a), so m > 0. Choose r = m/2. We will show that this r works, i.e.
B(f(a); r) ⊂ f(B̄) ⊂ f(U).

Given b ∈ B(f(a); r) we consider the continuous function g : B̄ → R given by g(x) := ∥f(x)− b∥.
I.e. we are measuring how close the image of f |B̄ is from b. What we want to show is that g(x) = 0
for some x, since that will show b ∈ f(B̄).

Since g is continuous and B̄ is compact, g attains a minimum, say at x1. Using minimality we deduce
g(x1) ≤ g(a) = ∥f(a)− b∥ < r. If x1 ∈ S then the triangular inequality tells us:

g(x1) = ∥f(x1)− b∥ ≥ ∥f(x1)− f(a)∥ − ∥f(a)− b∥ ≥ m− r = r,

a contradiction. It follows that x1 must be in the interior B̄ \ S = B.

Consider then the function G : B → R given by

G(x) := g2(x) = ⟨f(x)− b, f(x)− b⟩.

Thanks to the squaring, it is differentiable. x1 is still a minimum for G. Since B is open, the
variational principle of Lemma 3.33 implies that DG(x1) = 0. According to the auxiliary Lemma
6.10:

0 = DG(x1)(v) = 2⟨Df(x1)v, f(x1)− b⟩.

We conclude that ⟨Df(x1)v, f(x1)− b⟩ = 0 for all v ∈ Rn. Since Df(x1) is invertible it follows
that ⟨w, f(x1)− b⟩ = 0 for all w ∈ Rn. Hence f(x1) = b. Thus b ∈ f(B). We conclude that
B(f(a); r) ⊂ f(B) ⊂ f(U).

Recall that an extremum, in an open subset, is a critical point (Lemma 3.33). This is not necessarily
true in a closed set, like B̄, which is why we had to verify that x1 /∈ S. In a closed set it could
happen that a maximum/minimum appears at the boundary and is non-critical (i.e. it has non-zero
total derivative). An easy example is an increasing function [0, 1] → R. In that case 0 is a minimum
and 1 is a maximum, but they do not need to be critical points. In Section 6.4 we will explore how
such extrema can be found.

6.1.5 Step III: Proving the inverse is C1

Proof of Theorem 6.7. We first summarise the result up to now. Using Corollary 6.9 and Lemma
6.11 we can choose U := B(a; δ) with δ > 0 small enough so that f |U is injective and Df(x)
invertible for all x ∈ U . Moreover, for each x ∈ U and each open neighbourhood V of x in U
there exists rx,V > 0 such that f(V ) ⊃ B(f(x); rx,V ). Thus f(x) is an interior point of f(V ). We
conclude that f(V ) is open in Rn. In particular f(U) is open in Rn.
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By injectivity of f on U we have that f |U : U → f(U) is bijective. We denote its inverse f(U) → U
by g. We claim that g is continuous. Indeed, given any open V ⊂ U we have g−1(V ) = f(V ), which
is also open. We have thus shown that f is locally invertible by a continuous function.

The second and final step is to show that g is also C1. Let x0 ∈ U and write y0 := f(x0) for its
image. Let L : U × U → Lin(Rn,Rn) be defined as in Theorem 6.8. The idea at this point is very
similar to what we did for Theorems 3.29 and 3.48 (and also for the one-variable case). We will prove
a mean value theorem for g (using L) and from it, it will follow that g ∈ C1.

The map det ◦L : U × U → R is continuous, and nonzero at (a, a). Thus by choosing δ > 0
smaller if necessary we may assume that detL(x, y) is nonzero for all x, y ∈ U . It follows that
L(x, y) : Rn → Rn is invertible. By Cramer’s formula for the inverse of a matrix it now follows that
the map

(x, y) 7→ L(x, y)−1, U × U → Lin(Rn,Rn)

is continuous. Let y ∈ f(U) and write x := g(y). Then

y − y0 = f(x)− f(x0) = L(x, x0)(x− x0) = L(x, x0)(g(y)− g(y0))

using invertibility we deduce:

g(y)− g(y0) = L(x, x0)
−1(y − y0).

This yields the remainder formula:

R(y) := g(y)− [g(y0)− L(x0, x0)
−1(y − y0)] = [L(x, x0)

−1 − L(x0, x0)
−1](y − y0)

which satisfies
||R(y)||
||y − y0||

= ||L(g(y), g(y0))−1 − L(g(y), g(y0))
−1|| → 0

as y → y0. This uses the continuity of L and g. We have thus shown that g is differentiable at y0 with
derivative

Dg(y0) = L(x0, x0)
−1 = Df(x0)

−1.

By Cramer’s formula we see that x 7→ Df(x)−1 is continuous U → Lin(Rn,Rn), and by the
substitution rule it follows that Dg is also a continuous function f(U) → Lin(Rn,Rn). As such, g is
a C1-map f(U) → U and the proof is complete.

6.1.6 The global inverse function theorem

The inverse function theorem is often applied in the following form:

Theorem 6.12 (Inverse function theorem, global version). Let U ⊂ Rn be an open subset and
f : U → Rn a C1-map such that f is injective on U and Df(x) is invertible for every x ∈ U .
Then V := f(U) is open in Rn and f : U → V is a diffeomorphism.

Proof. From the assumptions it follows that f : U → V is bijective. We denote its inverse by
g : V → U .

It is sufficient to show that V is open and that g is a C1-map. Let b ∈ V be arbitrary and let
a := g(b) ∈ U . Note f(a) = b. According to the local version of the inverse function Theorem
6.7, there is an open neighborhood U0 of a in U such that V0 := f(U0) is open and f |U0 is a
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diffeomorphism from U0 onto V0 := f(U0). From this it follows that b is an interior point of V0 and
hence of V . Since b was arbitrary we conclude that V is open. Morever, this means that f |U0 has an
inverse h : V0 → U0 which is C1. It is clear that h = g|V0 , by uniqueness of the inverse. Thus g is
a C1-map on the neighborhood V0 of b. Since b ∈ V was arbitrary we conclude that g is a C1-map
V → U .

Remark 6.13. In the above, the derivative of f−1 at each point b ∈ V is given by

D(f−1)(b) = Df(f−1(b))−1.

This is a direct consequence of Proposition 6.6. △

6.1.7 Just a change of perspective

You should think of a C1-diffeomorphism ϕ : U ⊂ Rn → V ⊂ Rn as a change of coordinates that
preserves all the “C1 information” of U and V . Let us remark that one can define in a straightforward
manner also higher Ck-diffeomorphisms, which will then preserve the Ck information. One can also
consider the corresponding C0 notion:

Exercise 6.14. SupposeX and Y are metric spaces. Suppose ϕ : X → Y is a homeomorphism (i.e.
a continuous map with continuous inverse). Let f : Y → R be a continuous function. Observe that
f ◦ ϕ is also continuous. Show that x is a (local) maximum of f ◦ ϕ if and only if ϕ(x) is a (local)
maximum of f . Same for minima. △

Observe that a C1-diffeomorphism is in particular a homeomorphism. Homeomorphisms preserve all
the “C0 information” so, in particular, they preserve (local) maxima/minima. This is because being a
(local) maximum is something that only depends on values of functions, not derivatives.

Critical points are defined in terms of the derivative and are thus C1 information. They are preserved
by C1-diffeomorphisms:

Exercise 6.15. Suppose ϕ : U → V is a C1-diffeomorphism. Let f : V → R be a C1 function.

• Show that f ◦ ϕ : U → R is C1.

• Consider points x ∈ U and ϕ(x) ∈ V . Show that x is critical for f ◦ ϕ if and only if ϕ(x) is
critical for f . △

In particular:

Exercise 6.16. Suppose ϕ : U → V is a C1-diffeomorphism. Consider the vector spaces C1(U,R)
and C1(V,R). Show that f 7→ f ◦ ϕ is a linear isomorphism C1(V,R) → C1(U,R). This map is
called the pullback of functions. △

It is instructive to see that this result is truly sharp. I.e. a homeomorphism need not preserve C1

information:

Exercise 6.17. Consider the functions ϕ, f : R → R given by ϕ(x) = x3 and f(x) = x.

• Show that ϕ is a homeomorphism (Hint: you can explicitly write an inverse and see that it is
continuous).
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• Show that ϕ is not a C1-diffeomorphism.

• Show that f has no critical points but f ◦ ϕ does.

• Show that f ◦ ϕ−1 is not even differentiable.

I.e. composing with ϕ has introduced new critical points and composing with ϕ−1 replaces f by a
function that is not even C1. △

In the same manner, a C1-diffemorphism need not preserve C2 information:

Example 6.18. Consider the function g : R → R given by g(x) = 1 + |x|. This function is
continuous and strictly positive. As such, its primitive ϕ(x) =

∫ x
0 g(t)dt is C1 and strictly increasing

(and thus injective). In fact, ϕ is seen to be a C1-diffeomorphism because it is also surjective (note
that ϕ′(x) ≥ 0). Explicitly, ϕ(x) = x± x2 depending on the sign of x.

However, ϕ′′ has a discontinuity at 0, so ϕ is not C2. In particular, if we take f : R → R given by
f(x) = x, which is C2, we see that f ◦ ϕ = ϕ is not C2. △

6.2 Examples

The inverse function theorem provides us with a tool to describe open subsets of Rn using (differen-
tiable) coordinates other than the standard Euclidean ones.

The following examples, even if classic, explain the usual strategy to handle diffeomorphisms.
I recommend that you read them carefully in order to do similar exercises.

6.2.1 Polar coordinates

As a first example, we consider polar coordinates. Let F : (0,∞)× R → R2 be defined by

F (r, ϕ) := (r cosϕ, r sinϕ).

Then F is a C1 mapping, with Jacobian matrix

DF (r, ϕ) =

(
cosϕ −r sinϕ
sinϕ r cosϕ

)
The determinant of this matrix is given by

detDF (r, ϕ) = r cos2 ϕ+ r sin2 ϕ = r.

We therefore see that DF (r, ϕ) is invertible for all r > 0 and ϕ ∈ R. According to the local inverse
function Theorem 6.7, F is a local diffeomorphism. I.e. for each (r, ϕ) there is some neighbourhood
U such that F |U : U → F (U) is a diffeomorphism.

Now we ask ourselves whether F is a global diffeomorphism. The answer is no: F is not surjective
(it misses zero) and is also not injective. Indeed, F (r, ϕ) = F (r, ϕ+ 2kπ) for every integer k. That
is, over the whole of R2 \ {0} polar coordinates are not truly coordinates, since the angle of a point
is not well-defined.
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Still, suppose U ⊂ (0,∞)× R is an open subset on which F is injective. Then V := F (U) is open,
by the global inverse function Theorem 6.12, and F : U → V is a diffeomorphism. The question
then is: how large can we pick such an open U?

A typical choice is U = {ϕ ∈ (0, 2π)}. Its image V = F (U) is R2\{y = 0, x ≥ 0}. LetG : V → U
be the inverse; then the components G1, G2 of G are called the polar coordinates on V . Traditionally,
these are denoted by G1(x, y) = r(x, y) and G2(x, y) = ϕ(x, y). Note that these are indeed global
coordinates on V .

The partial derivatives of r(x, y) and ϕ(x, y) with respect to x and y can be found as follows. By
Proposition 6.6, we have

DG(F (r, ϕ)) = DF (r, ϕ)−1 =
1

r

(
r cosϕ r sinϕ
− sinϕ cosϕ

)
,

so
DG1(F (r, ϕ)) = (cosϕ, sinϕ)t, and DG2(F (r, ϕ)) = r−1(− sinϕ, cosϕ)t.

It follows that(
∂r

∂x
,
∂r

∂y

)
= ∥(x, y)∥−1(x, y),

(
∂ϕ

∂x
,
∂ϕ

∂y

)
= ∥(x, y)∥−2(−y, x), ((x, y) ∈ V ).

The following shows that U is maximal in the sense that we cannot take a larger open over which F
is still a diffeomorphism.

Exercise 6.19. Prove that there is no open U ′, strictly containing U = {ϕ ∈ (0, 2π)}, such that
F |U ′ is a C1-diffeomorphism with its image. Hint: Show that F |U ′ would not be injective. △

In fact, you can also show that:

Exercise 6.20. Prove that it is impossible to choose the open subset U ′ ⊂ (0,∞) × R such that
F |U ′ is a diffeomorphism with image R2 \ {0}. △

In our choice of U above we decided to miss, via F , the points with angle 0. Of course, we could
have made some other choice. Consider the unit circle S := {(x, y) | x2 + y2 = 1} ⊂ R2 and
pick an angle σ ∈ S. Then there exists ϕ0 ∈ R such that σ = (cosϕ0, sinϕ0). Define the half-line
L(σ) := {rσ | r ≥ 0} in R2. Define the open neighborhood

U(ϕ0) := (0,∞)× (ϕ0, ϕ0 + 2π).

Then it is easy to verify that F maps the set U(ϕ0) bijectively onto R2 \ L(ϕ0), thus defining a C1

diffeomorphism. This U(ϕ0) is also maximal.

Exercise 6.21. Prove that there are other opens W ⊂ (0,∞)× R with F |W a C1-diffeomorphism
with its image, that are also maximal in the sense above. Hint: Consider a curve of the form (r, ϕ(r)).

△

6.2.2 Cylindrical coordinates

We consider the mapping C : (0,∞)× R2 → R3 defined by

C(r, ϕ, z) := (r cosϕ, r sinϕ, z) = (F (r, ϕ), z),

with F as in the previous example. Using a similar reasoning as above, C is a diffeomorphism from
the set U(ϕ0)×R to (R2 \L(ϕ0))×R = R3 \L(ϕ0)×R, the complement of a closed half-plane in
R3.
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6.2.3 Spherical coordinates

Every point (x, y, z) ∈ R3 \ {0} can be uniquely written as r · σ with σ a point on the unit sphere S
in R3 and r > 0. Note that

r = ∥(x, y, z)∥ =
√
x2 + y2 + z2.

If σ = (x, y, z) is a point on the unit sphere, and ρ =
√
x2 + y2, then (ρ, z) is a point on the unit

circle in R2, with a nonnegative first coordinate. It follows that (ρ, z) = (cos θ, sin θ) for a unique
θ ∈ [−π/2, π/2]. Furthermore, ρ−1 · (x, y) is a point on the unit circle in R2, so there exists a unique
−π < ϕ ≤ π such that (x, y) = ρ · (cosϕ, sinϕ). We conclude that

σ = (cosϕ cos θ, sinϕ cos θ, sin θ),

for a unique point (ϕ, θ) ∈ R2 with −π < ϕ ≤ π and −π/2 ≤ θ ≤ π/2.

Motivated by the above, we consider the mapping Φ : R3 → R3 defined by

Φ(r, ϕ, θ) := r(cosϕ cos θ, sinϕ cos θ, sin θ).

This is a C1 mapping whose Jacobian is given by

detDΦ(r, ϕ, θ) = r2 cos θ.

(Check this!) The mapping Φ takes [0,∞) × [−π, π] × [−π/2, π/2] surjectively onto R3 and is
injective on the open set

U := (0,∞)× (−π, π)× (−π/2, π/2),

on which the Jacobian is also nonzero. By the global inverse function Theorem 6.12, the image
V := Φ(U) is open in R3 and Φ : U → V is a C1 diffeomorphism. The inverse Ψ : V → U of Φ is
a C1 mapping. The components of Ψ are also called the spherical coordinates on V . The traditional
notation for these components is (r, ϕ, θ). Note that R3 \V equals the half-plane consisting of points
(x, y, z) ∈ R3 with y = 0 and x ≤ 0. 
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Figuur 8: Spherical coordinates
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6.2.4 Another example

Let f : R2 → R2 be the function f(x, y) := (x(1−x), y2). Given p = (1, 1) ∈ R2, we ask ourselves
to determine the largest open U ⊂ R2 satisfying:

• U contains p,

• U is path-connected,

• f |U : U → f(U) is a C1-diffeomorphism.

First, let us compute

Df(x, y) =

(
1− 2x 0

0 2y

)
,

which has determinant detDf(x, y) = (1−2x)2y. It vanishes on the subset Σ := {x = 1/2}∪{y =
0}. According to Proposition 6.6, the U we are interested in must be disjoint from Σ.

Observe now that R2 \ Σ is partitioned into four pieces U±,± := {±x > ±1/2,±y > 0}. The point
p belongs to U+,+.

We claim that f is injective over each U±,±. Indeed, both components f = (f1, f2) are functions
of a single variable that have non-zero derivative in the complement of Σ, so both are monotone and
thus injective. We conclude, using the global inverse function Theorem 6.12, that F restricted to each
U±,± is a diffeomorphism with its image. You can verify that this image is the same for the four
opens, namely {x < 1/4, y > 0}.

We also claim that U±,± is convex and thus path-connected (Lemma 1.22). Convexity can be seen
from the fact hat each U±,± is a product of two intervals, each of which is convex. Alternatively
(and this is the more general way to handle this) you can also check that ta + (1 − t)b satisfies the
conditions ±x > ±1/2 and ±y > 0 if a and b do, for each t ∈ [0, 1].

We claim that the desired open is U+,+. It remains to show maximality, i.e. that we cannot find
a larger open with these properties. Indeed, suppose a larger open U would exist. Then it would
some additional point q. This point cannot be in Σ, according to Proposition 6.6. It cannot be in
one of the other U±,± either due to injectity: indeed, all of them have the same image, namely
{x < 1/4, y > 0}.

6.3 Submanifolds and regular values

Let U ⊂ Rn be open. A C1 function g = (g1, . . . , gk) : U → Rk determines a subset

N := g−1({0}) = {x ∈ U | g1(x) = g2(x) = . . . = gk(x) = 0}.

Since g is continuous and {0} is a closed subset of Rk, N is a closed subset of U (Lemma 1.7).

Our goal in Subsection 6.4 will be to determine the extrema of f |N , where f : U → R is a C1

function. This application of the inverse function theorem is known as the Lagrange multipliers
method, a widely used tool to determine extrema under such boundary conditions.

However, it is difficult to determine the extrema of f |N , unlessN is a “nice” subset. The prototypical
example of a nice subset would be a vector subspace N ⊂ Rn of dimension n − k. Let us review
how this concrete case follows into the setup described above. According to Subsection 2.4, the
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annihilator N⊥ ⊂ (Rn)∗ is a subspace of the dual of dimension k. By taking a basis we then
obtain k covectors α1, · · · , αk spanning N⊥. These covectors can be seen as a system of k linearly
independent equations whose solution set is N . Identically, these k covectors form a linear function
g : Rn → Rk whose kernel is N = g−1(0).

Observe that in this concrete case it is easy to understand f |N . Since N is a vector subspace, we can
identify it with Rn−k and thus use the usual theory of Subsections 3.4.1 and 4.5.

We now generalise these ideas. We need to introduce some assumptions on g to guarantee N being
nice.

Definition 6.22. Suppose g : U → Rk is C1. A point x ∈ U is said to be critical or singular if
Dg(x) : Rn → Rk is not surjective. △

Recall (Subsection 2.2) that Dg(x) is surjective if and only if its rows are all linearly independent.
This is also equivalent to finding a k-by-k minor with non-zero determinant.

Exercise 6.23. Verify that, for a function g : U → R, this is equivalent to the standard Definition
3.32. △

Definition 6.24. Suppose g : U → Rk is C1. Fix a point y ∈ Rk. The level set N = g−1(y) ⊂ U
is said to the regular if it contains no critical points. Otherwise it is singular. We say that N has
dimension n− k.

The tangent space of N at x ∈ N is the kernel TxN := (Dg(x))−1(0). △

The intuition for this definition is the following: Dg(x) being surjective means that it defines a
linearly independent system of linear equations, so (Dg(x))−1(0) is a vector space of dimension
n − k. We can think of g as a system of equations, but these equations need not be linear anymore.
Nonetheless, at the point x they are best approximated by the linear system Dg(x). As such, the
solution set (Dg(x))−1(0) is the best linear approximation at x ∈ N to the solution set N = g−1(y).

Example 6.25. Consider g : R2 → R given by (x, y) 7→ x2 + y2. The differential Dg(x, y) =
(2x2y) vanishes only at the origin, so all level sets, except 0, are regular. In particular, N = g−1(1),
the unit circle, is a regular level set. Observe furthermore that, at a point (x, y) ∈ N , the tangent
space T(x,y)N = ker(Dg(x, y)) consists of the vectors orthogonal to (x, y), as expected. N has
dimension 1. △

You can similarly verify that the unit sphere in Rn is a regular level set of dimension n− 1.

Example 6.26. IfN = g−1(y) is regular then U∩N is also a regular level set, since you can simply
restrict g|U . The dimension and the tangent spaces remain the same. △

One can consider the following more general notion:

Definition 6.27. A subset N ⊂ Rn is a submanifold if for each point p ∈ N you can find an open
U such that U ∩N is a regular level set (for some function). N has dimension n− k if each U ∩N
does. △

The tangent space TpN of a submanifold N at a point p ∈ N is then defined by taking a function
g representing N locally as a regular level set and applying Definition 6.24. One must that this is
independent of the chosen g and thus well-defined. This will be one of the main corollaries (Corollary
6.38) of the theory of Lagrange multipliers.
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Lemma 6.28. N ⊂ Rn is a submanifold if and only if for each point p ∈ N you can find an open
U and a function g : U → Rk with N ∩ U = g−1(y) such that Dg(p) surjective.

Proof. Dg(p) being surjective means that it has a k-by-k minor with non-zero determinant. Since
Dg is continuous and the determinant is a continuous function, the same is true for all x in a suffi-
ciently small ball B(p, ε) around p. It follows that N ∩B(p, ε) is a regular level set.

The theory of (sub)manifolds is developed in more detail in the courses Analyse in meer variabelen
and Differentieerbare varieteiten.

6.3.1 Examples

Example 6.29. In R3, let us consider the functions f(x, y, z) := x2+y2−z and g(x, y, z) :=
z − 1, as well as the function (f, g) : R3 → R2 that they form together.

We ask ourselves whether A := f−1(0), B := g−1(0) and C := (f, g)−1(0) = A ∩ B are
submanifolds of R3. We claim that the answer is yes, because all of them are regular level sets.

We compute Df(x, y, z) = (2x 2y − 1), Dg(x, y, z) = (0 0 1), and thus:

D(f, g)(x, y, z) =

(
2x 2y −1
0 0 1

)
.

We observe thatDf andDg are never zero. This means that all level sets of f and g are regular,
including A and B. We deduce that A and B are submanifolds of dimension 2 = 3− 1.

Next, we check whether (f, g) has critical points. This amounts to finding those (x, y, z) such
that the matrix D(f, g)(x, y, z) has rank 1 (note that it can never have rank zero since both
rows are non-vanishing). Having rank 1 means that the two rows are proportional to each
other. I.e. there is some λ such that Df = λDg. Looking at the third coefficient we see that
necessarily λ = −1. This implies that x = y = 0. I.e. we find that the singular points of (f, g)
ocurr along the subset

Σ := {x = y = 0} = {(0, 0, z)},

i.e. the z-axis. This means that a level set of (f, g) is regular if and only if it is disjoint from
Σ. We see that: (f, g)(0, 0, z) = (−z, z − 1) ̸= 0. I.e. Σ and C are indeed disjoint, so C is a
regular level set and thus a submanifold of dimension 1 = 3− 2.

For completeness, do note that A is the graph of z(x, y) = x2 + y2, a paraboloid. Graphs are
always submanifolds. Similarly, B is the graph of z(x, y) = 1, i.e. it is the horizontal plane at
height z = 1. Their intersection C is therefore the unit circle at height z = 1. △

Example 6.30. In R3, consider the function f(x, y, z) := x2 + y2 − z2. We ask ourselves
whetherA := f−1(0) is a regular level set and thus a submanifold. We computeDf(x, y, z) =
(2x 2y − 2z). This means that f has a single critical point, namely (0, 0, 0). This point is
precisely in the level set A, so A is not a regular level set.

Nonetheless,A is a submanifold almost everywhere. Namely, consider the openU := R3\{0}.
Then A ∩ U = (f |U )−1(0) is a regular level set and thus a submanifold of dimension 2.
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Drawing A shows exactly this: A is a cone and (0, 0, 0) is precisely the cone point in which
the two sheets of the cone come together. At that point A does not resemble a linear subspace
so it is visibly not a submanifold at that point (see the upcoming Theorem 6.34). △

The procedure described in the previous exercise is general:

Exercise 6.31. Let f : U → Rk be a C1 function and let A = f−1(y) be a level set, not necessarily
regular. Suppose Σ ⊂ U is the set of critical points of f . Show that Σ is closed. Deduce that A ∩ V
is a regular level subset of the open V := U \ Σ. △

6.3.2 Submanifolds and change of coordinates

In Subsection 6.1.7 we saw that C1-diffeomorphisms preserve the C1 information of functions. The
same is true for submanifolds:

Lemma 6.32. Let W ⊂ Rn be an open containing a submanifold N . Given a C1 diffeomorphism
f :W → f(W ), the image f(N) is also a submanifold.

Proof. We must show that f(N) is a regular level set close to each x ∈ f(N). Since N is a
submanifold we can consider a = f−1(x) ∈ N and find an open U containing a such that N ∩ U =
g−1(y) is a regular level set, with g : U → Rk some C1 function.

Since f is a C1-diffeomorphism we have that f(U) is an open containing x. We also deduce that
g ◦ f−1 is C1. We see that f(N ∩U) = g ◦ f−1(y), but we have to show that it is a regular level set.
Using the chain rule (Theorem 3.48) we see that D(g ◦ f−1)(x) = Dg(a) ◦D(f−1)(x) is surjective
because Dg(a) is surjective and D(f−1)(x) is invertible. This proves the claim.

We think of the tangent space TaN as the best linear, first order approximation of N at a. As such, it
is C1 information, so it should be transformed nicely under a C1-diffeomorphism. This is indeed the
case, since: TaN = ker(Dg(a)) and Tx(f(N)) = ker(Dg(a) ◦D(f−1)(x)) are related by the linear
isomorphism D(f)(a)|TaN : TaN → Tx(f(N)).

Lemma 6.33. Suppose N = g−1(y) is a regular level set of g : U → Rk. Suppose h : Rk → Rk is
a diffeomorphism. Then N is also the regular level set (h ◦ g)−1(h(y)).

Proof. N = (h ◦ g)−1(h(y)) follows from the fact that h is a bijection. That it is regular follows
once more from the chain rule (Theorem 3.48), since D(h ◦ g)(x) = Dh(g(x)) ◦Dg(x) and Dg(x)
is surjective and Dh(g(x)) is bijective.

Observe also that ker(Dg(x)) = ker(Dh(g(x)) ◦Dg(x)), since h is an isomorphism. This was to be
expected, since both describe the tangent space TxN .

6.3.3 The regular value theorem

We now prove our main result about submanifolds, which says that, in suitable local coordinates,
every submanifold of dimension n − k is equivalent to Rn−k. Remember the classic example: the
unit sphere in R3 is a two-dimensional manifold and, as such, locally, it resembles the plane R2.
However, globally they are very different. I.e. the Earth may seem flat, if we look close to us, but this
is not true globally!
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Theorem 6.34. Suppose N ⊂ Rn is a submanifold of dimension n − k. Fix a point a ∈ N .
Then, there are opens U ∋ a and V in Rn and a diffeomorphism ϕ : V → U such that

• ϕ({0} × Rn−k ∩ V ) = N ∩ U .

• ϕ(0) = a.

• Dϕ(0) restricts to an isomorphism {0} × Rn−k → TaN .

Proof. The goal is to construct ϕ via the inverse function theorem. Consider an open U ′ containing
a such that N ∩ U ′ is the regular level set g−1(0) of a function g : U ′ → Rk. In particular, we have
that Dg(a) : Rn → Rk is surjective. Our first goal is to use linear transformations to simplify how
N and g look at a.

According to Lemma 2.16 we can find linear changes of basis A : Rn → Rn and B : Rk → Rk so
that B ◦Dg(a) ◦A has a initial k-by-k block that is the identity matrix and its last n− k columns are
zero. Observe that B ◦ g still has N ∩U ′ as zero level set, since B is invertible. We can then consider
the change of coodinates ψ(x) = a+A(x) : Rn → Rn. Observe that it sends 0 to a. The function

h = B ◦ g ◦ ψ : ψ−1(U ′) → Rk

satisfies Dh(0) = B ◦Dg(a)◦A. We deduce (Lemmas 6.32 and 6.33) that M = h−1(0) = ψ−1(N)
is a regular level set with T0M = {0} × Rn−k. That is, we have simplified the situation to the case
where the tangent space looks like {0} ×Rn−k. Now we will change coordinates further to make M
look like it.

Consider the function H : ψ−1(U ′) → Rn given by the formula

H(x) = (h(x), ⟨ek+1, x⟩, · · · , ⟨en, x⟩).

The logic is that the first k outputs are the function h, whose zero level set is M . The last (n − k)
outputs are the usual coordinates in {0} × Rn−k. That is, we are trying to use the coordinates in
T0M to produce coordinates in M itself. By construction, DH(0) is the identity so the local inverse
function theorem applies (Theorem 6.7), telling us that H : W ⊂ ψ−1(U ′) → V = H(W ) is a
diffeomorphism if we restrict to a small neighbourhood W of 0.

Now we check. By construction, H(x) ∈ Rn−k if and only if h(x) = 0 if and only if x ∈ M . We
deduce that H(M ∩W ) = Rn−k ∩ V . As such, the proof is complete if we set U = ψ(W ) and
ϕ = ψ ◦H−1.

6.4 Lagrange multipliers

We can now define critical points for the restriction of a function to a submanifold. It resembles the
definition in the usual case:

Definition 6.35. Let U ⊂ Rn be an open, N ⊂ U a submanifold, and f : U → R a C1-function. A
point a ∈ N is stationary or critical for f |N if Df(a)|TaN : TaN → R is zero. △

We can use linear algebra to reformulate Definition 6.35 in various helpful ways:
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Lemma 6.36. Consider an open U ⊂ Rn, a regular level set N = g−1(y) ⊂ U , and a
C1-function f : U → R. The following conditions are all equivalent:

(a) a is a critical point of f |N .

(b) There is a unique collection of Lagrange multipliers λ1, . . . , λk ∈ R such that:

Df(a) = λ1Dg1(a) + · · ·+ λkDgk(a). (6.2)

(c)
kerDf(a) ⊃ kerDg(a). (6.3)

Proof. Recall Proposition 2.27. The point a is stationary if and only if Df(a)|TaN = 0, mea-
ning that Df(a) belongs to the annihilator of TaN . Note that the annihilator is spanned by the
rows {Dgj(a)} by construction. Condition (b) means that Df(a) belongs to the linear span of the
{Dgj(a)}. Condition (c) means that f vanishes on the annihilator of Dg(a), which is TaN . All
conditions are thus equivalent.

The main result of this subsection reads:

Theorem 6.37. Consider an open U ⊂ Rn, a C1-function g : U → Rk with regular level set
N = g−1(y), and a C1-function f : U → R. Suppose that the restriction f |N : N → R has a
(local) maximum or minimum a ∈ N . Then a is a critical point of f |N .

Proof. We will prove it in two steps.

Step I: The simplified case of Rn−k. Consider first the following simplified setting: Suppose g is
given by the coordinate functions gj(x) = xj : U → R with 1 ≤ j ≤ k, so N = U ∩ ({0} ×Rn−k).
Suppose moreover that f |N has a local maximum/minimum at the origin.

These assumptions imply that we can write N = {0} × U ′, with U ′ a neighbourhood of zero 0 in
Rn−k. Furthermore, we can restrict f to F : U ′ → R by setting x′ 7→ f(0, x′). This is a C1-function,
defined over an Euclidean open, that also has a local maximum/minimum at the origin. According to
Lemma 3.33 it then follows that DF (0) = 0 so Djf(0) = 0 voor all j > k.

This tells us that the annihilator of {0} × Rn−k is spanned by the {Dgj(0)} and that Df(0) belongs
to it. It follows that the latter is a linear combination of the former, so Equation (6.2) follows and thus
the claim (Lemma 6.36).

Step II: End of the proof by changing coordinates. We now address the general case. We let N , g,
and f be arbitrary, as in the statement of the theorem.

Given a point a ∈ N we can find a diffeomorphism ϕ : V → U such that:

• ϕ({0} × Rn−k ∩ V ) = N ∩ U ,

• ϕ(0) = a,

• Dϕ(0) is a linear isomorphism between the tangent spaces {0} × Rn−k and ker(Dg(a)).

Suppose that a ∈ N is a local extremum of f |N . Then 0 is a local extremum of f ◦ϕ|{0}×Rn−k∩V and
Step I applies, showing thatD(f ◦ϕ)(0) = Df(a)◦Dϕ(0) is in the annihilator of {0}×Rn−k. Since
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Dϕ(0) is a linear isomorphism, this is equivalent to Df(a) being in the annihilator of Dϕ(0)({0} ×
Rn−k) = ker(Dg(a)). According to Lemma 6.36 this concludes the proof.

An important consequence is that the tangent space TxN of a submanifold N at x is well-defined,
since it does not depend on the concrete function used to present it as a regular level set:

Corollary 6.38. Suppose f, g : U ⊂ Rn → Rk are C1-functions and N = f−1(0) = g−1(0) is a
regular level set for both. Then ker(Df(x)) = ker(Dg(x)) for every x ∈ N .

Proof. Recall Subsection 2.4.3. Fix a point x ∈ N . SinceN is a regular level set, ker(Df(x)) ⊂ Rn

is a (n− k)-dimensional subspace and its annihilator is the k-dimensional subspace ker(Df(x))⊥ ⊂
(Rn)∗ spanned by the covectors {Dfj(x)}. The same is true for g: the {Dgi(x)} span the k-
dimensional annihilator ker(Dg(x))⊥ of ker(Dg(x)).

Now, since g|N = 0, all the points in N are critical for the functions {gi}. According to Theo-
rem 6.37, this means that each Dgi(x) belongs to the span of the {Dfj(x)}. I.e. ker(Dg(x))⊥ ⊂
ker(Df(x))⊥. Since both have dimension k, equality holds. The claim then follows by taking anni-
hilators (Proposition 2.27).

We wrap up this chapter with an application:

Example 6.39. Consider the circle C ⊂ R3 consisting of the points (x, y, z) with z = 0 en
x2 + y2 = 1. We first show that this is a submanifold of dimension 1. Consider indeed the
function g : R3 → R2 with entries g1, g2 ∈ C1(R3) defined as

g1(x, y, z) = z, g2(x, y, z) = x2 + y2 − 1.

We observe that C = g−1(0) = {(x, y, x) ∈ R3 | g1(x, y, z) = g2(x, y, z) = 0} is a regular
level set, since the pair

Dg1(x, y, z) = (0 0 1), Dg2(x, y, z) = (2x 2y 0)

is linearly independent in the locus {x, y ̸= 0} (i.e. away from the z-axis).

We now consider the following problem: fix the point p = (1,−2, 3) and compute which
points from C are closest to p. This means that we are interested in the global minima of f |C ,
where f ∈ C1(R3) is the distance function

f(x, y, z) = ∥(x, y, z)− p∥2 = (x− 1)2 + (y + 2)2 + (z − 3)2.

Since C is closed and bounded, we know that f |C must have at least one global maximum and
one global minimum. To find them we use the Lagrange multipliers method.

We compute
Df(x, y, z) = (2(x− 1) 2(y + 2) 2(z − 3)).

According to Lemma 6.36 and Theorem 6.37, a point (x, y, z) ∈ C is critical if and only if the
Lagrange multiplier equation

Df(x, y, z) = λDg1(x, y, z) + µDg2(x, y, z)

has a solution, for some λ, µ ∈ R. In our concrete case it reads

(2(x− 1) 2(y + 2) 2(z − 3)) = λ(0 0 1) + µ(2x 2y 0).

103



We can simplify this a bit; indeed, the constraint (x, y, z) ∈ C means that z = 0 and x2+y2 =
1, so the equation simplifies as:

(2(x− 1) 2(y + 2) − 6) = λ(0 0 1) + µ(2x 2y 0)

which implies that λ = −6. We then have the equations

(x− 1) = µx, y + 2 = µy, x2 + y2 = 1,

which can be rewritten as

x((1− µ) = 1, y(µ− 1) = 2, x2 + y2 = 1,

and then as
x(1− µ) = 1, y = −2x, x2 + y2 = 1.

Which gives the solutions:

(x′, y′, µ′) = (
1

5

√
5,−2

5

√
5, 1 +

√
5), (x′′, y′′, µ′′) = (−1

5

√
5,

2

5

√
5, 1−

√
5).

It must be the case that one of them is the maximum and the other the minimum. We can
compute and see that f(x′, y′, 0) < f(x′′, y′′, 0) so (x′, y′, 0) is the global minimum and
(x′′, y′′, 0) the global maximum. △
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7 Line integrals

In Chapter 5 we studied the integration of multivariate functions f : U ⊂ Rn → R over n-
dimensional hypercubes C ⊂ U . In Subsection 5.1 we remarked that there are other notions of
integration: there are so-called differential k-forms that can be integrated over k-dimensional subma-
nifolds of U .

This is a topic you will see fully worked out in upcoming courses. For now, we will look solely into
the case k = 1. We recommend that you review the contents of Subsection 1.2.

7.1 Covector fields

Definition 7.1. Consider an open subset U ⊂ Rn. A covector field on U is a function α : U →
Lin(Rn,R). △

That is, a covector field assigns a covector α(x) ∈ (Rn)∗ to each point x ∈ U . We can then speak of
covector fields that are continuous or Ck. Covector fields are also known as differential 1-forms. We
will see below that they are the objects that can be naturally integrated along curves.

The most important example is the following:

Definition 7.2. Suppose f : U ⊂ Rn → R is a Ck function. Then Df : U → Lin(Rn,R) is a
Ck−1 covector field. We say that:

• The function f is a primitive or potential of Df .

• The vector field Df is exact. △

This motivates us to ask the following question: Does every continuous covector field have a poten-
tial? In one variable the answer is yes, according to the fundamental theorem of calculus. However,
the answer is no if n ≥ 2, as the following observation shows:

Lemma 7.3. Suppose α : U → Lin(Rn,R) is a C1 covector field with C2 potential f : U → R.
Then it holds, for each i and j, that

Djαi = DjDif = DiDjf = Diαj .

Identically, if you write Dα : U → Lin(Rn,Lin(Rn,R)) as a square matrix, it holds that it is a
symmetric matrix.

Proof. The proof is already in the statement. Observe that α = Df being C1 implies automatically
that f is C2. Then, according to Theorem 4.5, we can switch the order of differentiation when
considering DjDif . The claim follows.

This concept is so important that it deserves a name:

Definition 7.4. A C1 covector field α : U → Lin(Rn,R) is closed if Djαi = Diαj for every i and
j. △

The lemma above can then be stated as:
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Proposition 7.5. A covector field that is exact is also closed.

7.1.1 Statement of the main results

This leads us to the main question of this chapter: Is every closed covector field in U exact? The
answer is yes if U is simply-connected:

Theorem 7.6. Let U be a simply-connected open. Then any closed covector field in U is
exact.

From this result we obtain a criterion to detect whether an open U is simply-connected:

Corollary 7.7. Suppose U admits a closed but non-exact covector field. Then U is not simply-
connected.

Which we will use to show that:

Theorem 7.8. R2 \ {0} admits a closed but non-exact covector field. In particular, it is not
simply-connected.

These results are incredibly remarkable: they say that the shape of U is closely related to the analysis
of functions and covector fields on U .

Proving these results will take the rest of the chapter. The path towards a proof is natural: being
simply-connected is about loops in U . These interact with covector fields precisely because covector
fields are the objects that naturally integrate over curves. In particular, we will:

• Define the line integral
∫
γ α of a covector field α along a path γ (Subsection 7.2).

• See that the line integral only depends on the endpoints of γ if α is exact (Lemma 7.12). In
particular, it is zero if γ is a loop.

• State and prove the main technical statement of the chapter, Theorem 7.19, which explains how
ine integrals of closed covector fields behave under homotopy.

7.2 Line integrals

As claimed earlier:

Definition 7.9. Fix an openU ⊂ Rn and a continuous covector field α : U → Lin(Rn,R). Suppose
γ : [a, b] → U is a C1 curve. The line integral of α along γ is defined by the expression:∫

γ
α :=

∫ b

a
α(γ(t))(γ′(t))dt. △

Recall that γ′(t) ∈ Rn is a vector, e.g. a column. α(γ(t)) is a covector, e.g. a row. We can matrix
multiply the two, yielding a number:

α(γ(t))(γ′(t)) =
n∑

j=1

αj(γ(t))γ
′
j(t).
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You should interpret it as “the length of γ′(t) according to α(γ(t))”. Equivalently, as a function of t,
you can think of it as “the restriction of α to γ”. This means that the integral

∫
γ α should be thought

as “the length of γ according to α”. Refer to Corollary 7.25 for a bit more discussion.

Note moreover that the line integral is indeed well-defined. First, the velocity γ′ is continuous because
γ ∈ C1. Secondly, according to Proposition 1.5, the function t 7→ α(γ(t))(γ′(t)) is continuous. It
follows that it is Riemann integrable.

7.2.1 The line integral is intrinsic

The following result says that the line integral is invariant under reparametrisation (recall Definition
1.17):

Proposition 7.10. Let α be a continuous covector field in U , γ : [a, b] → U a C1 curve, and
ν = γ ◦ ρ : [c, d] → U a reparametrisation that is C1 (meaning that the change of coordinates
ρ : [c, d] → [a, b] is a C1-diffeomorphism). Then:∫

ν
α =

∫
γ
α.

Proof. According to the chain rule and using linearity we deduce that

ν ′(t) = Dγ(ρ(t))(ρ′(t)) = ρ′(t)γ′(ρ(t)).

As such: ∫
ν
α =

∫ d

c
α(ν(t))(ν ′(t))dt

=

∫ d

c
α(γ(ρ(t)))(ρ′(t)γ′(ρ(t)))dt

=

∫ d

c
α(γ(ρ(t)))(γ′(ρ(t)))ρ′(t)dt

=

∫ b

a
α(γ(s))(γ′(s))ds =

∫
γ
α.

In the last step we used the substitution s = ρ(t) which implies ds = ρ′(t)dt.

This proof is tautological: we defined covector fields they way we did precisely so that they interact
well with the substitution rule for the integral. Because of this, they define a notion of integration that
is intrinsic, i.e. independent of how we parametrise curves.

7.2.2 The line integral in the exact case

First let us remark:

Lemma 7.11. Suppose U ⊂ Rn is a path-connected open and α : U → Lin(Rn,R) is an exact
covector field with primitives f and g. Then f = g + C, with C a constant.

Proof. By definition Df = α = Dg so D(f − g) = 0, meaning that f − g is locally constant
(Proposition 3.37) and thus constant, since U is path-connected.
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The following tells us that computing integrals of exact fields is very easy:

Lemma 7.12. Suppose U ⊂ Rn is an open, α : U → Lin(Rn,R) is an exact covector field with
primitive f ∈ C1(U), and γ : [a, b] → U is a C1 curve. Then:∫

γ
α = f(γ(b))− f(γ(a)).

In particular, the integral does not depend on γ, only on its endpoints.

Proof. Observe that, according to the chain rule, the integrand satisfies:

Df(γ(t))(γ′(t)) = D(f ◦ γ)(t) = (f ◦ γ)′(t)

As such, we can apply the fundamental theorem of calculus to see that:∫
γ
α =

∫ b

a
(f ◦ γ)′(t)dt = f(γ(b))− f(γ(a)).

In particular, since a loop has the same beginning and endpoints:

Corollary 7.13. Suppose γ : [0, 1] → U is a C1-loop. Then
∫
γ Df = 0.

7.2.3 Piecewise curves

We argued above that γ being a C1 curve was important in order for the line integral to be well-
defined. In practice (and in some of the arguments below), one can relax this assumption as follows:

Definition 7.14. A continuous curve γ : [a, b] → U is said to be piecewise C1 if there is a partition
a = a0 < . . . < aN = b of the interval [a, b] so that the restriction γ|[aj−1,aj ] to each subinterval is
C1. △

The integral of a piecewise curve is then defined as:

Definition 7.15. Suppose γ : [a, b] → U is a piecewise C1 curve, with associated partition a =
a0 < . . . < aN = b. Then the line integral of a C0 covector field α : U → Lin(Rn,R) is defined by:∫

γ
α :=

n∑
j=1

∫
γ|[aj−1,aj ]

α. △

A couple of remarks are in order. First, observe that one can choose different partitions by subdividing
[a, b] into smaller intervals. However,

∫
γ α does not depend on the choice of partition, due to the

additivity of the integral. Secondly, this definition extends Definition 7.9 in the sense that every C1

curve is in particular piecewise C1 and both notions compute the same integral in that case.

7.2.4 Operations on curves

In Subsection 1.2.1 we discussed three operations on paths: concatenation, reversing, and reparame-
trisation. We have already seen how the latter behaves with the line integral (Proposition 7.10). We
now discuss the other two.
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Lemma 7.16. Suppose γ, ν : [0, 1] → U ⊂ Rn are C1 curves with γ(1) = ν(0). Suppose
α : U → Lin(Rn,R) is a continuous covector field. Then the line integral of the concatenation
satisfies: ∫

ν·γ
α =

∫
ν
α+

∫
γ
α.

Proof. First observe that
∫
ν·γ α is well-defined because ν ·γ is piecewiseC1. Moreover, (ν ·γ)|[0,1/2]

is a reparametrisation of γ, so both have the same integral (Proposition 7.10). Similarly, (ν · γ)|[1/2,1]
is a reparametrisation of ν. The claim follows by splitting the integral into two, as in Definition
7.15.

Regarding the reverse curve:

Lemma 7.17. Suppose γ : [0, 1] → U ⊂ Rn is a C1 curve and α : U → Lin(Rn,R) is a
continuous covector field. Then: ∫

γ̄
α = −

∫
γ
α.

Proof. We argue as in Proposition 7.10. Since γ̄′(t) = −γ′(1 − t), we can apply the substitution
s = 1− t and thus ds = −dt:∫

γ̄
α =

∫ 1

0
α(γ(1− t))(−γ′(1− t))dt

=

∫ 0

1
α(γ(s))(γ′(s))ds

= −
∫ 1

0
α(γ(s))(γ′(s))ds

= −
∫
γ
α,

where we used that reversing the direction of integration reverses the value of the integral.
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7.3 Proof of the main results

7.3.1 The Poincaré lemma

We first establish Theorem 7.6 in the particular case in which U is convex. This is by itself an
important result, known as the Poincaré lemma for differential 1-forms. It is also the first ingredient
towards a proof of the general case.

Theorem 7.18. Let U ⊂ Rn be convex. Then every closed covector field in U is exact.

Proof. Fix a closed covector field α : U → Lin(Rn,R). Note that it is at least C1, since it is
closed. We want to construct a potential f ∈ C2(U,R). The crucial idea is that we can construct f
via integration using Lemma 7.12. We will also use induction on n.

First, the base case is n = 1. In this situation we know that every covector field is exact, since we can
simply integrate to yield a primitive.

For the inductive step we assume that the statement is true for all dimensions m < n. Fix then a
constant C such that the hyperplane {xn = C} intersects U in a non-empty set; call it H . We can
then consider the restriction α|H : H → Lin(Rn−1,R) given by α|H = (α1 · · · αn−1). This is
now a C1 covector field in one less variable, and is still closed. Since H is convex, we deduce that
α|H is exact. Let us denote its potential by g : H → R.

We now define f : U → R, the primitive of α, using g. First, for each point x ∈ H we set
f(x) := g(x). Given any other point x ∈ U we can write it as (y, xn) = (x1, · · · , xn−1, xn) and
consider the point (y, C) ∈ H to which it projects. The two points are connected by the vertical curve
γy(t) := (y, t) with t ∈ [C, xn]. According to Lemma 7.12, the desired equality Df = α forces that:

f(y, xn) = f(y, C) +

∫
γy

α

= g(y, C) +

∫ xn

C
α(y, t)(en)dt

= g(y, C) +

∫ xn

C
αn(y, t)dt,

where we used that γ′y(t) = en.

Lastly, we verify that this f is indeed a potential of α. Indeed, for each i < n:

Dif(y, xn) = Dig(y, C) +

∫ xn

C
(Diαn)(y, t)dt = αi(y, C) +

∫ xn

C
(Dnαi)(y, t)dt = αi(y, xn).

In the first equality we used Theorem 5.21, the switching of integration and differentiation, using
that α is C1 and that we are integrating over a closed interval. In the middle inequality we used the
closedness of α to switch the indices n and i. It remains to check the claim for the index i = n, which
is immediate from the fundamental theorem of calculus:

Dnf(y, xn) = Dn

∫ xn

C
αn(y, t)dt = αn(y, xn),

since the term g(y, C) does not depend on the variable xn. This finishes the proof.
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7.3.2 The main technical ingredient

Recall that all covector fields are closed and exact in one-variable. This means that, along a path, we
can always find a potential. Similarly, a square is a convex subset, so Theorem 7.18 applies, allowing
us to deduce that closed covector fields have a potential over the square. Since a homotopy is a map
that has the square as domain, this reasoning suggests that:

Theorem 7.19. Fix an open subset U ⊂ Rn and a closed covector field α : U → Lin(Rn,R).
Fix moreover curves γ0, γ1 : [a, b] → U and a homotopy Γ : [a, b] × [0, 1] → U between the
two. Suppose that one of the following two assumptions holds:

(a) Γ is a homotopy relative endpoints.

(b) Γ is a homotopy of loops.

Then: ∫
γ0

α =

∫
γ1

α. (7.1)

This result is often informally called the “invariance of the line integral under homotopy”, but you
should keep in mind that the invariance only holds under the assumptions of the theorem.

An immediate corollary is the following:

Corollary 7.20. Fix an open subset U ⊂ Rn and a C1, closed covector field α : U → Lin(Rn,R).
Suppose γ is a nullhomotopic loop. Then

∫
γ α = 0.

Proof. By assumption γ is homotopic as a loop to a constant loop η. Then Theorem 7.19 implies
that

∫
γ α =

∫
η α, but the later is zero because η′(t) = 0 for all t.

The proof of Theorem 7.19 amounts to formalising the heuristic arguments above. Something that
should catch your attention is that the curves γi are just required to be continuous! Indeed, defining
the line integral of α over a continuous curve will be a crucial part of the proof. We postpone this
for now, since it will take the rest of the chapter (Section 7.4). Instead, let us see first how this result
implies Theorem 7.6.

7.3.3 Proof of Theorem 7.6

Proof of Theorem 7.6. Fix a C1 closed covector field α : U → Lin(Rn,R), as well as a point
x ∈ U . We now define a primitive f : U → R of α. We do so as in Theorem 7.18. Given any other
y ∈ U we pick a path γy connecting x to y (which exists because U is path-connected) and we set:

f(y) :=

∫
γy

α.

Recall that this equality is forced by Lemma 7.12.

First we observe that f is in fact well-defined, i.e. it does not depend on the choice of γy. Indeed,
given any other path ν connecting x to y, we can find a homotopy Γ between the two using the fact
that U is simply-connected (Proposition 1.44). Theorem 7.19 then tells us that

∫
γy
α =

∫
ν α, since α

is closed.
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It remains to show that f is a potential for α. To see this, take a ball V containing y. Given any z ∈ V
we can consider a path ηz connecting y to z. Then the concatenation ηz · γy is a path from x to z, so
it follows (Lemma 7.16) that:

f(z) =

∫
γz

α =

∫
γy

α+

∫
ηz

α = f(y) +

∫
ηz

α. (7.2)

Since V is convex, Theorem 7.18 applies, producing a potential gV for α|V . According to Lemma
7.12, this function must also satisfy (7.2). It follows that gV and f |V differ by a constant, so the latter
is also a potential. Since this is true for all y, the proof is complete.

Theorems 7.19 and 7.6 together then imply that:

Corollary 7.21. Suppose U ⊂ Rn is a simply-connected open and α is a closed covector field on
U . Then:

(a) All loops γ : [a, b] → U satisfy: ∫
γ
α = 0.

(b) All pairs of curves γ1, γ2 : [a, b] → U with equal endpoints satisfy:∫
γ1

α =

∫
γ2

α.

7.3.4 Proof of Theorem 7.8

Proof of Theorem 7.8. According to Theorem 7.6 we simply need to find a covector field α in
U = R2 \ 0 that is closed but not exact. In light of Corollary 7.21 this amounts to finding a loop
γ : [a, b] → R2 \ 0 such that

∫
γ α ̸= 0.

We consider the C1 covector field

α(x, y) :=
1

x2 + y2
(−y x)

on U . A direct computation yields

D2α1(x, y) = − 1

x2 + y2
− 2y2

(x2 + y2)2
=

y2 − x2

(x2 + y2)2
.

In a similar way one finds

D1α2(x, y) =
y2 − x2

(x2 + y2)2
.

Which shows that α is indeed closed.

Now we consider the closed curve γ : [0, 2π] → U defined by γ(t) := (cos t, sin t). This is the usual
parametrisation of the unit circle in R2 at unit speed. The curve γ is C∞ with derivative γ′(t) =
(− sin t, cos t). Now we have α(γ(t)) = (− sin t, cos t) and α(γ(t))(γ′(t)) = cos2 t + sin2 t = 1.
As such, the line integral reads: ∫

γ
α =

∫ 2π

0
1dt = 2π ̸= 0.

It follows that U is not simply-connected (Corollary 7.21), γ is not nullhomotopic (Corollary 7.20),
and α is not exact (Corollary 7.13).

112



Exercise 7.22. Consider U = R2 \ {p, q}, where p, q ∈ R2 are some arbitrary points. Show that U
is path-connected but it is not simply-connected. △

7.3.5 Higher euclidean spaces with punctures

In Topologie en Meetkunde you will learn the tools to prove that U := Rn \ {0} is simply-connected
if n ≥ 3. For now, just assume that this is the case.

Example 7.23. Consider the covector field α : U → Rn defined by

α(x) := − x

∥x∥3
.

This covector field satisfies ∥α(x)∥ = ∥x∥−2 and, for n = 3, is known from Newton’s theory of
gravitation. For i ̸= j we have

Diαj(x) = − ∂

∂xi

(
xj(∥x∥2)−3/2

)
= −3

2
xj(∥x∥2)−5/2 ∂

∂xi
(∥x∥2)

= −3xjxi∥x∥−5.

It follows that α is closed. By Theorem 7.6, it follows that it has a potential f : Rn \ {0} → R. △

One can take this a step further and compute a explicit potential:

Exercise 7.24. Let α be as in Example 7.23 and let f : U = Rn\{0} → R be the (unique) potential
satisfying f(e1) = 0. Let S denote the unit sphere in Rn.

(a) Show that f(re1) = 1
r − 1, for all r > 0.

(b) Show that for every orthogonal linear transformation A : Rn → Rn and every C1 curve
γ : [0, 1] → U we have ∫

γ
α =

∫
A◦γ

α.

(c) Show that for any pair of vectors y, z ∈ S with y, z ⊥ e1 there exists an orthogonal transfor-
mation A : Rn → Rn such that Ae1 = e1 and Ay = z.

(d) Show that for all y, z ∈ S ∩ e⊥1 we have f(y) = f(z).

(e) Show that for all x ∈ S we have f(x) = 1.

(f) Show that f(x) = ∥x∥−1 − 1 for x ∈ U .

(g) Show in two ways that g : x 7→ ∥x∥−1, U → R defines a potential of α. First, by using item
(e). Secondly, by direct computation. △
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7.4 Proof of Theorem 7.19

We dedicate the rest of the chapter to proving Theorem 7.19. The idea of the proof is the following:
Given two paths γ0 and γ1, homotopic relative endpoints via a homotopy Γ, we “restrict the closed
covector field α to Γ”. Since the domain of Γ is a square C (and thus convex), Theorem 7.18 tells us
that α is exact along Γ. It follows that the integral of α along the boundary of Γ is zero (Corollary
7.13). However, the boundary is the concatenation of γ0, the constant curve with value γ0(1), the
reverse γ̄1, and the constant curve with value γ0(0). As such, we can split the integral into four pieces
(as in Definition 7.15), two of which are zero, the two others being

∫
γ0
α and −

∫
γ1
α. The claim then

follows.

There are a couple of issues with this argument. First, we have to understand what it means to restrict
α to Γ. A second more difficult issue is that the theory developed in Subsection 1.2 deals with
continuous paths and homotopies (since we were working in the setting of metric spaces). However,
the theory of line integrals requires us to work in the C1 setting. One can then proceed in two ways:

1. Repeat all the theory of Subsection 1.2 in C1 regularity, and show that all key notions agree
(e.g. that an open U is simply-connected if and only if every C1 loop is nullhomotopic via a
C1 homotopy of loops).

2. Alternatively, extend the theory of line integrals of closed covector fields to the setting of
continuous curves.

Both approaches are valid and contain interesting ideas. In these notes we will pursue approach (2),
which is slightly less technical.

7.4.1 Line integral along continuous curves

First consider the following consequence of Lemma 7.12:

Corollary 7.25. Suppose U ⊂ Rn is an open, α : U → Lin(Rn,R) is an exact covector field with
primitive f ∈ C1(U), and γ : [a, b] → U is a C1 curve. Then:∫ t

a
α(γ(s))(γ′(s))ds = f(γ(t))− f(γ(a)).

This result tells us that we should think of α(γ(s))(γ′(s)) as the restriction of α to γ. It the-
refore becomes a covector field in one variable, so it can be integrated to find a primitive t 7→∫ t
a α(γ(s))(γ

′(s))ds along the curve. If a potential f already exists in U , then the two agree along γ.

We can generalise this to continuous curves as long as α is closed:

Definition 7.26. Suppose U ⊂ Rn is an open subset and α is a closed covector field. Consider a
continuous path γ : [a, b] → U . A primitive of α along γ is a function φ : [a, b] → R satisfying the
following property: For every t0 ∈ [a, b] there is a potential f of α, defined over some ball contaning
γ(t0), such that φ(t) = f(γ(t)) for every t in a sufficiently small neighbourhood of t0 in [a, b]. △

Lemma 7.27. Fix a closed covector field α on U . Let γ : [a, b] → U be a continuous curve. Then
α has exactly one primitive φ along γ satisfying φ(a) = 0. Other primitives along γ are given by
φ+ c, with c a constant.
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Proof. We first consider the case α = 0. Then the zero function is a potential along γ. Consider
some other potential φ : [a, b] → R along γ. Given t0 ∈ [a, b], there exists a ball neighbourhood B
of γ(t0) and a primitive f ∈ C2(B) such that f ◦ γ = φ on an open neighbourhood of t0. According
to Lemma 7.11, f is constant on B. Hence φ is constant on an open neighbourhood of t0 in [a, b].
Thus φ is locally constant on [a, b] and by Lemma 1.29 we conclude that φ is constant.

Consider now the general case in which α is a closed covector field on U . We first prove that the
difference of any two primitives is constant. Suppose φ1 and φ2 are two primitives along γ. Then
φ := φ1 − φ2 is a primitive of the zero covector field along γ. From the first part of the proof we
know that it is constant.

Finally, we prove the existence of a primitive. We define S as the set of s ∈ [a, b] such that α has a
primitive along γ|[a,s]. This set is bounded above by b, and contains a, so it is nonempty. By the least
upper bound property, S has a supremum σ := supS ≤ b. We will show that σ = b. Suppose not,
then σ < b.

Choose an open ball neighbourhood B of γ(σ) in U . By the continuity of γ at σ, there exists an open
neighbourhood J of σ in [a, b] such that γ(J) ⊂ B. By Theorem 7.18, α has a primitive f on B. We
distinguish two cases, namely σ = a and σ > a.

First suppose σ = a. There exists a δ > 0 such that [a, a + δ] ⊂ J . Then φ : t 7→ f(γ(t)) is a
primitive of v along γ|[a,a+δ]. Since a+ δ > σ we get a contradiction.

Now suppose a < σ < b. Fix δ > 0 such that [σ − δ, σ + δ] ⊂ J . The map ψ : t 7→ f(γ(t)) is
now a primitive of v along γ|[σ−δ,σ+δ]. From σ − δ/2 < σ it follows that [σ − δ, σ] ⊂ S, so α has a
primitive φ along γ|[a,σ−δ/2]. See Figure 10.
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Figuur 10: Continuation of primitive.

The restrictions of ψ and φ to I := [σ − δ, σ − δ/2] are both primitives of α along γ|I . From what
we proved earlier, there exists a constant c ∈ R such that φ = ψ+ c on I . It follows that the function
φ : [a, σ− δ/2] → R can be extended to a primitive on [a, σ+ δ], by defining it as φ := ψ+ c on the
interval [σ − δ/2, σ + δ]. It follows that σ + δ ∈ S, a contradiction. We conclude that σ = b, which
completes the proof.

The characterization of all primitives in Lemma 7.27 makes the following definition possible.

Definition 7.28. Let γ : [a, b] → U be a continuous curve, and let α : U → Rn be a closed cvector
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field. We define the integral of α along γ by∫ ∗

γ
α := φ(b)− φ(a),

with φ a primitive of α along γ. △

First, observe that the definition does not depend on the choice of primitive. Secondly, observe that
this defines the integral only for closed covector fields. In general it is not possible to define the
line integral of an arbitrary covector field along a continuous curve. Lastly, you should think of this
definition as being auxiliary. Our goal in this subsection is to show (Lemma 7.32) that this extends
the usual definition of line integral along a C1-curve. Once we have shown that we can get rid of the
star superscript. In order to show that this recovers the usual notion, we will show that it satisfies the
same properties that the usual line integral does.

We first show that the star-integral is invariant under continuous reparametrizations of γ:

Lemma 7.29. Let α be a closed covector field on U , γ : [a, b] → U a continuous curve, and ρ a
continuous reparametrization of γ. Then: ∫

ρ
α =

∫
γ
α.

Proof. There exists a continuous change of coordinates τ : [c, d] → [a, b] with τ(c) = a and
τ(d) = b such that ρ = γ ◦τ . Let φ be a primitive of α along γ. We will show that φ◦τ is a primitive
of α along ρ.

Let s0 ∈ [c, d] and write t0 := τ(s0) ∈ [a, b]. There exists an open ball B in U centered at γ(t0) =
ρ(s0) and a primitive f of α on B such that

φ(t) = f(γ(t)), (t ∈ I),

on a neighbourhood I of t0 = τ(s0) in [a, b]. By continuity of τ it follows that there exists an open
neighbourhood J of s0 in [c, d] such that τ(J) ⊂ I . Now for all s ∈ J we have τ(s) ∈ I , hence

f(ρ(s)) = f(γ(τ(s))) = φ(τ(s)) = φ ◦ τ(s).

According to the definition, φ ◦ τ is thus a primitive of α along ρ. Consequently,∫
ρ
α = φ ◦ τ(d)− φ ◦ τ(c) = φ(b)− φ(a) =

∫
γ
α.

The star-integral also behaves well under concatenation:

Lemma 7.30. Let α be a closed covector field and γ : [a, b] → U a continuous curve. Let c ∈ (a, b),
and define γ1 := γ|[a,c] and γ2 := γ|[c,b]. Then∫ ∗

γ
α =

∫ ∗

γ1

α+

∫ ∗

γ2

α.

Proof. Let φ be a potential of α along γ. Then the integral in the left-hand side equals φ(b)−φ(a).
Moreover, φ|[a,c] is a potential of α along γ1 and φ|[c,b] is a potential of α along γ2. Hence the sum
of the integrals in the right-hand side equals

[φ(c)− φ(a)] + [φ(b)− φ(c)] = φ(b)− φ(a).
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And also with respect to reversing:

Lemma 7.31. Let α be a closed covector field and γ : [a, b] → U a continuous curve. If f is a
primitive of α along γ then f̄(t) := f(1− t) is a primitive along the reverse γ̄. As such:∫ ∗

γ̄
α = −

∫ ∗

γ
α.

We finally show that, for C1 curves, the star-integral is just the usual integral:

Lemma 7.32. Let γ : [a, b] → U be a C1 curve, and α a closed covector field. Then∫ ∗

γ
α =

∫
γ
α.

Proof. We first work under the assumption that γ([a, b]) is contained in an open ball B ⊂ U . Then,
by Theorem 7.6, α has a primitive f on B. Moreover, f ◦ γ is a primitive of α along γ. Combining
Definition 7.28 and Lemma 7.12 yields the result:∫ ∗

γ
α = f(γ(b))− f(γ(a)) =

∫ b

a
α.

The idea in the general case is to split the curve into pieces, each of which has its image contained in
a ball within U . This goes as follows. From compactness of [a, b] and continuity of γ it follows that
γ([a, b]) is compact in U . Then, according to Lemma 1.15, there exists an ε > 0 such that for every
t ∈ [a, b] we have B(γ(t); ε) ⊂ U .

Again by compactness and continuity (Propositions 1.10 and 1.13) it follows that γ : [a, b] → U is
uniformly continuous. Hence there exists a δ > 0 such that for all t1, t2 ∈ [a, b] it holds that

|t1 − t2| < δ =⇒ ∥γ(t1)− γ(t2)∥ < ε.

We can then choose a partition a = a0 < a1 < . . . < aN = b of the interval [a, b] such that
aj − aj−1 < δ for all 1 ≤ j ≤ N . As such, for all 1 ≤ j ≤ N we have that γ([aj−1, aj ]) ⊂
B(γ(aj); ε).

Write γj := γ|[aj−1,aj ] for each 1 ≤ j ≤ N . It follows from the first part of the proof that∫ ∗

γj

α =

∫
γj

α.

Summing over j = 1, . . . , N and repeatedly applying Lemma 7.30 yields the result:∫ ∗

γ
α =

N∑
j=1

∫ ∗

γj

α =

N∑
j=1

∫
γj

α =

∫
γ
α.

The exact same reasoning implies the slightly more general claim:

Corollary 7.33. Suppose γ : [a, b] → U is piecewise C1 and α is a closed covector field. Then:∫ ∗

γ
α =

∫
γ
α.
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7.4.2 Covector fields along homotopies

Our next step is to discuss homotopies of (continuous) curves and how they interact with closed
covector fields. Recall that a homotopy of curves is parametrised by a rectangle. As such, let R =
[a, b]× [c, d] be a rectangle in R2. We denote the boundary ofR in R2 by ∂R. This boundary consists
of four line segments. Suppose a continuous mapping σ : ∂R→ U is given. This is not a homotopy,
only its boundary. We introduce the following notation for the four continuous curves associated to
the four boundary segments:

σ1 : [0, 1] → U, t 7→ σ(a+ t(b− a), c), σ2 : [0, 1] → U, t 7→ σ(b, c+ t(d− c)),

σ3 : [0, 1] → U, t 7→ σ(b+ t(a− b), d), σ4 : [0, 1] → U, t 7→ σ(a, d+ t(c− d)).

Observe that these segments are being transversed in a counterclockwise manner. See Figure 11.
 

03
0 1 t
g X 1 yX

d tĳ3 5 ff4 2nA

4 12 zaak f o f U
In1 1

en

1 1
a µ

of 1 7
X 03

NaD µ
do C X 516,0
t 3 g Gĳp E
4 21 3

1 0 0
oa 7 o Ma6 016,0a a b

7 1
I To g

Figuur 11: The four boundary curves σj defined by a homotopy σ.

If we now fix a closed covector field α on U ⊂ Rn, we can consider its line integral along σ. It splits
as the sum of the line integrals along the four aforementioned segments:∫

σ
α :=

4∑
j=1

∫
σj

α. (7.3)

The following is the analogue, for continuous curves, of Corollary 7.13:

Lemma 7.34. Let σ : ∂R→ U be continuous and let α be a exact covector field on U . Then:∫
σ
v(x) · dx = 0.

Proof. Let f be a primitive of α. For every 1 ≤ j ≤ 4 the function f ◦σj is a primitive of α along
σj . Therefore, the right-hand side of (7.3) equals

4∑
j=1

[f(σj(1))− f(σj(0))]. (7.4)

From the fact that σj(1) = σj+1(0) for j = 1, 2, 3, and σ4(1) = σ1(0) it follows that the sum in (7.4)
is equal to zero.
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We now introduce homotopies into the discussion. We will say that σ : ∂R → U extends to R if
there is a homotopy Γ : R→ U such that σ = Γ|∂R. Then:

Proposition 7.35. Let σ : ∂R → U be continuous and α a closed covector field on U . If σ extends
to R then ∫

σ
α = 0. (7.5)

Observe that this result pretty much establishes Theorem 7.19 already. The idea behind the proof is
to partition R into small rectangles and apply Lemma 7.34 to each of them. This is a key idea in the
study of homotopies and you will encounter it again in the proof of the theorem of van Kampen, the
main result in Topologie en Meetkunde.

Indeed, let a = s0 < s1 < . . . < sp = b be a partition of [a, b] and c = t0 < t1 < . . . < tq = d a
partition of [c, d]. Write

Rjk = [sj−1, sj ]× [tk−1, tk],

so R is the union of the rectangles Rjk for 1 ≤ j ≤ p and 1 ≤ k ≤ q.

Lemma 7.36. Let Γ : R→ U be a homotopy and α a closed covector field on U For every partition
of R into subrectangles as above, we have:∫

Γ|∂R
α =

q∑
k=1

p∑
j=1

∫
Γ|∂Rjk

α.

Proof. We first prove the lemma in the situation where the number of rectangles Rij equals two, i.e.
pq = 2. By swapping the roles of the coordinates we may restrict to the case p = 2 and q = 1. Then
R = R11 ∪ R21 with R11 ∩ R21 = {s1} × [c, d]. We write σ = Γ|∂R for the boundary of the big
rectangle, σL = Γ|∂R11 for the boundary of the left rectangle, and σR = Γ|∂R21 for the boundary for
the right one. It holds that: ∫

Γ|∂R11

=

∫
σL

=

4∑
j=1

∫
σL
j

, (7.6)

where we have dropped the integrand α for convenince and split the integral along the boundary into
a sum of integrals along each of its four sides. Similarly:∫

Γ|∂R21

=

∫
σR

=

4∑
j=1

∫
σR
j

. (7.7)

We can see that:
σ1 = σL1 · σR1 , σ3 = σR3 · σL3

and:
σ2 = σR2 , σ4 = σL4 .

Adding (7.6) and (7.7), and taking into account Lemma 7.16, we obtain the sum

4∑
j=1

∫
σj

+

∫
σL
2

+

∫
σR
4

.

Since σR4 = (σL2 ), the last two integrals in this sum cancel each other due to Lemma 7.17. Thus we
find: ∫

Γ|∂R11

+

∫
Γ|∂R21

=
4∑

j=1

∫
σj

=

∫
Γ|∂R

.
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Figuur 12: Proof of Lemma 7.36.

We now treat the general case. For 1 ≤ k ≤ q we write R(k) = [a, b] × [tk−1, tk]. By repeated
application of the special case treated above it follows that∫

Γ|∂R(k)

α =

p∑
j=1

∫
Γ|∂Rjk

α.

Summing over k and again repeatedly applying the special case we obtain the desired identity.

We are now ready for the proof of Proposition 7.35.

Proof of Proposition 7.35. Since R := [a, b] × [c, d] is closed and bounded in R2 and therefore
sequentially compact, it follows that Γ(R) is a sequentially compact subset of U . From this, by
Lemma 1.15, it follows that there exists ε > 0 such that for every x ∈ Γ(R) we have B(x; ε) ⊂ U .

From the sequential compactness of R it follows that Γ is uniformly continuous on its domain R.
Thus there exists δ > 0 such that for all ξ, η ∈ R with ∥ξ − η∥ < δ it holds that ∥Γ(ξ)− Γ(η)∥ < ε.
We now choose a partition a = s0 < s1 < . . . sp = b and a partition c = t0 < t1 < . . . < tq
such that sj − sj−1 < δ/2 and tk − tk−1 < δ/2 for all 1 ≤ j ≤ p and 1 ≤ k ≤ q. Let Rjk :=
[sj−1, sj ] × [tk−1, tk]. Then for all ξ, η ∈ Rjk we have ∥ξ − η∥ < δ hence ∥Γ(ξ) − Γ(η)∥ < ε. It
follows that

Γ(Rjk) ⊂ B(Γ(sj , tk); ε) ⊂ U.

By Theorem 7.6, α is exact on B(Γ(sj , tk); ε). By Corollary 7.13 it follows that∫
∂Γjk

α = 0.

for all 1 ≤ j ≤ p and 1 ≤ k ≤ q. The desired result now follows by summing over j and k and
applying Lemma 7.36.

7.4.3 Homotopy invariance of the line integral

We can finally establish our main technical result:
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Proof Proof of Theorem 7.19. Let Γ : [a, b] × [0, 1] → U be a homotopy between γ0 and γ1;
denote R = [a, b] × [0, 1]. Further write σ = Γ|∂R for the boundary curve. The segment σ1 is a
reparametrization of γ0 and σ3 a reparametrization of γ1. Hence, with Proposition 7.35 we find that

0 =

∫
Γ|∂R

=

∫
γ0

+

∫
σ2

−
∫
γ1

+

∫
σ4

; (7.8)

again, we have omitted the integrand α in the notation. In item (a), σ2 and σ4 are constant curves, so
the corresponding line integrals are zero. From this the claim follows.

We continue with item (b). In this case, for every t ∈ [0, 1] we have

σ2(t) = Γ(b, t) = Γ(a, t) = σ4(1− t),

so the curves σ2 and σ4 are each other’s reverse. From this it follows that the corresponding integrals
in (7.8) cancel. This concludes the proof.

7.5 Line integrals of vector fields along curves

Vectors v ∈ Rn and covectors α ∈ (Rn)∗ are dual to each other, and we think of α(v) as the length
of v as witnessed by α. However, the standard inner product in Rn allows us to see each vector v as
the covector v∗ = ⟨v,−⟩. In down to earth terms this is the usual transposing of a column vector v to
see it as a row vector vt = v∗.

What this means is that all the theory we have developed for covector fields can be rephrased in terms
of vector fields:

Definition 7.37. Let U ⊂ Rn be an open. A vector field is a function v : U → Rn. △

We can once again talk about vector fields being continuous or Ck. By taking the inner product
we then see that the transpose vt is a covector field in U . In this manner we obtain a bijective
correspondence between vector fields and covector fields.

In particular, for each f ∈ C1(U,R), the covector field Df is identified with the gradient vector field
gradf . The function f is once again called the potential of gradf . We can also focus on those v such
that Dv is symmetric, which we call being rotation-free. These correspond to closed covector fields.
Lastly, we can define line integrals of vector fields v along curves γ as∫

γ
v =

∫
γ
v∗ =

∫
⟨v(γ(t)), γ′(t)⟩dt.

It follows that all the results we established in this chapter have a counterpart in the language of
vector fields. For instance, the counterpart of Theorem 7.6 states that if U is simply-connected every
rotation-free vector field has a potential.

There is nothing to gain by translating all the results to the setting of vector fields. However, you
should be aware that many texts use this alternative terminology (particularly older texts in Analysis).

You should also be aware that vector fields represent direction fields (i.e. at each point x, the vector
v(x) can be thought as a little arrow indicating a direction motion). As such, vector fields are very
interesting on their own and play an important role in Analysis, Dynamics, and Geometry. Their
theory will be developed in later courses.
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8 Extra: Reeksen

In deze paragraaf behandelen we de basis van de theorie van de complexe reeksen. Op de theorie in
deze paragraaf zal later voortgebouwd worden in de cursus Functies en Reeksen.

8.1 Reeksen in C

Ons standpunt zal zijn dat het lichaam C hetzelfde is als R2 voorzien van de complexe vermenigvul-
diging. Hierbij is x+ iy een notatie voor (x, y) ∈ R2, die er toe dient om aan te geven dat we (x, y)
willen zien als complex getal. In deze notatie wordt de complexe vermenigvuldiging gegeven door:

(x+ iy)(u+ iv) = (xu− yv) + i(xv + yu),

voor (x, y) ∈ R2, (u, v) ∈ R2. Deze formule volgt uit de gebruikelijke rekenregels voor optelling
en vermenigvuldiging, aangevuld met de regel dat i · i = −1. We kunnen deze rekenregel ook in de
R2-notatie invoeren door

(x, y)(u, v) = ((xu− yv), (xv + yu)). (8.1)

Het is gemakkelijk in te zien dat deze vermenigvuldiging commutatief is. Als we vervolgens afspre-
ken dat we R zien als deel van R2 via de injectieve reëel lineaire afbeelding x 7→ (x, 0) en dat i een
notatie is voor (0, 1), dan krijgen we bekende complexe notatie terug uit

(x, y) = (x, 0) + (0, 1)(y, 0) = x+ yi.

Het gemak van deze identificaties is dat we gegeven definities voor R2 direct kunnen vertalen naar
C. In het bijzonder komt de modulus | · | op C overeen met de norm ∥ · ∥ op R2. Immers

|x+ iy| =
√
x2 + y2 = ∥(x, y)∥.

De Euclidische metriek op R2 wordt in de complexe notatie beschreven door

d(z, w) := |z − w|, (z, w ∈ C).

Op deze manier wordt het limietbegrip zinvol voor rijen in C. De te verwachten bijbehorende reken-
regels volgen gemakkelijk uit de overeenkomstige rekenregels voor rijen in R2.

Laat (ak)k≥0 een rij complexe getallen zijn. We gebruiken de notatie
∑

k≥0 ak om aan te geven dat
we de intentie hebben om de elementen ak van de gegeven rij te sommeren. Voor n ≥ 0 definiëren
we de n-de partiële som van de reeks door

An :=
n∑

k=0

ak (8.2)

Remark 8.1. Merk op dat de reeks
∑

k≥0 ak iets anders is dan de rij (ak)k≥0. Als we de reeks
als formeel wiskundige object willen introduceren, dan kunnen we dit beter doen door de reeks te
definiëren als de rij (An)n≥0 van partiële sommen. △

Definition 8.2. Laat (ak)k≥0 een rij complexe getallen zijn. De reeks
∑

k≥0 ak heet convergent
indien de n-de partiële sommen An, gedefinieerd door (8.2), een convergente rij in C vormen. In dat
geval schrijven we

∞∑
k=0

ak := lim
n→∞

An.

Dit getal heet de som van de reeks. △

122



Remark 8.3. Voor een gegeven geheel getal p ≥ 1 kan men ook een rij (ak)k≥p beschouwen en
de bijbhorende reeks

∑
k≥p ak. Dit is terug te voeren op het bovenstaande door de reeks

∑
k≥0 ap+k

te beschouwen. Aldus zien we dat convergentie van de reeks equivalent is met convergentie van
de rij (An)n≥p van partiële sommen, gedefinieerd door An :=

∑n
k=p ak. In geval van convergentie

schrijven we dan
∞∑
k=p

ak := lim
n→∞

An. △

Lemma 8.4. Laat ak ≥ 0, voor k ∈ N. De reeks
∑

k≥0 ak is convergent dan en slechts dan als de
bijbehorende rij (An) van partiële sommen naar boven begrensd is. In geval van convergentie is

∞∑
k=0

ak = sup{An | n ≥ 0}. (8.3)

Proof. De partiële sommen zijn reëel en voldoen aan

An+1 = An + an ≥ An.

De rij van partiële sommen is dus monotoon stijgend. In de cursus Inleiding Analyse hebben we
gezien dat een dergelijke rij convergent is dan en slechts dan als hij naar boven begrensd is. Bovendien
geldt in geval van convergentie dat

lim
n→∞

An = sup{An | n ≥ 0}.

Hieruit volgt (8.3).

8.2 Convergentie kenmerken

Lemma 8.5. Laat ak ∈ C, voor k ∈ N. Dan geldt:∑
k≥0

ak convergent =⇒ lim
n→∞

an = 0. (8.4)

Proof. SchrijfAn =
∑n

k=0 ak.Dan heeft de complexe rij (An)n≥0 een limiet die we noteren metA.
Dus limn→∞An = A.Hieruit volgt dat ook limn→∞An−1 = A.Anderzijds geldt an = An−An−1.
Met de somregel voor limieten leiden we nu af dat

lim
n→∞

an = lim
n→∞

(An −An−1) = A−A = 0.

Remark 8.6 (Waarschuwing). Het omgekeerde van de bewering (8.4) is in het algemeen niet waar.
Dit blijkt bijvoorbeeld uit het volgende lemma. △

Lemma 8.7. De harmonische reeks
∑

k≥1
1
k is divergent.

Proof. We beschouwen de rij An van partiële sommen en merken op dat voor m ≥ 1 geldt:

A2m = A2m−1 +
1

2m−1 + 1
+ · · ·+ 1

2m−1 + 2m−1

≥ A2m−1 + 2m−1 1

2m
= A2m−1 +

1

2
.

Met inductie volgt hieruit dat

A2m ≥ m+ 1

2
, (m ≥ 0).

De rij (An) is in R niet naar boven begrensd, en daarom niet convergent. We concluderen dat de
harmonische reeks divergent is.
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Algemener geldt het volgende resultaat. Voor s = 1 geeft dit een ander bewijs van het bovenstaande
lemma.

Lemma 8.8. Zij s ∈ R. De reeks ∑
k≥1

1

ks
(8.5)

is convergent dan en slechts dan als s > 1.

Proof. Als s ≤ 0, dan geldt niet dat 1/ks → 0 voor k → ∞. Wegens Lemma 8.5 is de reeks dan
niet convergent. We mogen ons daarom beperken tot het geval dat s > 0. In dit geval is de functie
f : [1,∞[ → R, x 7→ 1/xs continu, monotoon dalend en niet-negatief op [1,∞]. Wegens het onder-
staande lemma is de reeks (8.8) convergent dan en slechts dan als de integraal In :=

∫ n+1
1 f(x) dx

een limiet heeft voor n→ ∞.

Met de fundamentaalstelling voor de integraalrekening zien we dat

In =
x1−s

1− s

∣∣∣∣n+1

1

=
(n+ 1)1−s − 1

1− s
.

Hieruit blijkt dat de rij (In) divergent is voor s < 1 terwijl voor s > 1 geldt In → 1/(s − 1),
(n→ ∞). Voor s = 1 geldt

In = log(n+ 1) → ∞, (n→ ∞),

dus in dit geval is de rij (In) divergent.

Lemma 8.9 (Vergelijking reeks en integraal). Zij f : [1,∞[ → [0,∞[ een monotoon dalende
functie zo dat voor iedere N ∈ N de functie f Riemann-integreerbaar is over [1, N ]. Schrijf

An :=

n∑
k=1

f(k), In :=

∫ n+1

1
f(x) dx en Rn = An − In.

De rij (Rn)n≥1 is convergent met een in [0, f(1)] gelegen limiet. In het bijzonder is de rij (An)≥1

convergent dan en slechts dan als de rij (In)n≥1 dat is.

Proof. Zij Vn de verdeling van het interval [1, n+1] in stukken van lengte 1.Dan wordt de bovensom
van de integraal van f over [1, n+ 1] ten aanzien van deze verdeling gegeven door

S(f, Vn) =

n+1∑
k=2

f(k − 1) = An,

Hierdoor gemotiveerd vinden we

Rn =
n∑

k=1

[
f(k)−

∫ k+1

k
f(x) dx

]
=

n∑
k=1

rk

waarin

rk =

∫ k+1

k
[f(k)− f(x)] dx,

zie Figuur 13.

Uit de monotonie van f volgt dat

0 ≤ rk ≤ f(k)− f(k + 1), (k ≥ 1).
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Figuur 13: Rn =
∑n

k=1 rk.

Hieruit volgt dat de rij (Rn) monotoon stijgend is. Door sommatie over k volgt dat 0 ≤ Rn ≤
f(1)−f(n+1) ≤ f(1). De rij (Rn) is daarom convergent met een in [0, f(1)] gelegen limiet, die we
noteren met R. Is de rij (In) convergent met limiet I dan volgt met de somregel voor limieten dat de
rij (An) convergent is met limiet R + I. Is de rij (An) convergent met limiet A, dan volgt wederom
met de somregel dat de rij (In) convergent is met limiet A−R.

Exercise 8.10. Laat zien dat de limiet

≫:= lim
n→∞

(
n∑

k=1

1

k
− log n

)

bestaat, en een positief geheel getal ≫> 0 definieert. Het is niet bekend of deze constante van
Euler–Mascheroni irrationaal is. △

Exercise 8.11 (Rekenregels). Laat
∑

k≥0 ak en
∑

k≥0 bk een tweetal convergente complexe reeksen
zijn. Dan is ook de reeks

∑
k(ak + bk) convergent, terwijl

∞∑
k=0

(ak + bk) =

∞∑
k=0

ak +

∞∑
k=0

bk

Zij λ ∈ C. Dan is ook de reeks
∑

k≥0 λak convergent, en er geldt:

λ

∞∑
k=0

ak =

∞∑
k=0

λak. △

Ter voorbereiding op de theorie van de reeksen geven we nog het volgende resultaat.
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Lemma 8.12. Zij (ak) een rij complexe getallen zo dat de reeks
∑

k≥0 ak convergent is. Dan is
voor iedere n ∈ N de reeks

∑
k≥n ak convergent. Bovendien geldt

lim
n→∞

∞∑
k=n

ak = 0.

Proof. Voor alle m ≥ n geldt
∑m

k=0 ak =
∑n−1

k=0 ak +
∑m

k=n ak. Door de limiet voor m → ∞ te
nemen blijkt hieruit dat de genoemde reeks

∑
k≥n ak convergent is, terwijl

∞∑
k=n

ak =

∞∑
k=0

ak −
n−1∑
k=0

ak.

Door de limiet voor n→ ∞ te nemen leiden we hieruit met de somregel voor limieten af dat

lim
n→∞

∞∑
k=n

ak =
∞∑
k=0

ak − lim
n→∞

n−1∑
k=0

ak = 0.

Example 8.13 (Meetkundige reeks). Zij z ∈ C. De reeks∑
k≥0

zk (8.6)

staat bekend als de meetkundige reeks met reden z. Hierbij dient z0 gelezen te worden als 1, ook als
z = 0.

Zij Sn =
∑n

k=0 r
k de n-de partiële som van de reeks. Dan geldt:

zSn − Sn =
n+1∑
k=1

zk −
n∑

k=0

zk = zn+1 − 1,

dus als z ̸= 1, dan is

Sn =
1− rn+1

1− r
.

Als z = 1 dan is Sn = n+ 1. △

Lemma 8.14. Zij z ∈ C. De meetkundige reeks (8.6) convergeert dan en slechts dan als |z| < 1.
Voor |z| < 1 geldt dat

∞∑
k=0

zk =
1

1− z
.

Proof. Voor |z| ≥ 1 geldt |zk| ≥ 1, dus niet limk→∞ zk = 0. Hieruit volgt wegens Lemma 8.5 dat
de meetkundige reeks divergeert.

Veronderstel nu dat |z| < 1. Dan geldt dat |zn+1| = |z|n+1 → 0 voor n→ ∞, dus

lim
n→∞

Sn =
1− lim zn+1

1− z
=

1

1− z
.

Hieruit volgt het gestelde.

Definition 8.15 (Absolute convergentie). Een complexe reeks
∑

k≥0 ak heet absoluut convergent
indien de reeks

∑
k≥0 |ak| convergent is. △
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Lemma 8.16. Laat (ak)k≥0 een rij complexe getallen zijn. Indien de reeks
∑

k≥0 ak absoluut
convergent is, dan is hij ook convergent, en er geldt:∣∣∣∣∣

∞∑
k=0

ak

∣∣∣∣∣ ≤
∞∑
k=0

|ak|. (8.7)

Proof. Uit de absolute convergentie volgt dat de rij Bn :=
∑n

k=0 |ak| convergent is, dus Cauchy.
Zij ≥> 0 dan bestaat er een N zo dat voor alle q ≥ p ≥ N geldt |Bp − Bq| <≥ . Zij An de n-de
partiële som van de reeks

∑
k≥0 ak. Dan geldt voor alle q ≥ p ≥ N dat

|Aq −Ap| = |
q∑

k=p+1

ak| ≤
q∑

k=p+1

|ak| = |Bq −Bp| <≥ .

Dus (An) is een Cauchy-rij, en aangezien C ≃ R2 volledig is, concluderen we dat deze rij van partiële
sommen convergeert. De reeks

∑
k≥0 ak convergeert dus.

Voor alle n ≥ 0 geldt dat ∣∣∣∣∣
n∑

k=0

ak

∣∣∣∣∣ ≤
n∑

k=0

|ak|.

Nemen we de limiet voor n→ ∞, dan concluderen we dat (8.7) geldt.

Om voor de hand liggende redenen vatten we de uitspraak dat de reeks
∑

k≥0 ak absoluut convergeert
soms ook samen in de formule

∞∑
k=0

|ak| <∞.

Exercise 8.17. Is
∑

k≥0 ak een absoluut convergente complexe reeks, dan zijn ook beide reeksen∑
j≥0

a2j en
∑
j≥0

a2j+1

absoluut convergent, terwijl
∞∑
k=0

ak =

∞∑
j=0

a2j +

∞∑
j=0

a2j+1 △

Het volgende resultaat wordt zeer vaak gebruikt om de convergentie van reeksen aan te tonen.

Theorem 8.18 (Majorantiekenmerk voor convergentie). Laat (ak) een complexe rij zijn, en (tk) een
reële rij, terwijl er een C > 0 bestaat zo dat

|ak| ≤ Ctk (∀k ≥ 0).

Indien
∑

k tk convergeert, dan convergeert de reeks
∑

k ak absoluut, en er geldt dat

∞∑
k=0

|ak| ≤ C

∞∑
k=0

tk. (8.8)

Proof. We noteren de n-de partiële som van de reeks
∑

k≥0 tk met Tn, en die van
∑

k≥0 |ak| met
Bn. Uit het gegeven volgt dat Bn ≤ CTn voor alle n. Veronderstel dat de reeks

∑
k tk convergent is,
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dan is de rij (Tn) convergent, dus begrensd. Er is dus een M > 0 zo dat Tn ≤M. De rij (Bn) is dus
begrensd door CM. Uit

Bn+1 = Bn + |an+1| ≥ Bn

volgt dat de rij (Bn) monotoon stijgend en naar boven begrensd is, dus convergent. We concluderen
dat de reeks

∑
k |ak| convergent is. Voor alle n ≥ 0 geldt

n∑
k=0

|ak| ≤ C
n∑

k=0

tk.

De ongelijkheid (8.8) volgt hieruit door limietovergang voor n→ ∞.

Door het majorantie criterium te combineren met kennis over de meetkundige reeks leiden we het
volgende af.

Lemma 8.19 (Quotiëntkenmerk). Zij (an) een rij in C zo dat

lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = L

(in het bijzonder veronderstellen we het bestaan van de limiet).

Als |L| < 1, dan is de reeks ∑
k≥0

ak (8.9)

absoluut convergent. Als |L| > 1, dan is de reeks divergent.

Proof. Veronderstel eerst dat L < 1. Kies ≥> 0 zo dat L+ ≥< 1. Dan is er een N zo dat voor
k ≥ N geldt dat

|ak+1|
|ak|

≤ L+ ≥ .

Voor k ≥ N geldt daarom

|ak| ≤ (L+ ≥)k−N |aN | ≤ C(L+ ≥)k

waarbij C = (L+ ≥)−N |aN |. Aangezien de meetkundige reeks
∑

k(L+ ≥)k convergent is (Lemma
8.14) volgt nu met Stelling 8.18 dat de reeks (8.9) absoluut convergeert.

Example 8.20. Als in de setting van het bovenstaande lemma geldt dat L = 1, dan kan de reeks
zowel convergeren als divergeren. Nemen we ak = k−s, met s > 0, dan geldt dat L = 1, terwijl de
reeks ∑

k≥1

ak

volgens Lemma 8.8 convergeert voor s > 1 en divergeert voor s ≤ 1. △

Example 8.21 (Complexe e-macht). We beschouwen, voor z ∈ C, de reeks∑
k≥0

zk

k!
.

Schrijven we ak = zk/k! dan zien we dat∣∣∣∣ak+1

ak

∣∣∣∣ = |z|
k + 1

→ L = 0
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voor k → ∞. Hieruit volgt dat de reeks convergeert, voor elke z ∈ C. We definiëren de complexe
e-macht door

ez =
∞∑
k=0

zk

k!
. (8.10)

Wegens een eerder in de cursus Inleiding Analyse gegeven toepassing van de stelling van Taylor met
rest komt deze e-macht voor reële z overeen met de bekende reële e-macht.

Door z = iy met y ∈ R in te vullen in (8.10) en de reeks te splitsen als in Opmerking 8.17 vinden
we dat

eiy =
∑
k≥0

i2k
y2k

(2k)!
+
∑
k≥0

i2k+1 y2k+1

(2k + 1)!

=
∑
k≥0

(−1)k
y2k

(2k)!
+ i
∑
k≥0

(−1)k
y2k+1

(2k + 1)!
.

Hieruit volgt de bekende formule
eiy = cos y + i sin y. △
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9 Extra: Oneigenlijke integralen

In deze paragraaf zullen we het begrip oneigenlijke integraal invoeren. Daarna zullen we oneigenlijke
integralen met een parameter beschouwen, zodat we in het bijzonder het gedrag van de integraal voor
de Gamma-functie zullen kunnen analyseren, zie Voorbeeld 5.18.

Het begrip oneigenlijke Riemann-integraal is een verruiming van het begrip Riemann-integraal van
gesloten en begrensde intervallen naar willekeurige intervallen.

Example 9.1. Als eerste motiverende voorbeeld beschouwen we de integraal∫ ∞

0
e−x dx.

De functie f : [0,∞[→ R, x 7→ e−x is continu, en dus Riemann-integreerbaar over ieder gesloten en
begrensd interval van de vorm [0, β], met 0 ≤ β <∞. Met de hoofdstelling van de integraalrekening
vinden we ∫ β

0
e−x =

[
−e−x

]β
0
= 1− e−β.

Hieraan zien we dat

lim
β→∞

∫ β

0
e−x dx = 1.

We zeggen ook wel dat x 7→ e−x oneigenlijk Riemann-integreerbaar is over [0,∞[, met als oneigen-
lijke integraal ∫ ∞

0
e−x dx = 1. △

Example 9.2. Als tweede motiverend voorbeeld beschouwen we de functie f :]0, 1] → R gedefini-
eerd door

f(x) =
1√
x
.

Deze functie is niet begrensd op ]0, 1], dus kan niet opgevat worden als Riemann-integreerbare func-
tie op [0, 1] (door hem een willekeurige waarde in 0 toe te kennen). Hij is continu, dus Riemann-
integreerbaar op [α, 1] voor iedere α ∈ ]0, 1]. Bovendien volgt met de hoofdstelling van de integraal-
rekening dat ∫ 1

α
f(x) dx = [2

√
x]1α = 2− 2

√
α.

Hieruit volgt dat

lim
α↓0

∫ 1

α
f(x) dx = 2.

In dit geval zeggen we dat f : x 7→ 1/
√
x oneigenlijk Riemann-integreerbaar is over ]0, 1], en we

schrijven ∫ 1

0
f(x) dx = 2. △

Example 9.3. We beschouwen de functie f : I = ]0,∞[→ R gedefinieerd door

f(x) =
1

ex
√
x
, (0 < x < 1).

130



In dit geval is f continu, dus Riemann-integreerbaar over ieder segment [α, β] ⊂ ]0,∞[. Het ligt voor
de hand te zeggen dat f oneigenlijk Riemann-integreerbaar is over ]0,∞[ indien de integraal∫ β

α
f(x) dx

een limiet heeft voor α ↓ 0 en β → ∞. Daarmee bedoelen we dat er een S ∈ R bestaat zo dat voor
iedere ≥< 0 elementen α0, β0 ∈ I bestaan zo dat voor alle α, β ∈ I geldt

α ≤ α0, β ≥ β0 =⇒
∣∣∣∣∫ β

α
f(x) dx− S

∣∣∣∣ <≥ .

Verderop zullen we zien dat zo’n S in dit geval bestaat en uniek is, en dan schrijven we∫ ∞

0

1

ex
√
x
dx = S. △

Geı̈nspireerd door de bovenstaande Voorbeelden 9.1, 9.2 en 9.3 zullen we een definitie opstellen van
oneigenlijke integreerbaarheid voor een functie f met als domein een niet-leeg interval I ⊂ R. Om
dit in algemeenheid te kunnen doen gebruiken we de bekende karakterisering van een interval uit de
cursus ‘Inleiding Analyse’.

Karakterisering interval. Een interval is een deelverzameling I van R met de eigenschap dat voor
alle α, β ∈ I met α < β geldt [α, β] ⊂ I. De nu volgende definitie dient ertoe het bestaan van de
Riemann-integraal van een functie I → R over een deelsegment van I te garanderen.

Definition 9.4. (Lokaal Riemann-integreerbaar) Laat I ⊂ R een niet-leeg interval zijn. Een
functie f : I → R heet lokaal Riemann-integreerbaar indien voor alle α, β ∈ I met α < β geldt dat
de beperking f |[α,β] Riemann-integreerbaar is over [α, β]. △

Remark 9.5. We merken op dat een continue functie f : I → R lokaal Riemann-integreerbaar
is. △

De setting van Definitie 9.4 garandeert het bestaan van de Riemann integraal
∫ β
a f(x) dx, voor iedere

β ≥ a. Hiermee wordt de volgende definitie zinvol.

Definition 9.6. Laat I ⊂ R een niet-leeg interval zijn en veronderstel dat f : I → R lokaal
Riemann-integreerbaar is. Laat S ∈ R; dan betekent

lim
[α,β]↗I

∫ β

α
f(x) dx = S (9.11)

dat er voor elke ≥> 0 een gesloten en begrensd interval I0 ⊂ I bestaat met de volgende eigenschap.
Voor alle α, β ∈ R met α < β geldt

I0 ⊂ [α, β] ⊂ I =⇒
∣∣∣∣∫ β

α
f(x) dx− S

∣∣∣∣ <≥ . (9.12)

△

De hierboven geı̈ntroduceerde limiet is uniek bepaald.

Lemma 9.7. Laat f : I → R lokaal Riemann-integreerbaar zijn en veronderstel dat S, S′ ∈ R en

lim
[α,β]↗I

∫ β

α
f(x) dx = S en lim

[α,β]↗I

∫ β

α
f(x) dx = S′.

Dan is S = S′.
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Proof. Kies I0 en I ′0 als in (9.11) voor respectievelijk S en S′. Zij [α, β] ⊂ I een gesloten en
begrensd interval dat zowel I0 als I ′0 bevat. Dan volgt dat

|S − S′| ≤
∣∣∣∣S −

∫ β

α
f(x) dx

∣∣∣∣+ ∣∣∣∣∫ β

α
f(x) dx− S′

∣∣∣∣ < 2 ≥ .

Dit geldt voor elke ≥> 0, dus S = S′.

Definition 9.8. (Oneigenlijk Riemann-integreerbaar) Zij I ⊂ R een niet-leeg interval. Een
functie f : I → R heet oneigenlijk Riemann-integreerbaar over I indien het volgende geldt

(a) De functie f is lokaal Riemann-integreerbaar.

(b) Er bestaat een (noodzakelijkerwijs uniek) getal S ∈ R zo dat (9.11) geldt.

Is f : I → R oneigenlijk Riemann-integreerbaar, dan noemen we het unieke getal S uit (b) de
oneigenlijke Riemann-integraal van f over I, notatie∫

I
f(x) dx := S = lim

[α,β]↗I

∫ β

α
f(x) dx. △

Remark 9.9. Is f : I → R lokaal Riemann-integreerbaar, dan zeggen we in plaats van ‘f is
oneigenlijk Riemann-integreerbaar over I’ ook wel dat de integraal

∫
I f(x) dx convergeert. Is f niet

oneigenlijk Riemann-integreerbaar, dan zeggen we ook wel dat de integraal divergeert. △

De oneigenlijke Riemann-integreerbaarheid is voor een niet-negatieve functie te karakteriseren op
een manier die sterke overeenkomst vertoont met Lemma 8.4

Lemma 9.10. Zij I ⊂ R een niet-leeg interval, en f : I → R een lokaal Riemann-integreerbare
functie met f(x) ≥ 0 voor alle x ∈ I. Dan zijn de volgende uitspraken equivalent.

(a) f is oneigenlijk Riemann-integreerbaar over I.

(b) Er is een M > 0 zo dat voor alle α, β ∈ R met α < β geldt

[α, β] ⊂ I =⇒
∫ β

α
f(x) dx ≤M.

Is aan (a) en (b) voldaan, dan is∫
I
f(x) dx = sup

[α,β]⊂I

∫ β

α
f(x) dx.

Proof. We beginnen met de opmerking dat voor ieder tweetal segmenten I1 = [α1, α1] ⊂ I en
I2 = [α2, β2] ⊂ I met I1 ⊂ I2 geldt dat∫

I2

f(x) dx =

∫ α1

α2

f(x) dx+

∫ β1

α1

f(x) dx+

∫ β2

β1

f(x) dx ≥
∫
I1

f(x) dx.

Veronderstel nu eerst dat (a) geldt, en laat S :=
∫
I f(x) dx.

Dan is er een segment I0 ⊂ I zo dat voor a < b met I0 ⊂ [a, b] ⊂ I geldt |
∫ b
a f(x) dx− S| < 1. Uit

dit laatste volgt ∫ b

a
f(x) dx < S + 1. (9.13)
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Zij nu α < β zo dat [α, β] ⊂ I. Zij a = min(I0 ∪ {α}) en b = max(I0, {β}). Dan geldt I0 ⊂
[a, b] ⊂ I, dus (9.13). Uit a ≤ α ≤ β ≤ b volgt wegens het eerste deel van het bewijs dat∫ β

α
f(x) dx ≤

∫ b

a
f(x) dx < S + 1.

Dus (b) geldt met M = S + 1.

Veronderstel omgekeerd dat (b) geldt. Dan is de collectie

V :=

{∫ β

α
f(x) dx | α < β, [α, β] ⊂ I

}
een niet-lege deelverzameling van R die naar boven begrensd is door M. Derhalve heeft V een
kleinste bovengrens

S = supV.

Zij ≥> 0. Dan is S− ≥ geen bovengrens van V dus er is een segment I0 ⊂ I zo dat
∫
I0
f(x) dx >

S− ≥ . Zij α < β zo dat I0 ⊂ [α, β] ⊂ I, dan volgt wegens het eerste deel van het bewijs dat

S− ≥<
∫
I0

f(x) dx ≤
∫ β

α
f(x) dx ≤ S.

Hieruit volgt (a), terwijl ∫
I
f(x) dx = S = sup

[α,β]⊂I

∫ β

α
f(x) dx.

Example 9.11. We beschouwen nogmaals de functie f : I = ]0,∞[→ R uit Voorbeeld 9.3 gegeven
door

f(x) =
1

ex
√
x
.

Deze functie is continu, dus lokaal Riemann-integreerbaar op I, terwijl f(x) > 0 voor alle x ∈ I.
Voor 0 < x ≤ 1 geldt f(x) ≤ e/

√
x, dus voor 0 < α ≤ 1 geldt:∫ 1

α
f(x) dx ≤ e

∫ 1

α

1√
x
= e(2− 2

√
α) < 2e.

Voor x ≥ 1 geldt f(x) ≤ e−x, dus voor 1 ≤ β <∞ geldt:∫ β

1
f(x) dx ≤

∫ β

1
e−x dx = 1− e−β < 1.

Hieruit leiden we gemakkelijk af dat voor alle 0 < α < β <∞ geldt dat∫ β

α
f(x) dx ≤ 2e+ 1.

Wegens het bovenstaande lemma is f daarom oneigenlijk Riemann-integreerbaar op I. △

Uit het volgende resultaat blijkt dat oneigenlijke Riemann-integreerbaarheid voor gesloten en be-
grensde intervallen samenvalt met Riemann-integreerbaarheid.

Lemma 9.12. Zij I = [a, b] ⊂ R een gesloten en begrensd interval, met a < b.Dan zijn de volgende
twee uitspraken equivalent.
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(a) De functie f is Riemann-integreerbaar op I.

(b) De functie f is oneigenlijk Riemann-integreerbaar op I.

Is aan (een van de) eisen (a) en (b) voldaan, dan is∫
I
f(x) dx =

∫ b

a
f(x) dx. (9.14)

Proof. Uit (b) volgt per definitie dat f lokaal Riemann-integreerbaar is op [a, b], dus Riemann-
integreerbaar op [a, b].

Veronderstel dat (a) geldt. Dan is f ook lokaal Riemann-integreerbaar. Kies I0 = [a, b], dan geldt
voor alle α < β met I0 ⊂ [α, β] ⊂ I dat I0 = [α, β] = I, dus ook∣∣∣∣∫ β

α
f(x) dx−

∫ b

a
f(x) dx

∣∣∣∣ = 0 <≥

voor iedere ≥> 0. Hieruit volgt dat (b) geldt en dat bovendien (9.14).

Remark 9.13. Uit de cursus ‘Inleiding Analyse’ weten we dat ieder niet-leeg interval I ⊂ R één
van de volgende vormen heeft:

(a) I = [a, b] met −∞ < a < b <∞,

(b) I = [a, b [ met −∞ < a < b ≤ ∞,

(c) I = ] a, b] met −∞ ≤ a < b <∞,

(d) I = ] a, b [ met −∞ ≤ a < b ≤ ∞.

In al deze gevallen noemen we a en b de grenzen van het interval en schrijven we ook∫ b

a
f(x) dx :=

∫
I
f(x) dx = lim

[α,β]↗I
f(x) dx.

Bovendien hanteren we de conventie dat∫ a

b
f(x) dx := −

∫ b

a
f(x) dx.

Wegens Lemma 9.12 is deze notatie in overeenstemming met de reeds gebruikte notatie voor de
eigenlijke Riemann integraal. △

In het vervolg veronderstellen we dat I ⊂ R een interval is, dat niet gesloten en begrensd is. Zo’n
interval heeft dus één van de in Opmerking 9.13 genoemde vormen (b)-(c). We zullen de definitie
van oneigenlijke Riemann-integreerbaarheid in elk van deze gevallen apart onderzoeken.

Lemma 9.14. Veronderstel dat I ⊂ R een interval van de vorm I = [a, b[ is, met a < b ≤ ∞.
Veronderstel nu dat f : I → R een lokaal Riemann-integreerbare functie is. Dan zijn de volgende
beweringen equivalent.

(a) De functie f is oneigenlijk Riemann-integreerbaar over het interval [a, b[.
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(b) De limiet

lim
β↑b

∫ β

a
f(x) dx

bestaat.

Indien (a) en (b), dan geldt ∫ b

a
f(x) dx = lim

β↑b

∫ β

a
f(x) dx. (9.15)

In de bovenstaande situatie noteren we de integraal in het vervolg ook met∫ b

a
f(x) dx = lim

β↑b

∫ β

a
f(x) dx.

Proof. Veronderstel eerst dat (a) geldt. Zij ≥> 0 Kies een gesloten en begrensd interval I0 =
[a0, b0] ⊂ [a, b[ zo dat (9.12) geldt. Dan geldt voor alle β ∈ ]b0, b[ dat I0 ⊂ [a, β] ⊂ I, dus∣∣∣∣∫ β

a
f(x) dx−

∫
I
f(x) dx

∣∣∣∣ <≥ .

Hieruit blijkt dat (b) geldt, met limiet gelijk aan
∫
I f(x) dx.

Veronderstel omgekeerd dat (b) geldt, en zij S de waarde van de limiet. Zij ≥> 0. Dan is er een b0
met a < b0 < b zo dat voor alle β ∈ [b0, b [ geldt∣∣∣∣∫ β

a
f(x) dx− S

∣∣∣∣ <≥ .

Zij α, β ∈ R zo dat α < β en I0 ⊂ [α, β] ⊂ I. Dan geldt dat α = a en b0 ≤ β < b, en de
bovenstaande schatting geldt met a = α. Hieraan zien we dat

S = lim
[α,β]↗I

∫ β

α
f(x) dx.

We concluderen dat (a) geldt, en (9.15).

Corollary 9.15. Zij −∞ < a < b ≤ ∞ en zij f : [a, b[→ C lokaal Riemann-integreerbaar. Zij
a ≤ c < b. Dan zijn de volgende uitspraken equivalent.

(a) De functie f is oneigenlijk Riemann-integreerbaar over [a, b[.

(b) De functie f is oneigenlijk Riemann-integreerbaar over [c, b[.

Als (a) en (b) gelden, dan geldt bovendien dat∫ b

a
f(x) dx =

∫ c

a
f(x) dx+

∫ b

c
f(x) dx

Proof. Voor alle β > c geldt∫ β

a
f(x) dx =

∫ c

a
f(x) dx+

∫ β

c
f(x) dx

De uitspraken volgen hieruit door de limiet voor β ↑ b te nemen.
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Example 9.16. We beschouwen de functie f : x 7→ xs op I = [1,∞[, met s ∈ R een constante,
ongelijk aan −1. Deze functie is continu, dus lokaal Riemann-integreerbaar. Voor β > 1 geldt dat∫ β

1
f(x) dx =

xs+1

s+ 1

∣∣∣∣β
1

=
βs+1 − 1

s+ 1
. (9.16)

De laatste uitdrukking heeft een limiet voor β ↑ ∞ dan en slechts dan als s + 1 < 0. In dit geval is
de functie f oneigenlijk Riemann integreerbaar over [1,∞[, met als oneigenlijke integraal de limiet:∫ ∞

1
xs dx = lim

β→∞

βs+1 − 1

s+ 1
= − 1

s+ 1
, (s < −1).

De uitdrukking (9.16) heeft geen limiet voor s > −1, ofwel, de integraal divergeert in dat geval.

Tenslotte beschouwen we ook nog het geval dat s = −1. Dan heeft f(x) = 1/x de functie log x als
primitieve, en dus heeft ∫ β

1

1

x
dx = log β

geen limiet voor β → ∞. De bijbehorende integraal
∫ β
1 x

−1 dx is dan ook divergent. Samenvattend
concluderen we dat het onderstaande lemma geldt. △

Lemma 9.17. Zij s ∈ R. Dan convergeert de oneigenlijke Riemann-integraal∫ ∞

1
xs dx (9.17)

dan en slechts dan als s < −1. In dat geval is de waarde van de integraal gelijk aan 1/(−s− 1).

Soortgelijke beschouwingen als hier boven leiden tot een andere karakterisering van oneigenlijke
Riemann-integreerbaarheid op intervallen als in Opmerking 9.13 (c), dus I = ]a, b] met −∞ ≤ a <
b <∞.

Een interessant voorbeeld wordt gegeven door het onderstaande lemma.

Lemma 9.18. Zij s ∈ R. De oneigenlijke integraal∫ 1

0
xs dx

is convergent dan en slechts dan als s > −1. In dat geval is de oneigenlijke integraal gelijk aan
1/(s+ 1).

Proof. De functie f : x 7→ xs is continu op het interval I =]0, 1], dus Riemann-integreerbaar op
ieder deelinterval [α, 1] ⊂ I. We veronderstellen eerst dat s ̸= −1. Dan is (s+ 1)−1xs+1 primitieve
van f, dus ∫ 1

α
xs dx =

1

s+ 1
− αs+1

s+ 1

voor alle 0 < α < 1. We zien dat de limiet voor α ↓ 0 bestaat dan en slechts dan als s > −1. In dat
geval geldt ∫ 1

0
xs =

1

s+ 1
.

We beschouwen tenslotte het geval dat s = −1. Dan heeft f de functie log als primitieve op I, zodat∫ 1

α
x−1 dx = − logα.
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Deze uitdrukking heeft geen limiet voor α ↓ 0, zodat de bijbehorende oneigenlijke integraal divergent
is. Het lemma volgt.

Om het geval (d) van Opmerking 9.13 te begrijpen, waarin sprake is van een tweezijdig open interval
I = ] a, b [, met −∞ ≤ a < b ≤ ∞, hebben we de volgende karakterisering van oneigenlijke
integreerbaarheid nodig.

Lemma 9.19 (Cauchy criterium). Zij I ⊂ R een niet-leeg interval en zij f : I → R lokaal Riemann-
integreerbaar. Dan zijn de volgende twee uitspraken equivalent.

(a) De functie f is oneigenlijk Riemann-integreerbaar over I.

(b) Voor elke ≥> 0 bestaat een gesloten en begrensd interval I0 ⊂ I zo dat voor alle gesloten en
begrensde intervallen J1, J2 met I0 ⊂ Jj ⊂ I geldt dat∣∣∣∣∫

J1

f(x) dx−
∫
J2

f(x) dx

∣∣∣∣ <≥ .

Proof. Veronderstel eerst dat (a) geldt. Zij ≥> 0.Dan is er een gesloten en begrensd interval I0 ⊂ I
zo dat voor ieder gesloten en begrensd interval [α, β] met I0 ⊂ [α, β] ⊂ I geldt∣∣∣∣∫ β

α
f(x) dx−

∫
I
f(x) dx

∣∣∣∣ <≥ /2.

Zijn J1 en J2 gesloten en begrensde intervallen als in (b), dan geldt dat∣∣∣∣∫
J1

f(x) dx−
∫
J2

f(x) dx

∣∣∣∣
≤

∣∣∣∣∫
J1

f(x) dx−
∫
I
f(x) dx

∣∣∣∣+ ∣∣∣∣∫
I
f(x) dx−

∫
J2

f(x) dx

∣∣∣∣ <≥ .

Hieruit volgt (b).

We veronderstellen nu dat (b) geldt. Er bestaat een rij J(n) = [αn, βn] van gesloten en begrensde
intervallen zo dat J(n) ⊂ J(n+ 1) ⊂ I en zo dat⋃

k≥0

J(k) = I.

We zullen laten zien dat de integraalwaarden

Sn :=

∫
J(n)

f(x) dx

een Cauchy-rij in R vormen. Laat ≥> 0. Dan is er een gesloten en begrensd interval [α, β] ⊂ I als
in (b). Er bestaan N1, N2 ∈ N zodat α ∈ J(N1) en β ∈ J(N2). Zij N = max(N1, N2), dan geldt
[α, β] ⊂ J(N). Voor p, q > N geldt [a, b] ⊂ J(p) en [α, β] ⊂ J(q) dus |Sp − Sq| <≥ . De rij (Sn)
is dus inderdaad Cauchy in R. Wegens de volledigheid van R bestaat S = limn→∞ Sn.

We tonen tenslotte aan dat

lim
[α,β]↗I

∫ β

α
f(x) dx = S. (9.18)
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Laat daartoe ≥> 0 gegeven zijn en zij [α, β] als in (b). Er is een N ∈ N zo dat voor alle n ≥ N geldt
dat [β, β] ⊂ J(n) en |Sn − S| <≥ . Zij J een gesloten begrend interval met [α, β] ⊂ J ⊂ I. Dan
geldt voor n ≥ N dat∣∣∣∣∫

J
f(x) dx− S

∣∣∣∣ ≤ ∣∣∣∣∫
J
f(x) dx−

∫
Jn

f(x) dx

∣∣∣∣+ ∣∣∣∣∫
Jn

f(x) dx− S

∣∣∣∣ < 2 ≥ .

Hieruit volgt inderdaad (9.18). We concluderen dat f oneigenlijk integreerbaar is over I.

Uit het volgende lemma blijkt dat oneigenlijke integreerbaarheid over een interval van de vorm (d)
uit Opmerking 9.13 herleid kan worden tot de twee reeds behandelde gevallen (b) en (c).

Lemma 9.20. Zij I =]a, b[, met −∞ ≤ a < b ≤ ∞ en zij f : I → R lokaal Riemann-
integreerbaar. Laat voorts c ∈ I. Dan zijn de volgende twee uitspraken equivalent.

(a) De functie f is oneigenlijk Riemann-integreerbaar over I.

(b) De functie f is oneigenlijk Riemann-integreerbaar over zowel ]a, c] als [c, b[.

Indien (a) en (b) gelden, dan is∫
I
f(x) dx =

∫ c

a
f(x) dx+

∫ b

c
f(x) dx. (9.19)

Proof. We veronderstellen eerst dat (a) geldt. Zij ≥> 0. Dan is er wegens Lemma 9.19 een gesloten
en begrensd interval I0 = [a0, b0] in I zo dat voor alle gesloten en begrensde intervalleen J1, J2 met
I0 ⊂ Jj ⊂ I geldt dat ∣∣∣∣∫

J1

f(x) dx−
∫
J2

f(x) dx

∣∣∣∣ <≥ .

Als we I0 vervangen door een groter interval, dan blijft deze uitspraak geldig. We mogen daarom
aannemen dat a0 < c < b0. Veronderstel nu dat twee gesloten en begrensde intervallen J+

j gegeven
zijn met [c, b0] ⊂ J+

j ⊂ [c, b[. Definieer Jj = [a0, c] ∪ J+
j . Dan zijn Jj , voor j = 1, 2, gesloten en

begrensde intervallen met I0 ⊂ Jj ⊂ I. Bovendien geldt∫
Jj

f(x) dx =

∫ c

a0

f(x) dx+

∫
J+
j

f(x) dx.

Hieruit volgt dat∣∣∣∣∣
∫
J+
1

f(x) dx−
∫
J+
2

f(x) dx

∣∣∣∣∣ =
∣∣∣∣∫

J1

f(x) dx−
∫
J2

f(x) dx

∣∣∣∣ <≥ .

We concluderen met behulp van Lemma 9.19 dat f oneigenlijk integreerbaar is over [c, b[. Op soort-
gelijke wijze zien we dat f oneigenlijk integreerbaar is over ]a, c]. Dus (b) geldt.

Veronderstel nu dat (b) geldt. Zij ≥> 0. Dan is er een gesloten en begrensd interval [c, b0] zo dat
voor elk gesloten en begrensd interval [c, β] met I+0 ⊂ [c, β] ⊂ [c, b[ geldt dat∣∣∣∣∫ β

c
f(x) dx−

∫ b

c
f(x) dx

∣∣∣∣ < ≥
2
.
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Evenzo is er een gesloten en begrensd interval [a0, c] ⊂ ]a, c] zo dat voor elk interval [α, c] met
[a0, c] ⊂ [α, c] ⊂ ]a, c] geldt dat ∣∣∣∣∫ c

α
f(x) dx−

∫ c

a
f(x) dx

∣∣∣∣ < ≥
2
.

Zij I0 = [a0, b0]. En zij [α, β] zo dat [a0, b0] ⊂ [α, β] ⊂ ]a, b[. Dan geldt [c, b0] ⊂ [c, β] ⊂ [c, b[ en
[a0, c] ⊂ [a0, c] ⊂]a0, c]. Uit de twee bovenstaande schattingen volgt nu met behulp van de driehoek-
songelijkheid dat ∣∣∣∣∫ β

α
f(x) dx−

(∫ c

a
f(x) dx−

∫ b

c
f(x) dx

)∣∣∣∣ <≥ .

Hieruit concluderen we met Definitie 9.8 dat f oneigenlijk integreerbaar is over ]a, b[ en bovendien
dat ∫

I
f(x) dx =

∫ c

a
f(x) dx+

∫ b

c
f(x) dx.

De integraal in het linkerlid van (9.19) schrijven we in het vervolg ook als
∫ b
a f(x) dx.

Definition 9.21. (Absoluut integreerbaar) Zij I ⊂ R een niet-leeg interval. Een lokaal Riemann-
integreerbare functie f : I → R heet absoluut oneigenlijk Riemann-integreerbaar indien de functie
|f | : x 7→ |f(x)|, I → R, oneigenlijk Riemann-integreerbaar is. △

Remark 9.22. Merk op dat in de bovenstaande definitie de functie |f | lokaal Riemann-integreerbaar
is. Voorts wordt de convergentie van de integraal

∫
I |f(x)| dx wel genoteerd met∫

I
|f(x)| dx <∞. △

Het volgende resultaat is analoog aan Lemma 8.16.

Lemma 9.23. Laat I ⊂ R een niet-leeg interval zijn met grenzen −∞ ≤ a < b ≤ ∞, en veronder-
stel dat f : I → R lokaal Riemann-integreerbaar is. Indien f absoluut oneigenlijk integreerbaar is,
dan is f oneigenlijk integreerbaar, en∣∣∣∣∫ b

a
f(x) dx

∣∣∣∣ ≤ ∫ b

a
|f(x)| dx.

Proof. Zij ≥> 0.Dan is er een gesloten en begrensd interval I0 ⊂ I zo dat voor elk tweetal gesloten
en begrensde intervallen J1, J2 met I0 ⊂ Jj ⊂ I geldt∣∣∣∣∫

J1

|f(x)| dx−
∫
J2

|f(x)| dx
∣∣∣∣ <≥ /2.

In het bijzonder volgt hieruit voor dergelijke intervallen dat∫
Jj\I0

|f(x)| dx =

∣∣∣∣∣
∫
Jj

|f(x)| dx−
∫
I0

|f(x)| dx

∣∣∣∣∣ <≥ /2, (j = 1, 2). (9.20)

Strikt genomen is Jj\I0 de vereniging van een of twee begrensde intervallen, waarvan de afsluitingen
tot I behoren. Met de integraal over Jj \ I0 wordt de som van de Riemann-integralen over deze
afsluitingen bedoeld.
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Uit (9.20) leiden we af dat voor dergelijke intervallen J1, J2 geldt dat∣∣∣∣∫
J1

f(x) dx−
∫
J2

f(x) dx

∣∣∣∣ =

∣∣∣∣∣
∫
J1\I0

f(x) dx−
∫
J2\I0

f(x) dx

∣∣∣∣∣
≤

∫
J1\I0

|f(x)| dx+

∫
J2\I0

|f(x)| dx

< ≥ /2+ ≥ /2 =≥ .

We concluderen dat f : I → R voldoet aan conditie (b) van Lemma 9.19. Dus f is Riemann-
integreerbaar over I. Voor alle α < β met [α, β] ⊂ I geldt wegens de driehoeksongelijkheid voor
Riemann integralen dat ∣∣∣∣∫ β

α
f(x) dx

∣∣∣∣ ≤ ∫ β

α
|f(x)| dx.

Hieruit volgt (9.21) door limietovergang voor [α, β] ↗ I .

Theorem 9.24 (Majorantiekenmerk voor integreerbaarheid). Laat I ⊂ R een niet-leeg interval zijn
met grenzen −∞ ≤ a < b ≤ ∞, en veronderstel dat f, g : I → R lokaal Riemann-integreerbaar
zijn, C > 0 en dat voor alle x ∈ I geldt:

|f(x)| ≤ Cg(x)

Indien g oneigenlijk Riemann-integreerbaar is op I, dan is f dat ook, en er geldt bovendien dat∣∣∣∣∫ b

a
f(x) dx

∣∣∣∣ ≤ C

∫ b

a
g(x) dx. (9.21)

Remark 9.25. Dit resultaat kan opgevat worden als het analogon van het eerdere majorantie-kenmerk
voor reeksen, zie Stelling 8.18. △

Proof. Uit de voorwaarden blijkt dat g ≥ 0 en dat voor elk segment [α, β] ⊂ I geldt∫ β

α
|f(x)| dx ≤ C

∫ β

α
g(x) dx ≤

∫
I
g(x) dx.

Met Lemma 9.10 volgt hieruit dat |f | oneigenlijk integreerbaar is en dat∫ b

a
|f(x)| dx ≤ C

∫ b

a
g(x) dx.

Het bewijs wordt voltooid door toepassing van Lemma 9.23.

Example 9.26. (Gamma-functie) We beschouwen wederom de volgende integraal voor de Gamma-
functie, zie ook Voorbeeld 5.18,

Γ(x) :=

∫ ∞

0
tx−1e−t dt, x > 0. (9.22)

Als 0 < x < 1, dan gaat de integrand naar oneindig als t ↓ 0, dus dan moeten we ook bij de
ondergrens t = 0 de integraal als een oneigenlijke integraal opvatten.

We zullen nu met behulp van het majorantie-criterium aantonen dat de integraal voor de Gamma-
functie convergeert. Daartoe verdelen we het interval ]0,∞[ in de stukken ]0, 1] en [1,∞[.
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Voor t ∈ ]0, 1] geldt dat |tx−1e−t| ≤ tx−1 en
∫ 1
0 t

x−1 dt convergeert, dus ook∫ 1

0
tx−1e−t dt (9.23)

convergeert.

We beschouwen nu het deel van de integraal over [1,∞[. Zij N ∈ N, N > x − 1. Dan geldt voor
t ≥ 1 dat tx−1e−t ≤ tNe−t. Uit limt→∞ tNe−t/2 = 0 volgt het bestaan van een constante C > 0 zo
dat

tNe−t ≤ Ce−t/2, (t ≥ 1).

Omdat de integraal
∫∞
1 e−t/2 dt convergent is, concluderen we nu dat∫ ∞

1
tx−1 e−t dt (9.24)

convergent is.

Uit de convergentie van (9.23) en (9.24) concluderen we tenslotte dat de integraal (9.22) convergent
is voor alle x > 0.

Men kan aantonen dat de Gamma-functie niet op een algebraı̈sche manier in termen van de bekende
functies is uit te drukken. △

Example 9.27. (Bèta-functie) We beschouwen opnieuw de Bèta-functie van Euler uit Voorbeeld
5.17. Dit is de functie van twee reële variabelen p, q, gedefinieerd door

B(p, q) :=

∫ 1

0
tp−1 (1− t)q−1 dt. (9.25)

Deze functie is, net als de Gamma-functie, niet op een algebraı̈sche manier in termen van bekende
functies uit te drukken.

De gegeven integraal voor B(p, q) convergeert voor p, q > 0. Dit is als volgt in te zien. Voor ge-
noemde p, q is de functie

f : t 7→ tp−1(1− t)q−1

continu dus lokaal Riemann-integreerbaar op het interval ]0, 1[.We splitsen dit interval in twee delen,
namelijk ]0, 12 ] and [12 , 1[ en behandelen de bijbehorende integralen afzonderlijk.

De functie t 7→ (1 − t)q−1 is continu op [0, 12 ], dus begrensd door een constante C > 0. Voor
0 < t ≤ 1

2 geldt daarom dat
|f(t)| ≤ Ctp−1.

De functie in het rechterlid van deze uitdrukking is oneigenlijk Riemann-integreerbaar over ]0, 12 ]
wegens Lemma 9.18. Hieruit volgt de convergentie van de integraal van f over ]0, 12 ]. De functie
t 7→ tp−1 is continu op [12 , 1] dus begrensd door een constante C ′ > 0. Voor 1

2 ≤ t < 1 geldt daarom
dat

|f(t)| ≤ C ′(1− t)q−1.

De functie in het rechterlid van deze uitdrukking is oneigenlijk Riemann-integreerbaar over [12 , 1[,
wegens Lemma 9.18 (pas de substitutieregel toe om dit in te zien). We concluderen dat f oneigenlijk
integreerbaar is over ]12 , 1]. △

Uit het majorantiekenmerk voor de convergentie van oneigenlijke integralen volgt het eveneens ge-
makkelijk hanteerbare limietkenmerk.
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Corollary 9.28 (Limietkenmerk voor integreerbaarheid). Laat I een interval van de vorm [c, b[ zijn,
met −∞ < c < b ≤ ∞. Veronderstel voorts dat f, g : I → R lokaal Riemann-integreerbare functies
zijn, terwijl g > 0 op I en

lim
x↑b

|f(x)|
g(x)

= L ∈ [0,∞[.

Als g oneigenlijk integreerbaar is op I, dan is f dat ook.

Proof. Er bestaat een β > 0 zo dat ||f(x)|/g(x) − L| < 1 voor alle x ∈ [β, b[. Hieruit volgt dat
|f(x)| ≤ (L+ 1)g(x) voor al dergelijke x. De functie (L+ 1)g(x) is oneigenlijk integreerbaar over
I, dus ook over [β, b[, en wegens het majorantiekenmerk volgt dat f oneigenlijk integreerbaar is over
[β, b[. Hieruit volgt dat f oneigenlijk integreerbaar is over I.

Remark 9.29. Uiteraard geldt een soortgelijk limietkenmerk voor lokaal integreerbare functies op
een interval van de vorm I = ]a, c], met −∞ ≤ a < c <∞. △

Ook voor oneigenlijke integralen geldt een verwisselingsstelling met limieten. We bewijzen eerst
twee technische resultaten. Daaruit leiden we dan een dominantie-kenmerk af dat in de praktijk vaak
goed werkt.

Lemma 9.30. Laat I een niet-leeg interval zijn met grenzen −∞ ≤ a < b ≤ ∞. Laat V ⊂ Rn zijn
en f : V × I → R een continue functie. Veronderstel verder dat de volgene voorwaarden vervuld
zijn.

(a) Voor elke x ∈ V is de functie t 7→ f(x, t) oneigenlijk integreerbaar over I.

(b) Voor iedere ≥> 0 bestaat er een gesloten en begrensd interval [α, β] ⊂ I zo dat voor alle
x ∈ V geldt dat: ∣∣∣∣∫ b

a
f(x, t) dt−

∫ β

α
f(x, t) dt

∣∣∣∣ <≥ (9.26)

Dan is de functie F : V → R gedefinieerd door

F (x) =

∫ b

a
f(x, t) dt

continu.

Proof. Laat x0 ∈ V. Dan is het voldoende de continuı̈teit van F in het punt x0 aan te tonen. Voor
α, β ∈ I met α < β definiëren we

F β
α : x 7→

∫ β

α
f(x, t) dt.

Zij nu ≥> 0, dan volgt uit de hypothese dat er α, β ∈ I bestaan met α < β, zo dat

|F (x)− F β
α (x)| <≥ /3,

voor alle x ∈ V. Uit Stelling 5.12 volgt dat de functie F β
α continu is op V, dus in het bijzonder in x0.

Er bestaat dus een δ > 0 zo dat voor alle x ∈ B(x0; δ) geldt dat

|F β
α (x)− F β

α (x0)| <≥ /3.
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We merken nu op dat voor alle x ∈ B(x0; δ) geldt dat

|F (x)− F (x0)| ≤ |F (x)− F β
α (x)|+ |F β

α (x)− F β
α (x0)|+ |F β

α (x0)− F (x0)|
< ≥ /3+ ≥ /3+ ≥ /3 =≥ .

Hiermee is de continuı̈teit van F in x0 aangetoond.

Ook het volgende lemma zal nuttig blijken. Is I een niet-leeg interval, en c ∈ I dan definiëren we de
volgende deelintervallen van I,

I≤c := {x ∈ I | x ≤ c}, en I≥c := {x ∈ I | x ≥ c}.

Lemma 9.31. Zij I een niet-leeg interval en a, b ∈ I met a < b. Dan geldt voor elke oneigenlijk
Riemann-integreerbare functie f : I → R dat f oneigenlijk integreerbaar is over I≤a en over I≥b,
terwijl ∫

I
f(x) dx =

∫
I≤a

f(x) dx+

∫ b

a
f(x) dx+

∫
I≥b

f(x) dx.

Proof. Door toepassen van Lemma 9.20 en Gevolg 9.15 vinden we dat∫
I
f(x) dx =

∫
I≤a

f(x) dx+

∫
I≥a

f(x) dx

=

∫
I≤a

f(x) dx+

∫ b

a
f(x) dx+

∫
I≥b

f(x) dx.

Uit het bovenstaande leiden we het volgende practisch goed toepasbare principe van gedomineerde
continuı̈teit af.

Theorem 9.32 (Gedomineerde continuı̈teit). Laat I ⊂ R een niet-leeg interval zijn met grenzen
−∞ ≤ a < b ≤ ∞. Zij V ⊂ Rn en f : V × I → R een continue functie. Veronderstel verder dat er
een oneigenlijk Riemann-integreerbare functie g : I → R bestaat zo dat

|f(x, t)| ≤ g(t) voor alle (x, t) ∈ V × I.

Dan is de functie F : V → R gedefinieerd door

F (x) =

∫ b

a
f(x, t) dt

continu.

Proof. We zullen laten zien dat de voorwaarden van Lemma 9.30 vervuld zijn. Zij x ∈ V. Dan is
de functie fx : t 7→ f(x, t), I → R continu, dus lokaal Riemann-integreerbaar, terwijl |fx| ≤ g op
I. Dus fx is oneigenlijk integreerbaar wegens Stelling 9.24. Hiermee is voorwaarde (a) aangetoond.
Zij ≥> 0 en zij c ∈ I. Uit de oneigenlijke Riemann-integreerbaarheid van g volgt het bestaan van
α, β ∈ I met α < β zo dat ∣∣∣∣∫

I
g(t) dx−

∫ β

α
g(t) dt

∣∣∣∣ <≥ .

143



Hieruit volgt voor alle x ∈ V dat∣∣∣∣∫
I
f(x, t) dx−

∫ β

α
f(x, t) dt

∣∣∣∣ =

∣∣∣∣∣
∫
I≤α

f(x, t) dt+

∫
I≥β

f(x, t) dt

∣∣∣∣∣
≤

∫
I≤α

|f(x, t)| dt+
∫
I≥β

|f(x, t)| dt

≤
∫
I≤α

g(t) dx+

∫
I≥β

g(t) dt

=

∫
I
g(t) dt−

∫ β

α
g(t) dt <≥ .

Hieruit volgt de ongelijkheid (9.26) waaruit blijkt dat voorwaarde (b) van Lemma 9.30 vervuld is.

Remark 9.33. Het idee van de voorwaarde in Stelling 9.32 is dat t 7→ f(x, t) gedomineerd wordt
door de oneigenlijk integreerbare (niet-negatieve) functie t 7→ g(t), met uniformiteit in de parameter
x ∈ V. Dit dwingt de voorwaarden van Lemma 9.30 af. △

Example 9.34. (Gamma-functie) We passen het bovenstaande toe op de Gamma-functie

Γ(x) =

∫ ∞

0
tx−1 e−t dt, (x > 0).

Zij 0 < a < b en X =]a, b[. Dan geldt voor alle t ∈]0, 1] dat tx−1 = e(x−1) log t ≤ ta−1. De functie
f(x, t) = tx−1e−t is continu op ]a, b[×]0, 1] en voor alle (x, t) ∈ X×]0, 1] geldt dat |f(x, t)| ≤
g(t) := ta−1e−t, terwijl g oneigenlijk integreerbaar is, dus

F0 : x 7→
∫ 1

0
tx−1 e−t dt

definieert een continue functie op X.

Anderzijds is f ook continu op ]a, b[×[1,∞[, terwijl op deze verzameling een majorantie van de
vorm |f(t, x)| ≤ tb−1e−t bestaat. De laatste functie is weer oneigenlijk integreerbaar op ]1,∞[, dus

F1 : x 7→
∫ ∞

1
tx−1 e−t dt

definieert een continue functie op ]a, b[. Hieruit volgt dat Γ = F0+F1 continu is op ]a, b[. Aangezien
a, b willekeurig waren volgt dat Γ continu is op ]0,∞[. △

Remark 9.35. We merken op dat

Γ(1) =

∫ ∞

0
e−t dt = lim

R→∞

[
−e−t

]R
0
= 1.

Zij x > 0, dan volgt uit het bovenstaande dat

Γ(x+ 1) = lim
R→∞

∫ R

0
tx e−t dt.

De integraal is met behulp van partiële integratie als volgt te herschrijven:∫ R

0
tx e−t dt = −

∫ R

0
tx
d

dt
e−t dt

=
[
−tx e−t

]R
0
+ x

∫ R

0
tx−1 e−t dt.
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De laatste integraal is convergent. Omdat x > 0 is, geldt tx|t=0 = 0. Tevens geldt Rx e−R → 0 voor
R→ ∞. Door de limiet voor R→ ∞ te nemen concluderen we daarom dat

Γ(x+ 1) = x

∫ ∞

0
tx−1 e−t dt

dus
Γ(x+ 1) = xΓ(x), (x > 0).

Passen we dit toe met x = n− 1, n ∈ Z+, dan vinden we met inductie dat

Γ(n) = (n− 1)! Γ(1) = (n− 1)!.

Anders gezegd, de Gamma-functie x 7→ Γ(x) levert een continue uitbreiding tot de positieve reële
as van de faculteitsfunctie n 7→ (n − 1)!, waarbij de laatste functie alleen voor de gehele positieve
getallen n is gedefinieerd. △

Example 9.36. (Béta-functie) We passen het bovenstaande toe op de Bèta-functie

B(p, q) :=

∫ 1

0
tp−1(1− t)q−1 dt (9.27)

De integrand is continu als functie van (p, q, t), voor p, q > 0 en 0 < t < 1. Fixeer p0, q0 > 0. Dan
geldt voor alle p ≥ p0, q ≥ q0 en t ∈ ]0, 1[ dat

0 ≤ tp−1(1− t)q−1 ≤ tp0−1(1− t)q0−1.

Zoals we eerder in Voorbeeld 9.27 zagen is de functie in het rechterlid oneigenlijk integreerbaar over
] 0, 1[. Met Stelling 9.32 concluderen we nu dat B continu is op [p0,∞[ × [q0,∞[. Dit geldt voor
iedere p0, q0 > 0. Dus B is continu op de verzameling ] 0,∞[ × ] 0,∞[. △

We zien aan deze voorbeelden dat uniforme majorantie vaak gemakkelijker is toe te passen na split-
sing van de oneigenlijke integratie in integraties over intervallen die minstens een der eindpunten
bevatten, zodat men zich alleen op het gedrag van de integrand naar het overgebleven eindpunt hoeft
te concentreren.

Er is ook een versie van differentiatie onder het integraalteken voor oneigenlijke integralen. Ook dit
gaat weer in termen van een geschikte uniforme dominantie.

Theorem 9.37. (Differentiatie onder het integraalteken) Zij X ⊂ R een open interval en I een
niet-leeg interval met grenzen −∞ ≤ a < b ≤ ∞. Zij verder f : X × I → R een continue functie
die voldoet aan de volgende eigenschappen.

(a) voor alle x ∈ X is de functie fx : t 7→ f(x, t) oneigenlijk Riemann-integreerbaar over I;

(b) de functie f is partieel differentieerbaar naar de eerste variabele, D1f is continu op X × I en
er is een oneigenlijk Riemann-integreerbare functie g : I → R zo dat

|D1f(x, t)| ≤ g(t) voor alle (x, t) ∈ X × I.

Dan is de functie F : X → R gedefinieerd door

F (x) =

∫ b

a
f(x, t) dt

(continu) differentieerbaar op X en er geldt dat

F ′(x) =

∫ b

a
D1f(x, t) dt. (9.28)
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Proof. Zij x0 ∈ X. We zullen de differentieerbaarheid van F in x0 aantonen. Hiertoe definiëren we
de functie q : X × I → R door

q(x, t) =
f(x, t)− f(x0, t)

x− x0
, (x ∈ X \ {x0}, t ∈ I),

en
q(x0, t) = D1f(x0, t), (t ∈ I).

De functie q is continu op X × I wegens Lemma 5.20. We zullen laten zien dat voor alle x ∈ X en
t ∈ I geldt dat

|q(x, t)| ≤ g(t). (9.29)

Voor x = x0 volgt dit uit de voorwaarde (b). Laat (x, t) ∈ (X \ {x0}) × I. Dan geldt vanwege
de middelwaardestelling toegepast op de eerste variabele van f dat er een tussen x0 en x gelegen
ξ = ξ(x, t) bestaat zo dat q(x, t) = D1f(ξ, t). De schatting (9.29) volgt nu ook uit voorwaarde (b).

Wegens het majorantiekenmerk is de functie q : t 7→ q(x, t) oneigenlijk Riemann-integreerbaar over
I, voor elke x ∈ X. Wegens Stelling 9.32 is de functie Q : X → R gedefinieerd door

Q(x) =

∫ b

a
q(x, t) dt

continu op X, dus in het bijzonder in x0. Uit de definities volgt direct dat

F (x)− F (x0) = Q(x)(x− x0)

voor alle x ∈ X \ {x0}. En uiteraard is de bewering ook geldig voor x = x0. Omdat Q continu is in
x0 leiden we hieruit af dat F differentieerbaar is in x0, en dat de afgeleide gegeven wordt door

F ′(x0) = Q(x0) =

∫ b

a
D1f(x0, t) dt.

Hieruit volgt dat F differentieerbaar is opX.Uit de formule (9.28) volgt door toepassing van Stelling
9.32 dat de afgeleide continu is.

Example 9.38. (Gamma-functie) We tonen aan dat de Gamma-functie willekeurig vaak differen-
tieerbaar is op ] 0,∞ [ , terwijl

Γ(k)(x) =

∫ ∞

0
(log t)k tx−1 e−t dt, (k ∈ N, x > 0).

De Gamma-functie is daarmee een gladde uitbreiding tot de positieve reële as van de faculteitsfunctie
(n− 1)!, n ∈ Z>0. We schrijven fk(x, t) voor de integrand.

Zij ≥> 0 willekeurig. Dan is
lim
t↓0

(log t)k t≥ = 0,

dus er bestaat een constante C≥ > 0 zo dat | log t|k ≤ C≥t
−≥ voor alle t ∈ ] 0, 1]. Dit geeft een

schatting van het type
|fk(x, t)| ≤ C≥t

x−1−≥, (0 < t ≤ 1).

Hierbij kunnen we ≥> 0 kiezen met ≥< x, zodat de dominerende functie t 7→ C≥t
x−1−≥ oneigen-

lijk integreerbaar is op het interval ] 0, 1]. Hieruit volgt de convergentie van
∫ 1
0 fk(x, t) dt.

Voor de integratie over [1,∞ [ merken we op dat

lim
t→∞

(log t)ktNe−t/2 = 0
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voor alle k,N ∈ N. Hieruit volgt dat er een Ck > 0 bestaat zo dat

|fk(x, t)| ≤ Cke
−t/2 (t ≥ 1).

Hieruit volgt de convergentie van
∫∞
1 fk(x, t) dt.

Laat nu 0 < a < b zijn, en veronderstel dat k ∈ N. Dan geldt voor alle x ∈ ] a, b [ dat

|fk(x, t)| ≤ |fk(a, t)|, (0 < t ≤ 1),

en dat
|fk(x, t)| ≤ |fk(b, t)|, (t ≥ 1).

Voor alle k ∈ N, x > 0, t > 0 geldt dat

∂

∂x
fk(x, t) = fk+1(x, t).

Het resultaat volgt nu met inductie naar k, door toepassing van Stelling 9.37. △

Example 9.39. (Bèta-functie) We beschouwen nogmaals de Bèta-functie van Euler, zie (9.27),
waarvoor we nu de sterkere uitspraak zullen bewijzen dat hij willekeurig vaak differentieerbaar is op
]0,∞[× ]0,∞[ terwijl voor alle k, l ∈ Z≥0 geldt dat

∂k+lB(p, q)

∂pk ∂ql
=

∫ 1

0
(log t)k tp−1 (log(1− t))l (1− t)q−1 dt. (9.30)

De continuı̈teit, van de integrand als functie van (p, q, t) ∈ ]1, ∞[× ]1, ∞[× ]0, 1[ is evident. Als
functie van t is de integrand dus lokaal Riemann integreerbaar op ]0, 1[. Zij nu p0, q0 > 0. Dan geldt
voor p > 2p0 en q > 2q0 dat

|(log t)k tp−1 (log(1− t))l (1− t)q−1| ≤ ψ(t) tp0−1tq0−1 (9.31)

met
ψ(t) := (log t)k tp0 (log(1− t))l (1− t)q0 .

Deze functie is continu voortzetbaar tot [0, 1], omdat

lim
t↓0

ψ(t) = 0 en lim
t↑1

ψ(t) = 0.

Hieruit volgt dat er een M > 0 bestaat zo dat |ψ(t)| ≤ M voor alle 0 < t < 1. We concluderen dat
de functie in het rechterlid van (9.31) op ] 0, 1[ gemajoreerd kan worden door de functie

t 7→Mtp0−1(1− t)q0−1,

die absoluut convergent is op ] 0, 1[, wegens Voorbeeld 9.36.

Door herhaald Stelling 9.37 toe te passen op de variabelen p en q concluderen we dat de functieB wil-
lekeurig vaak differentieerbaar is op ]2p0,∞[× ]2q0,∞[,met partiële afgeleiden die gegeven worden
door (9.30). Aangezien dit geldt voor alle p0, q0 > 0 zien we datB willekeurig vaak differentieerbaar
is op ]0,∞[× ]0,∞[ met de gegeven partiële afgeleiden. △
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Index
R([a, b],Rp), 75

absoluut convergent, reeks, 126

Bèta-functie, van Euler, 141, 145, 147
ball, closed, 1
ball, open, 1
Beta-function, Euler, 80

Cauchy–Schwarz, ongelijkheid van, 34, 36
Cauchy-criterium, voor integraal, 137
chain rule, for the total derivative, 56
compactness, sequential, 3, 4
complexe e-macht, 128
components, of a function, 41
componentwise differentiation, 42
composition rule, for continuity, 2
concatenation of curves, 6
connectedness, path-, 6, 11
connectedness, simply-, 11
constante van Euler–Mascheroni, 125
constraints, 101
convergentie, van integraal, 132
convergentie, van reeks, 122
covector field, 105
critical point, 98
curve, 5
curve, C1, 58
curve, closed, 9
curve, concatenated, 6
curve, reverse, 5
cylindrical coordinates, 95

derivative, kth order total, 64
derivative, along a curve, 58
derivative, directional, 42
derivative, higher order directional, 64
derivative, higher total, 64
derivative, partial, 40
derivative, total, 43
diffeomorfisme, 86
differential operator, 61
differentiatie, onder integraal, 145
differentiating, along a curve, 58
differentiation, under the integral sign, 82
divergentie, van integraal, 132

e-macht, complex, 128
endpoint, of a path, 5

Euler–Mascheroni, constante van, 125
extrema, under constraints, 101
extremum, local, 50

function, C1, 49
function, Ck, 60
function, k times continuously differentiable, 60
function, along a curve, 58
function, continuous, 2
function, continuously differentiable, 49
function, directionally differentiable, 42
function, infinitely differentiable, 60
function, locally constant, 7
function, partially differentiable, 40
function, smooth, 60
function, totally differentiable, 43
function, uniformly continuous, 4
function, uniformly continuous along a subset, 4
fundamental theorem of calculus, 76

Gamma-functie, van Euler, 140, 144, 146
Gamma-function, Euler, 80
gedomineerde continuı̈teit, 143
getransleerde functie, 30
gradient, 45

Hessian, 66
homotopie, 9
homotopie invariantie, van lijnintegraal, 111
homotopy, of closed curves, 10
homotopy, of loops, 10
homotopy, relative endpoints, 10

initial point, of a path, 5
integraal, van Riemann, 74
intermediate value theorem, 7
interval, 5, 7, 131
inverse function theorem, global version, 92
inverse function theorem, in one variable, 87
inverse function theorem, multivariate local ver-

sion, 88

Jacobi matrix, 43
Jacobian, 43

Kronecker symbol, 68

Lagrange, multipliers, 102
level set, 3
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level set, regular, 98
limietkenmerk, voor integraal, 141
limit under the integral, 79
line integral, of a covector field, 106
line segment, 5
line segment, closed, 5
line segment, open, 5
logarithmic function, 87
lokaal Riemann-integreerbaar, 131
loop, 9
loop, contractible, 11
loop, nullhomotopic, 11

majorantiekenmerk, voor integraal, 140
majorantiekenmerk, voor reeks, 127
maximum, local, 50
mean value theorem, directional, 53
mean value theorem, for partial derivatives, 53
mean value theorem, for the total derivative, 51
mean value theorem, in one variable, 51
mean value theorem, multivariate, 88
meetkundige reeks, 126
metric, euclidean, 2
middelwaardestelling, 51, 146
minimum, local, 50
monomial, 33
motion, 5
multi-index, 31, 61

neighbourhood, 1
norm, of a bilinear map, 35
norm, van lineaire afbeelding, 34

oneigenlijk Riemann-integreerbaar, 132
oneigenlijke integraal, 130
oneigenlijke Riemann-integraal, 132
orde, van multi-index, 31

parameter, 78
path, 5
path, C1, 58
path, reverse, 5
path-connectedness, 6
permutation, 61
poiint, stationary, 49
point, critical, 49
point, critical under constraints, 101
point, stationary under constraints, 101
polar coordinates, 94
position, 5
primitive, 76

primitive, along a curve, 114
product rule, for continuity, 2
product rule, for the total derivative, 55

quotiëntkenmerk, voor reeks, 128
quotient rule, for the total derivative, 55

reden, van meetkundige reeks, 126
reeks, complexe, 122
regular value theorem, 101
reparametrisation, continuous, 5
Riemann integral, vector-valued, 75
Riemann-integraal, 74
rij, complexe getallen, 122
rotatievrij vectorveld, 105

segment, 5
som van een reeks, 122
space, metric, 1
space, path-connected, 6
space, simply-connected, 11
spherical coordinates, 96
star-shaped, 11
stuksgewijze C1 kromme, 108
submanifold, 98
submanifold, dimension of a, 98
submanifold, tangent space of, 98
subset, closed, 1
subset, convex, 6
subset, open, 1
subset, star-shaped, 7
sum rule, for continuity, 2
sum rule, for the total derivative, 55
switching, of integration, 84
switching, of integration and differentiation, 82
switching, of partial derivatives, 61
symmetric matrix, 66

Taylor formula, kth order, 68
Taylor formula, second order, 69
Taylor polynomial, first order, 46
Taylor theorem, of kth order with remainder, 68
Taylor-ontwikkeling, eerste orde, 45
time variable, 5
trajectory, 5
triangle inequality, for the Riemann integral, 77

variational principle, 50
velocity vector, 58

zadelpunt, 50
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